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Long-lived photoinduced charge separation for solar
cell applications in supramolecular complexes of
multi-metalloporphyrins and fullerenes

Shunichi Fukuzumi*®® and Kei Ohkubo?®

Monomers, dimers, trimers, dendrimers and oligomers of metalloporphyrins form supramolecular com-
plexes with fullerene derivatives via electrostatic interactions, n—x interactions and coordination bonds.
Photoexcitation of the supramolecular complexes resulted in photoinduced electron transfer from the
porphyrin moiety to the fullerene moiety to produce the charge-separated states as revealed by laser
flash photolysis measurements. The rate constants of photoinduced charge separation and charge
recombination in supramolecular complexes of multi-metalloporphyrins and fullerenes were also deter-
mined by laser flash photolysis measurements and the results depending on the number of porphyrins in
the supramolecular complexes are discussed in terms of efficiency of photoinduced energy transfer and
charge separation as well as the lifetimes of charge-separated states. The photoelectrochemical perform-
ances of solar cells composed of supramolecular complexes of monomers, dimers, dendrimers and oligo-
mers of metalloporphyrins with fullerenes are compared in relation to the rate constants of
photoinduced charge separation and charge recombination.

1. Introduction
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Photosynthesis is one of the most fundamental and indispen-
sable processes in nature, because it converts light energy into
chemical energy required to maintain life."”> Photosynthesis
is initiated by the multistep electron-transfer reactions in
the photosynthetic reaction centres following light energy harvest-
ing by antenna chlorophylls, funnelled to a bacteriochlorophyll
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dimer, the so-called special pair, to attain the long-lived
charge-separated (CS) state.” The redox-active components
such as chlorophyll, pheophytin and quinones are appropri-
ately located in the protein matrix by non-covalent inter-
actions.™® Extensive efforts have so far been devoted to the
design of electron donor-acceptor composites using covalently
and non-covalently linked systems to form the long-lived CS
state upon photoexcitation for artificial photosynthesis.*
Porphyrins, which are involved in a number of important bio-
logical electron-transfer systems including the primary photo-
chemical reactions of chlorophylls (porphyrin derivatives) in
the photosynthetic reaction centres, are particularly attractive
building blocks as electron acceptors as well as light-harvest-
ing compounds for the construction of supramolecular elec-
tron donor-acceptor composites due to their excellent
photophysical and electron-transfer properties.>>° With
regard to electron acceptors, fullerenes, which are extensively
conjugated three-dimensional n systems, are ideal electron
acceptors because of the minimal changes of structure and sol-
vation associated with the electron-transfer reduction.*°™®
Thus, combination of porphyrins and fullerenes is regarded as
ideal donor-acceptor ensembles, because the combination
results in a small reorganization energy, which allows to accel-
erate photoinduced electron transfer and to slow down charge
recombination, leading to the generation of long-lived CS
states with high quantum yields.**** However, non-covalent
binding between monomer porphyrins and fullerenes is
usually not strong enough in polar solvents which are gene-
rally used for studies on photoinduced electron-transfer
reactions.®*®® Among non-covalent interactions, an electro-
static interaction is relatively strong in polar solvents.®®”*
Muti-point binding sites can be introduced by using multi-
metalloporphyrins (dimers, trimers, dendrimers and oligo-
mers), allowing strong binding between multi-metallo-
porphyrins and fullerenes in polar solvents.***

In this perspective, we review our recent development on
photoinduced charge separation in supramolecular complexes
of porphyrin anions and fullerene cations with electrostatic
interactions and those composed of multi-metalloporphyrins

Scheme 1
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and fullerenes, which are strongly bound in polar solvents,
towards construction of supramolecular solar cells based on
the long-lived photoinduced charge separation.

