Open Access Article. Published on 19 December 2012. Downloaded on 1/19/2026 1:58:08 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Green Chemistry

RSCPublishing

Evaluation of alternative solvents in common amide

Cite this: Green Chem., 2013, 15, 596

Received 27th November 2012,
Accepted 19th December 2012

DOI: 10.1039/c2gc36900a
Allan J. B. Watson*?

www.rsc.org/greenchem

A range of alternative solvents have been evaluated within ami-
dation reactions employing common coupling reagents with a
view to identifying suitable replacements for dichloromethane
and N,N-dimethylformamide.

The amide bond is one of the most fundamental functional
group linkages and underpins the connectivity of basic biomole-
cules (e.g., proteins) as well as being commonly found in many
widely used materials (e.g., nylons) and key pharmaceuticals
(e.g., penicillin, Lipitor®)."* In this latter context, amide bond
formation is the single most common synthetic trans-
formation used within medicinal chemistry. Indeed, several
studies have demonstrated the prevalence of this particular
transformation within the pharmaceutical sector: MacDonald’s
analysis of the GlaxoSmithKline (GSK) Respiratory Centre of
Excellence for Drug Discovery revealed that 17% of all reaction
types conducted in array (focused library) format were to
prepare amide or sulfonamide moieties.® Similarly, Roughley’s
analysis of the most common reactions used within synthetic
medicinal chemistry research across three of the largest
pharmaceutical companies (GSK, AstraZeneca, and Pfizer)
indicated that N-acylation to prepare amides ranked 1st for fre-
quency of use, accounting for 16% of all reactions performed
and with the amide linkage present in 54% of the compound
set analysed.”

While carboxamide formation is formally a condensation
between a suitable carboxylic acid and amine combination
that can be achieved simply by heating the requisite com-
ponents together,” this is typically not an efficient or
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particularly useful method due to the formation of an unreac-
tive carboxylate-ammonium salt which commonly leads to
poor yields, lengthy reaction times, or substrate compatibility
issues.® As such, carboxamide formation is often more con-
veniently achieved through application of a suitable coupling
agent.” Over the years, amide bond coupling reagents have
been the subject of some considerable development to the
stage that a bank of these reagents are available for deploy-
ment and guides have been devised to assist the practitioner
in selecting the most effective reagent for a desired
amidation.®

Throughout this area, however, the most widespread sol-
vents employed are those with major regulatory issues such as
chlorinated (dichloromethane, 1,2-dichloroethane) or N,N-
dimethylformamide (DMF). For example, a survey of amidation
reactions using SciFinder revealed that 83% of approximately
680 000 amidation reactions employed either CH,Cl, (36%) or
DMF (47%) as the reaction media.’ By contrast, the emerging
green solvent 2-methyltetrahydrofuran accounted for only
0.04% of this reaction set.® Despite their utility, CH,Cl, and
DMF are clearly not compatible with the current drive towards
more sustainable and environmentally cognisant medicinal
chemistry processes."’

As part of a programme focused on enabling sustainable
medicinal chemistry practices, we have been interested in
addressing solvent selection within both reaction and purifi-
cation scenarios.'’ Herein, we describe our evaluation of a
selection of alternative solvents for use within amidation reac-
tions using common amide coupling agents with a view to
identifying suitable replacements for CH,Cl, and DMF.

Results and discussion
Methods

For our study, we elected to use five of the most common
amide coupling reagents or reagent combinations: (1-cyano-2-
ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-car-
benium hexafluorophosphate (COMU),"> N,N'-diisopropylcarbo-
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diimide/hydroxybenzotriazole ~ (DIC/HOBt),"*  N-[(dimethyl-
amino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-ylmethylene]-N-methyl-
methanaminium hexafluorophosphate N-oxide (HATU),"*
(benzotriazol-1-yloxy)tripyrrolidinophosphonium  hexafluoro-
phosphate (PyBOP),"> and n-propylphosphonic anhydride
(T3P®)'® (Fig. 1). In addition, we aimed to evaluate these
reagents within the amidation reactions of representative
examples of both aryl and alkyl acids and amines in order to
probe alkyl-alkyl, aryl-aryl, and alkyl-aryl couplings (Fig. 1). In
terms of solvent selection, to compare directly with CH,Cl,
and DMF, we selected emerging or existing solvents including
tert-butyl methyl ether (TBME), cyclopentylmethyl ether
(CPME), dimethylcarbonate (DMC), ethyl acetate (EtOAc), iso-
propyl alcohol (IPA), and 2-methyltetrahydrofuran (2-MeTHF)
(Fig. 1)."” Other potential alternative solvents such as MeOH,
EtOH, and acetone were discounted based on unfavourable
potential side reactions (esterification and condensation