2. Supramolecular complexes of monomer
porphyrin sulfonates and Li*@Cgg

Zinc tetraphenylporphyrin tetrasulfonate anion [(Bu,N'),-
ZnTPPS*7] forms a strong supramolecular binding with a cat-
ionic lithium ion encapsulated fullerene (Li*@Ceo)*”” in
benzonitrile (PhCN) by electrostatic and =n-n interactions
(Scheme 1).”® The Job’s plots of the absorbance change con-
firmed the 1:1 stoichiometry between ZnTPPS'~ and
Li'@Ceo.”® Free base tetraphenylporphyrin tetrasulfonate
anion [(BuyN*);H,TPPS*7] also forms a 1:1 complex with
Li*@Cgo. The formation constants (K) of the ZnTPPS*/Li*@Cqgo
and H,TPPS" /Li*@Cgs, complexes were determined from the
absorption change to be 1.6 x 10° and 3.0 x 10> M, respecti-
vely.”® The same formation constants were obtained from the
fluorescence quenching of ZnTPPS*~ and H,TPPS'~ and by
Li'@Cg, in PhCN.”®

The occurrence of the photoinduced energy transfer in the
supramolecular complex was confirmed by the transient
absorption spectra of the ZnTPPS' -Li'@Cg complex
measured in PhCN using femtosecond laser flash photolysis
(Fig. 1a).”® The transient absorption bands taken at 2 ps
observed at 620 and 737 nm are assigned to the singlet excited
state of ZnTPPS*". This band decays with the rate constant
(ken) Of 9.7 x 10" s™* (Fig. 1b) to form the singlet excited state
of Li'@Ceo at 100 ps (Fig. 1a). The decay rate constant of
"Li*@Cqo]* was determined to be 8.9 x 10° s™*, which agrees
with the rate constant of the intersystem crossing of
Li'@Ceo.”® Thus, efficient energy transfer occurred from
"[ZnTPPS* * to Li*@Cg, rather than electron transfer.

The transient absorption spectra taken by nanosecond laser
flash photolysis shown in Fig. 2a demonstrate the formation of
[ZnTPPS* | (Amax = 670 nm) and that of Li'@Ce, radical
anion (Amax = 1035 nm).”® Thus, the electron transfer from

Supramolecular complex formation and photoinduced charge separation of MTPPS*~ (M = Zn and H,) with Li*@Cgg in PhCN.
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Fig. 1 (a) Transient absorption spectra of ZnTPPS*™ (2.5 x 107> M) in the pres-

ence of Li*@Cgp (5.0 x 107> M) in deaerated PhCN at 298 K taken at 2, 10 and
100 ps after femtosecond laser excitation at 388 nm. (b) Time profile at 737 nm.
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Fig. 2 (a) Transient absorption spectra of ZnTPPS* (2.5 x 10> M) in the pres-
ence of Lit@Cgo (5.0 x 107> M) in deaerated PhCN at 298 K taken at 20 and
200 ps after nanosecond laser excitation at 550 nm; (b) decay time profiles at
1035 nm with different laser intensities (1, 3, 6 mJ per pulse). Inset: first-order
plots.

ZnTPPS'™ to *[Li*@Cgo]* or from *[ZnTPPS* ]* to Li'@Cso
occurs in the supramolecular complex to produce the triplet
charge-separated (CS) state. The lifetime of the triplet CS state
of the supramolecular complex was determined to be 300 ps
for ZnTPPS'™ from the first-order decay of the CS state
(Fig. 2b).”® It was confirmed that back electron transfer
occurred in the supramolecular complex, because the first-
order decay rate constant remains the same irrespective of the
difference in the laser intensity (inset of Fig. 2b).”® Similarly
the CS lifetime of 310 ps was determined for [(H,TPPS*™)*-
Li*@Ceo7].”® This is the longest lifetime of the CS state ever
reported for monomer porphyrin/fullerene systems linked
non-covalently in solution. The quantum yield of the CS state
is determined to be 0.39 using the absorption of the CS state
(Li*@Ceo ™t €1035 = 7300 M~ cm™").”®

The activation enthalpies of the charge-recombination (CR)
processes were determined to be 3.0 kcal mol™" for ZnTPPS" -
Li'@Cqo and 5.4 kcal mol™* for H,TPPS* -Li'@Cg.”% This
indicates that there is a significant energy difference between
the singlet and triplet CS states and that the CR processes may
occur through the thermally activated singlet CS state. The life-
time of the CS state at 77 K is estimated as long as 60 h for
H,TPPS* -Li"@Ce.”® Such a long-lived triplet CS state was
detected by the EPR measurements by photoirradiation of the
H,TPPS* -Li"@Cg, complex in frozen PhCN as shown in
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Fig. 3 EPR spectra of (a) (ZnTPPS*)*-Li*@Ceo'~ and (b) (H,TPPS*7)*—
Li*@Cgo™™ in PhCN generated by photoirradiation with a high-pressure Hg lamp
(1000 W) at 77 K.

Fig. 3. The spin-spin interaction in the triplet radical ion pair
of the supramolecular complex is clearly shown at 77 K, where
the fine structure due to the triplet CS state is clearly observed
at g = 2. From the zero-field splitting values (D = 52 G for
ZnTPPS*™ and 56 G for H,TPPS*") the distances () between
two electron spins were estimated using the relation, D =
27 800/r°,7>%° to be 8.1 and 7.9 A, respectively.”® These r values
agree with the centre-to-centre distance of a reported crystal
structure of porphyrin/Ce.

By mixing PhCN solutions of the supramolecular complexes
of MTPPS*™ and Li*@Cs, with acetonitrile (MeCN), nanoclusters
were produced and they were deposited on an optically trans-
parent electrode (OTE) of nanostructured SnO, (OTE/SnO,) by
application of a dc electric field (~100 V em™") to construct
photovoltaic cells.®" The (MTPPS* /Li*@Cqg,), films are com-
posed of closely packed Li*@Cs, clusters of about 80 nm size,
which render a nanoporous morphology to the film as shown
in the TEM images in Fig. 4.%"

The photoelectrochemical measurements of a robust thin
film of OTE/SnO,/(MTPPS*™/Li*@Cso),, were performed using a
standard two-electrode system consisting of a working elec-
trode and a Pt wire gauze electrode in air-saturated MeCN
containing 0.5 M Lil and 0.01 M I, (Fig. 5).”7 The IPCE
(incident photon-to-photocurrent efficiency) values were deter-
mined by normalizing the photocurrent values for incident
light energy and intensity and using eqn (1).%>7%°

IPCE (%) = 100 X 1240 X Zs/(Iinc X 4) (1)

Fig. 4 TEM images of (a) Li*@Cgo/ZNTPPS*™ and (b) Li*@Cgo/H,TPPS*™
nanoclusters.

This journal is © The Royal Society of Chemistry 2013
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Fig. 5 Schematic image of photoelectrochemical cell of OTE/SnO,/MTPPS*~/
Li*@Cgo and electron-transfer pathways to generate photocurrent.

where i, is the short circuit photocurrent (A em™?), Iy, is the
incident light intensity (W cm ™) and / is the wavelength (nm).
The IPCE value of OTE/SnO,/(ZnTPPS* /Li*@Cso), is much
higher than the sum of the two individual IPCE values of the
individual systems OTE/SnO,/(ZnTPPS*7), and OTE/SnO,/
(Li'@Ceo), in the visible region (Fig. 6). The maximum IPCE
value of OTE/SnO,/(ZnTPPS* /Li*@Cq0), was 77% at 450 nm.
Such a high IPCE value indicates that photocurrent generation
is initiated via photoinduced electron transfer from ZnTPPS*~
to Li'@Cgo, followed by the charge transport to the collective
surface of an OTE/SnO, electrode (Fig. 5). When ZnTPPS*~ was
replaced by H,TPPS*", a significantly low IPCE value was
observed as 7% at 440 nm probably because of the self-aggre-
gation of H,TPPS*~ without binding with Li*@Ceo.%"

The power conversion efficiency (1) of the OTE/SnO,/
(ZnTPPS* /Li'@Cq), electrode was calculated by using
eqn (2):82—85

ﬂ:FF ><Isc X Voc/Win (2)

in which the fill factor (FF) is defined as FF = [IV]ax/IscVoe and
Voe 1s the open-circuit photovoltage and I, is the short-circuit
photocurrent. The OTE/SnO,/(ZnTPPS* /Li'@Cqg,), electrode
has an overall power conversion efficiency () of 2.1% at an
input power (Wi,) of 28 mW c¢m™?, whereas FF = 0.37, Vi =

80
/\ ZnTPPS-Li*@C,,
6or / ZnTPPS
N .
> |
W 40
o
20

Wavelength, nm

Fig. 6 Photocurrent action spectra of OTE/SNO5/(ZNTPPS*~/Li* @Ceo)y, (red)
OTE/SnOz/(ZnTPPS‘l’)n (blue) and OTE/SnO,/(Li*@Ceo), (black). Electrolyte:
0.5 M Lil and 0.01 M I, in MeCN-PhCN (3: 1 v/v).
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460 mV and I, = 3.4 mA cm™? in the OTE/SnO,/(ZnTPPS"~/
Li*@Cqgo),- The 7 value is two orders of magnitude greater than
that of the previously reported simple porphyrin and Cg, com-
posite system (~0.03%).** Such a significant enhancement of
the 7 value indicates that the strong ordering in the clusters
and the efficient charge separation in (ZnTPPS* /Li*@Cgo)n
improved the light energy conversion properties.