Amide Coupling Reagents
comu

Solvent Selection

tert-Butyl methyl ether (TBME) N,N-Dimethylformamide (DMF)

DIC/HOBY Cyclopentyl methyl ether (CPME) Ethyl acetate (EtOAc)
HATU
Dichloromethane (CHxCl iso-Propyl alcohol (IPA]
PyBOP i (CHLCl) Pyl (IPA)
T3P Dimethylcarbonate (DMC) 2-Methyl tetrahydrofuran (2-MeTHF}
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Communication

pathways). Overall, we elected to evaluate 160 different sets of
reaction conditions in this initial stage of our survey.

To ascertain the reaction performance of the alternative sol-
vents, we analysed each reaction by HPLC at a range of time
points (0 h, 1 h,2h,3h,4 h,5h,6h, 8h, and 24 h) to give a
conversion curve, which could be directly compared across the

-=TBME
-=-CPME
-=-CH2CI2
-=-DMC
-=-DMF
-=-EtOAC
-=-|PA
-=-2-MeTHF

% conversion

Time(h)

Fig. 2 Representative example of conversion data: amidation Reaction 3 using
HATU with the range of solvents.t
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Fig. 1 Coupling agents, solvents, and representative reactions for the amida-
tion survey.t
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Fig. 3 Representative example of conversion data: amidation Reaction 3 with
the range of coupling agents in 2-MeTHF.t

Table 1 lllustrative representation of the amidation dataset®

Solvent

Aryl Acid — Aryl Amine

Amide Coupling Type
Aryl Acid — Alkyl Amine

Alkyl Acid — Aryl Amine Alkyl Acid — Alkyl Amine

DIC
HOBt

DIC
HOBt

HATU COMU

PyBOP T3P HATU COMU

TBME
CPME
CH,Cl,
DMC
DMF
EtOAc
IPA
2-MeTHF

PyBOP T3P HATU COMU

Dic PyBOP T3P

DIC
PyBOP T3P HATU COMU HOBt

HOBt

“Key: Red = <50% conv., orange = 50-70% conv., green = >70% conv.; * Indicates 100% conv. within 4 h. ** Indicates 100% conv. within 1 h.
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solvent selection. Reactions and aliquots were repeated and
analysed up to a maximum of four times to ensure reliability.t

Analysis

An illustrative example chart of conversion vs. time for
Reaction 3 using HATU is shown in Fig. 2. The data indicated
that this amidation proceeded effectively in most solvents and

View Article Online

was generally complete after 4 h with the exception of TBME
(8 h) and CPME (24 h - data point not shown). An alternative
view of a section of the generated data is obtained from analy-
sis of coupling agents for a particular reaction in a given
solvent. For example, Fig. 3 displays the conversion vs. time
data for Reaction 3 in 2-MeTHF using the five coupling
agents.

Table 2 Assessment of promising solvents in a range of amidations using COMU as the preferred coupling agent®

COMU (1.2 equiv)

A e

j\ RZ\N/R3

R'” DOH H

Solvent, i-Pr,NEt (2 equiv), RT RN

I
RS

Completion time ”

Entry Product CH,CI, DMF DMC EtOAc 2-MeTHF
1 (fi Qe 4h 4h 4h 4h 4h
N N
| H
N7 c S
2 N 4h 4h 4h 4h 4h
R
N
/©/ o
F3C 6
3 Que 9 4h 4h 4h 4h 4h
H)J\G
Y
4 i 24 h 24 h 4h 4h 4h
HoN o] \’?
H
N
g O
5 f 4h 5 min® 24 h 4h 48h
MeoJ\©\
NH
9 O 0
W
6 il 24 h 24h 4h 4h 4h
N
o 10
7 i 5 min® 4h 4h 5 min® 5 min®
(\N%
Ph/N\) ©
8 Oy Ot 24h 24 h 4h 4h 4h
O 12
NHBoc
N
H
9 BOCQ 0 4h 5 min® 4h 4h 4h
NJK@
H
13
4h 4h 4h 24 h 4h