3. Supramolecular complexes of cyclic
porphyrin dimers with Cgo and Li*@Cegg

As compared to porphyrin monomers, porphyrin dimers with
appropriate linkage can accommodate electron acceptor guest
molecules by =w-m interactions to form sandwich
complexes.®*® For example, a cyclic Ni porphyrin dimer
(Ni-CPDp,) linked by butadiyne moieties bearing 4-pyridyl
groups (Fig. 7) forms a sandwich complex with Cgy (Cgo C Ni,-
CPDpy) as shown in the X-ray crystal structure (Fig. 8), where
the dimer bites a Cg, molecule by tilting the porphyrin rings
with respect to each other and there are strong n—r interactions
between the porphyrin rings and Ce.”” The adjacent dimers
are linked by hydrogen bonds and n-r interactions.”” The Cgo
molecules are linearly arranged in the inner channel to give a
supramolecular peapod.®” %

The linear arrangement of Ce, in Cgo C Ni,-CPDp, high elec-
tron mobilities of Yu = 0.72 and 0.20 em® V' 57" along the
b and c¢ axes, respectively, which were determined by flash-
photolysis time-resolved microwave conductivity (FP-TRMC)
measurements.”” The TRMC technique can evaluate the

Fig. 8 Crystal structures of tubular assemblies of Cgo C Ni-CPDp,. Hydrogen
atoms are omitted for clarity.

Dalton Trans., 2013, 42, 15846-15858 | 15849
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intrinsic mobility without being affected by the chemical or
physical defects in the material and/or the organic/metal-elec-
trode interfaces.'”'°> The observed value along the b axis of
the single crystal of Csy C Ni,-CPDp, is comparable to that of
the single crystal of Ceo (Y1 = 0.50 cm® V' s7' measured by
TOF).'% The observed high electron mobility along the b axis
is due to the well-ordered linear arrangement of Cg, in the por-
phyrin nanotube. However, the expected charge-separated
state could not be observed in the time-resolved transient
absorption spectra of Cgy C Ni,-CPDp, because the singlet
excited state of the nickel porphyrin immediately changes to
the triplet excited state by intersystem crossing and the low
energy triplet excited state of Cgy (*Ce0*) is formed by energy
transfer.”” The estimated energy level of the charge-separated
state (1.98 eV) is higher than that of *Ceo* (1.60 eV).”” When
Ni,-CPDp, was replaced by a free base porphyrin dimer (H4-
CPDPy), a complete charge-separated state {H,-CPDPy"" +
Ceo )} was observed by femtosecond laser flash photolysis of
Ceo C Hy-CPDpy in the solid state with a lifetime of 470 ps.'”’
The photovoltaic activity of Cgy C Ni,-CPDp, and Cgy C Hy-
CPDyp, was evaluated by using solar cells composed of modi-
fied electrodes and I/I;~ solution.'” The Cgo C Hy-CPDpy-
modified electrode exhibited IPCE of 17% and a power conver-
sion efficiency (1) of 0.33%, which was more than 16 times
larger than that of OTE/SnO,/(Cgp C Niy-CPDpy), (0.02%).""
Such a significant enhancement of the » value demonstrates
that the formation of highly ordered clusters and the efficient
charge separation of (Ceo C H4-CPDpy), contributes to the
improvement of the light energy conversion properties."®”

When Cg is replaced by Li'@Ce, porphyrin dimers with
four long alkoxy substituents on the meso-phenyl groups
(MCPDpy(OCg) in Fig. 9) form strong supramolecular com-
plexes in even a polar solvent such as PhCN."*® The association
constants (Kassoc) Of Li'@Cgo C MCPDpy(OCg) in PhCN at
298 K were determined to be 2.6 x 10° M™" for Li*@Cq, C H,-
CPDp,(OC¢) and 3.5 x 10° M™' for Li'@Cs C Ni,-
CPDpy(0Cg)." %

Upon laser excitation of Li'@Csg, C Ni,-CPDp,(OCg), transi-
ent absorption bands due to Ni,-CPDp,(OCs)™" and Li'@Cq"~
were observed as shown in Fig. 10a.'%® In this case, electron

H4-CPDpy(OC5): M= H2
Nip-CPDpy(OCg): M = Ni

Fig. 9 Supramolecular formation and photoinduced charge
between MCPDp(OCg) and Li*@Ceo.

separation
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Fig. 10 (a) Transient absorption spectra of Ni>-CPDp,(OCg) with Li*@Cg in
deaerated PhCN at room temperature taken at 4 and 28 us after nanosecond
laser excitation at 520 nm. [Ni-CPDp (OC¢)] = 2.5 x 107> M, [Li*@Ceo] =
5.0 x 10~ M. (b) Rise and (c) decay time profiles at 1035 nm with different laser
intensities (1, 3, 5 mJ per pluse). Inset: first-order plots.

transfer occurs from Ni,-CPDp,(OCq) to the triplet excited state
of Li'@Cg (*Li"@Ceo*) rather than from *[Ni,-CPDyp,(OC)]* to
Li'@Cqgo as indicated by the disappearance of the absorption
band at 750 nm due to *Li*@Cso*, accompanied by the appear-
ance of the absorption band at 1035 nm due to Li'@Ceo™~
(Fig. 10b)."®® The rate constant of electron transfer from
Ni,-CPDp,(OCg) to *Li*@Cgo* to produce the CS state was deter-
mined from the rise in the absorbance at 1035 nm due to
Li'@Cqo"~ to be 5.7 x 107 s7'.'°® The absorbance at 1035 nm
due to Li'@Cg"~ in the CS state decayed obeying first-order
kinetics with the same slope irrespective of the difference in

This journal is © The Royal Society of Chemistry 2013
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Scheme 2 Energy diagram for Li*@Cgo C Ni>-CPDp,(OCg); broken arrow: minor
pathway.

the laser intensity (Fig. 10c)."°® This clearly indicates that the
decay of the CS state occurs via intrasupramolecular back elec-
tron transfer rather than a bimolecular back electron-transfer
reaction between the CS states. The CS lifetime was deter-
mined from the slope of the first-order plots in Fig. 10c to be
0.67 ms, which is the longest value ever reported for non-
covalent monomer dimer porphyrin-fullerene supramolecules
in solution.’®® The CS state was also observed for Li'@Csg, C
H4-CPDpy(OCg). The quantum yields of the CS states were esti-
mated to be 0.13 for Li'@Cgo C Ni,-CPDp,(OCs) and 0.32 for
Li'@Cso C H4-CPDpy(OCq) and by means of the comparative
method with the absorption intensities of the CS states
(Li'@Ceqo "2 £(1035 nm) = 7300 M~ cm™')."*® When Li*@Cs
was replaced by pristine Cgp, no CS states were produced as
predicted by their higher energy levels than those of the triplet
excited states of CPDp,(OCs) and Cgo.'*®

The mechanisms of intrasupramolecular photoinduced
charge separation in Li'@Cgo C Ni,-CPDp,(OCg) are shown in
Scheme 2.'%° The singlet excited state of Ni,-CPDpy(OCe)
(*[Ni,-CPDpy(OC¢)]*) is generated upon photoexcitation of
Li'@Cgo C Ni,-CPDpy(OCs) at 420 nm, where the porphyrin
moiety is exclusively excited. Even if the Li'@Cg, moiety is

excited, energy transfer from '[Li'@Ceo]* (Es = 1.94 eV)”’
to  Ni,-CPDp,(OCg) (Es = 1.97 eV) occurs to produce
![Ni,-CPDpy(OCg)J*.  Although  electron  transfer  from

![Ni,-CPDpy(OCe)]* to Li'@Ceo is energetically possible
(Scheme 2), the fast intersystem crossing occurs to generate
*[Nip-CPDypy(OCq)]* (kisc > 10'% s71).'°® Then, electron transfer
occurs from *[Ni,-CPDpy(OCg)]* to Li'@Csgo with the driving
force of 0.30 eV to produce the CS state. The CS state decays
slowly via intrasupramolecular BET with the lifetime of
0.67 ms (Scheme 2)."%°