10 Me
Br N7 |

©/H N

O 1

“Reaction conditions: acid (1 equiv., 0.2 mmol), amine (1.2 equiv., 0.24 mmol), i-Pr,NEt (2 equiv., 0.4 mmol), COMU (1.5 equiv., 0.3 mmol),
solvent (1 mL, 0.2 M), RT. ” Determined by HPLC analysis. See ESL. ° Taken at 0 h time point, represents first data point sampled.
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From consideration of the overall data set (see ESIT), a
series of general observations could be made. Firstly, unsur-
prisingly, aryl-aryl couplings (Reaction 1) tended to be the
slowest processes in general while alkyl-alkyl couplings (Reac-
tion 4) were faster overall. Most reactions (81% of the dataset)
proceeded to 100% conversion, 74% were complete within 4 h,
and 36% were complete within 1 h. In terms of general trends
observed for the array of solvents: (i) TBME was generally good
for aryl-aryl (Reaction 1) and alkyl-alkyl (Reaction 4) couplings
and poor for aryl-alkyl (Reaction 2) and alkyl-aryl (Reaction 3)
couplings. (ii) CPME was generally poor across the spectrum of
reaction conditions examined with the exception of the more
reactive alkyl-alkyl coupling (Reaction 4), Reaction 1 using
HATU, PyBOP, and T3P, and Reaction 2 using T3P. (iii) As
expected, CH,Cl, and DMF were generally very good for all
reactions. (iv) Pleasingly, DMC, EtOAc, and 2-MeTHF were
found to be generally very good for all reactions. (v) Somewhat
surprisingly, IPA performed very well with only a few excep-
tions (particularly for Reaction 3). An additional observation
relating to TBME and CPME is that reactions tended to
become heterogeneous as time progressed. This may help to
explain why these reactions were generally less successful than
the equivalent reactions in the other solvents. Lastly, all coup-
ling agents were effective in each class of reaction (depending
on solvent as discussed above) with the exception of T3P for
alkyl acid-aryl amine couplings (Reaction 3) which were gener-
ally very poor. An illustrative summary of the overall analysis is
provided in Table 1.

Based on all of this, it was evident that DMC, EtOAc, and
2-MeTHF were the alternative solvents which offered the greatest
potential as replacements for CH,Cl,/DMF. Additionally,
COMU has emerged as an effective and greener amide coup-
ling agent which operated efficiently within the benchmark
reaction survey and, indeed, in several cases more effectively
than the ‘gold standard’*” reagent HATU. As such, we decided
to further evaluate DMC, EtOAc, and 2-MeTHF as the reaction
solvent alongside CH,Cl, and DMF for comparison utilising
COMU as the coupling agent over a broader range of substrates
possessing increased functionality (Table 2). Based on obser-
vations from the screening process that reactions using COMU
in DMC, EtOAc, and 2-MeTHF were generally complete within
4 h, the reactions in Table 2 were analysed at 0 h (effectively
within 5 min), 4 h and 24 h. In addition to increased function-
ality, the acids and amines were selected on the basis that they
would deliver amide products that had a physicochemical
profile that was consistent with being lead-like (H-Bond Accep-
tors, 2-7; H-Bond Donors, 0-2; Rotatable Bonds, 3-10; Polar
Surface Area, 20-93 A% Molecular Weight, 231-332; Xlog P,
0-2.4).'®

As can be seen from Table 2, the amidation reactions were
generally complete within the first four hours and comparable
to CH,Cl, and DMF in the majority of reactions. Indeed, there
were very few cases where CH,Cl, or DMF were shown to out-
perform the alternative solvents over the substrate range evalu-
ated under these reaction conditions. Overall, these results
suggest that DMC, EtOAc, and 2-MeTHF would be effective

This journal is © The Royal Society of Chemistry 2013
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replacements for CH,Cl, and DMF for similar amidation pro-
cesses. In addition, and with specific regard to DMF,
an additional practical value of employing DMC, EtOAc, or 2-
MeTHF as alternatives is that they would simplify the work up
procedure involved prior to any purification as both the
boiling points and the water miscibility of these solvents are
considerably lower than that of DMF,"” leading to more
effective aqueous work up and concentration processes, where
appropriate.

Conclusions

In summary, we have evaluated several alternative solvents as
potential replacements for CH,Cl, and DMF as the medium
for four benchmark amide bond forming reactions using
common amide coupling reagents or reagent combinations.
These studies revealed that CH,Cl, and DMF could potentially
be readily replaced with more environmentally acceptable and
sustainable alternatives. We subsequently applied three of
these solvents in a range of amidation reactions using a variety
of carboxylic acids and amines with functionality frequently
encountered within Medicinal Chemistry programmes,
employing COMU as the preferred coupling agent. This assess-
ment demonstrated that the general rates of reaction using
DMC, EtOAc, and 2-MeTHF were broadly comparable to those
observed using CH,Cl, or DMF and delivered equally high
levels of conversion to product. Overall, we believe that DMC,
EtOAc, and 2-MeTHF would be practical alternatives to conven-
tionally-used media for routine amide coupling processes and
would be highly beneficial for more environmentally benign
synthesis programmes in both academia and industry.
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