4. Supramolecular complex of a porphyrin
tripod with Cgo

The tripod conformation of a porphyrin trimer (TPZnj) in
Fig. 11 makes it possible to capture a fullerene derivative con-
taining a pyridine moiety (PyCq)'*® inside the cavity strongly
by 7n-m interactions together with the coordination bond
between Zn>" and the pyridine moiety (Scheme 3)."'°""* The
association constant of TPZn, with PyCgo (1.1 x 10° M™" in

This journal is © The Royal Society of Chemistry 2013
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e

DPZn,

TPZn, MPZn

Fig. 11 A porphyrin tripod and the reference dimer and monomer.

TPZn; + PyCg (TPZn3—PyCygp)

Scheme 3 Formation of a supramolecular complex between TPZn3 and PyCeo.

toluene) determined from the UV-vis absorption spectral titra-
tion (Fig. 12a) is much larger as compared with those of the
corresponding monomer (MPZn) and dimer porphyrin
(DPZn,)."* The "H NMR signals of TPZn; exhibit downfield
shifts upon complexation with PyCg,, whereas the pyridyl
protons of PyCg, exhibit large upfield shifts by the complexa-
tion, which is ascribed to the influence of the large porphyrin
aromatic ring current."** This result clearly shows that the
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Fig. 12 (a) UV-Vis spectral changes upon addition of PyCgo (0 to 48 uM) to an
0-DCB solution of TPZn3 (3 pM) at 298 K. (b) Schematic view of photoinduced
electron transfer in the TPZn3—-PyCgo complex. The structure of the TPZn3—-PyCgo
complex was optimized by DFT at the B3LYP/3-21G(*) level.

Dalton Trans., 2013, 42, 15846-15858 | 15851


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c3dt51883c

Open Access Article. Published on 03 October 2013. Downloaded on 7/19/2025 5:57:19 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

pyridyl group of PyCe, coordinates to the central zinc ions of
TPZn;. The encapsulation of PyCg, into the cavity of TPZn; was
supported by the DFT-optimized structure (B3LYP/3-21G(*)
basis set) in Fig. 12b.**?

The occurrence of photoinduced electron transfer from
'TPZn;* to PyCe, was confirmed by femtosecond laser flash
photolysis measurements in Fig. 13a, where the transient
absorption spectrum due to "TPZn;* changes as time elapses
to afford the absorption bands at Ay, = 1000 nm due to the
monofunctionalized fullerene radical anion''*'"® and at
670 nm due to the one-electron oxidized species of TPZnj
(TPZn3.+).113’116’117

In sharp contrast to the TPZn;-PyCg, complex, the transient
absorption spectrum of the monomer porphyrin (MPZn) in the
presence of PyCg, (Fig. 13b) exhibits the absorbance change
due to the energy transfer from 'MPZn* to PyCe, to give the
singlet excited state 'PyCqo* (1.76 eV), followed by the conver-
sion to the triplet excited states MPZn* and °PyCe* at
2800 ps (green line in Fig. 13b), accompanied by the recovery
of the ground state.*

The energy diagrams of photodynamics for TPZn; and
MPZn in the presence of PyCg, in toluene are shown in
Scheme 4a and 4b, respectively.''* The energy level (1.49 eV) of
the CS state (TPZn; '—PyCq, ") is lower than the energy level of
the triplet excited state of PyCs, moieties (1.56 eV). The rate
constant (kgy) of photoinduce electron transfer from “TPZn;*
to PyCs, is larger than the rate constant of intersystem cross-
ing. From the rate constant of back electron transfer (kpgr =

600 800 1000 1200
670 nm Wavelength, nm

Por+ l 1000 nm

C60™

B SO L P My
¥

! ! !
400 600 800 1000 1200
Wavelength, nm

600 800 1000 1200
Wavelength, nm

1Cqo*

400 600 800
Wavelength, nm

1000 1200

Fig. 13 Transient absorption spectra of (a) TPZns (7.0 x 107® M) and
(b) MPZn (1.1 x 107> M) in the presence of PyCeo (2.3 x 107> M) obtained
at 2 ps (black), 62 ps (red), and 2800 ps (green) after femtosecond laser pulse
irradiation at 410 nm in deaerated toluene at 298 K.
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Scheme 4 Energy diagrams for photodynamics of (a) TPZn3 and (b) MPZn in
the presence of PyCg in toluene.

1.9 x 10° s7Y), the lifetime of the CS state is determined to be
7cs = 0.53 ns. In contrast, only energy transfer from "MPZn* to
PyCgo oOccurs to produce "PyCgo*, in competition with inter-
system crossing to *MPZn*.'*?

TPZn; also forms a stable 1:1 complex with gold(m)
tetra(4-pyridyl)porphyrin (AuTPyP") in nonpolar solvents.''®
The strong binding of TPZn; with AuTPyP' results from the
encapsulation of AuTPyP" inside the cavity of TPZn; through
multiple coordination bonds. The efficient quenching of the
singlet excited state of TPZn; occurs via a photoinduced elec-
tron-transfer pathway in the TPZn;-AuTPyP’ complex as the
case of TPZn;-PyCg, complex.'®

5. Supramolecular complexes of porphyrin
oligopeptides and Cgg

Multiple photosynthetic reaction centres composed of light-
harvesting multiporphyrin units and charge-separation units
were obtained by using both the coordination bond and n—n
interaction. Zinc porphyrinic oligopeptides with various
numbers of porphyrin units [P(ZnP),; n = 2, 4, 8]"'*"° were
used as light-harvesting multiporphyrin units (Fig. 14), which
are bound to electron acceptors of fulleropyrrolidine bearing a
pyridine (PyCgo)'"? or imidazole coordinating ligand (ImCq)®*
as shown in Fig. 15.'*"

The binding constant (K) of PyCs, to P(ZnP), increased with
increasing number of zinc porphyrins in an oligopeptide
unit."*! No supramolecular complex formation was observed
in the case of zinc tetraphenylporphyrin in PhCN."' The
strong binding between P(ZnP)g and PyCg, results from the
strong n-7 interactions between two zinc porphyrins and PyCe,
in addition to the axial coordination of PyCe, to zinc ions of
the porphyrins. In the case of ImCg,, however, the highest K
value was obtained in the P(ZnP),-ImCg, complex. This

This journal is © The Royal Society of Chemistry 2013
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Fig. 15 lllustration of supramolecular complex composed of porphyrin-peptide
octamer [P(ZnP)g, Ar = 3,5-(t-Bu)>CgHs] and PyCgp or ImCep.

indicates that ImCg, is much more strongly bound by the
oligopeptide, P(ZnP),;, than PyCgo.'>' The apparent binding
constants (K) determined from the fluorescence quenching of
P(ZnP), were significantly larger than those determined from

This journal is © The Royal Society of Chemistry 2013

the UV-vis spectral change, and the difference in the values
increased with increasing the generation of porphyrinic oligo-
peptides (with increasing the number of the porphyrin
units).”*" This indicates that the excited energy migration
between the porphyrin units occurs efficiently prior to the elec-
tron transfer to the bound Cg, moiety. An extremely efficient
energy transfer also occurs in P(ZnP)g-ImCg, judging from the
large difference in the K values determined by the absorption
change and by the fluorescence quenching (1.5 x 10* vs. 3.3 x
10° M.

The occurrence of photoinduced electron transfer in the
supramolecular complex in PhCN was confirmed by the transi-
ent absorption spectra of the supramolecular complex of
P(ZnP), with PyCg, using nanosecond laser flash photolysis."**
The laser photoexcitation at 561 nm of the supramolecular
complex of P(ZnP)g with PyCe, results in formation of the CS
state as indicated by the transient absorption spectra in
Fig. 16a, where the absorption band due to PyCe, ™ is clearly
observed at 1000 nm together with that due to ZnP™" at
630 nm."" The CS state detected decays obeying first-order
kinetics (Fig. 16b) and the first-order plots at different initial
CS concentrations afford linear correlations with the same
slope (inset of Fig. 16b)."*" If there is any contribution of inter-
molecular back electron transfer from unbound PyCg,"™ to
ZnP"*, the second-order kinetics would be involved for the
decay time profile. In fact, the corresponding second-order
plots (Fig. 16¢) are clearly non-linear and the initial slope
varies depending on the CS concentration. Thus, the decay
process is ascribed to back electron transfer in the supramole-
cular complex rather than intermolecular back electron trans-
fer between ZnP™* and PyCg ~."*' The CS lifetimes of the
supramolecular complexes of other porphyrins [P(ZnP),] and
the fullerene derivative (ImCsq,) become longer with increasing
generation of porphyrinic oligopeptides (with increasing the

number of the porphyrin units)."*" Such elongation of the CS
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Fig. 16 (a) Transient absorption spectra of P(ZnP)g (2.9 x 107% M) in the pres-
ence of PyCgo (4.9 x 107 M) in deaerated PhCN at 298 K taken at 70 (solid line
with black circles) and 350 ps (solid line with white circles) after laser excitation
at 561 nm (4 mJ per pulse), respectively. (b) Time profiles of the absorption at
1000 nm due to PyCgp~ with different laser powers (4 and 1 mJ per pulse) at
298 K. Inset: first-order plots. (c) Second-order plots.

lifetimes results from efficient hole migration between the por-
phyrin units following the photoinduced electron transfer in
the supramolecular complexes.

Multiple photosynthetic reaction centres have also been
constructed using supramolecular complexes of zinc porphyrin
dendrimers [D(ZnP),: n = 4, 8, 16] with PyCe,."** Efficient
energy migration occurs more efficiently between the ZnP
units of dendrimers prior to the photoinduced electron trans-
fer with increasing the generation of dendrimers to attain an
extremely long CS lifetime e.g., 0.25 ms for the D(ZnP),c-PyCs,
complex in PhCN at 298 K.***

Multiple photosynthetic reaction centres composed of
supramolecular complexes of harvesting multiporphyrin units
and charge-separation units have enabled us to construct
supramolecular organic solar cells by the electrodeposition of
mixed porphyrin-peptide oligomers [P(H,P), or P(ZnP),] and
Ceo clusters [(P(H,P),, + Cgo)m OF (P(ZnP),, + Cgo)n,] ONto an opti-
cally transparent electrode (OTE) of a nanostructured SnO,
electrode (OTE/SnO,), to obtain modified electrodes [denoted
as (P(H,P), + Cgo)m OF (P(Z0P), + Coo)m (n =1, 2, 4, 8, 16)]."**
The IPCE value increased with increasing the number of por-
phyrins in a polypeptide unit in both (P(H,P), + Ceo)m and
(P(ZnP), + Ceo)m (7 = 1, 2, 4, 8, 16) systems as shown in Fig. 17.
Such a good photoelectrochemical performance results from
efficient photoinduced electron-transfer from the excited state
of the porphyrin unit to Cgo in the supramolecular complex
with longer CS lifetimes as the number of porphyrins in a poly-
peptide unit increases (vide supra). The maximum IPCE value
of (P(ZnP)is + Ceo)m (56%) is larger than that of (P(H,P)ie +
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Fig. 17 (A) The photocurrent action spectra (IPCE vs. wavelength) of (a)
(P(H2P)16 + Co0)m, (B) (P(H2P)g + Coo)m, () (P(H2P)a + Coo)m, (d) (P(H2P)2 + Coo)m
and (e) (P(H2P); + Ceo)m modified OTE/SnO, electrodes. (B) The photocurrent
action spectra of (a) (P(ZnP)16 + Ceo)m, (b) (P(ZNP)g + Ceo)m, (€) (P(ZNP)4 + Coo)m,
(d) (P(ZnP)5 + Ceo)m and (e) (P(ZnP); + Cgo) mModified electrodes. (C) The photo-
current action spectra of (a) (P(ZnP)g + IMCeo)m, (b) (P(ZnP)16 + PyCeo)m and (c)
(P(ZnP)16 + Coo)m Modified OTE/SnO, electrodes. See text for the employed con-
centration of the individual species.

Ceo)m (48%) probably because of the larger driving force of the
photoinduced electron transfer.

The maximum IPCE values of (P(ZnP);s + PyCeo)n (20%)
and (P(ZnP);6 + ImCego),, (15%) are much smaller than that of
(P(ZnP)1s + Ceo)m (56%), whereas the binding constant of
P(ZnP);4-Ceo is smaller than those of P(ZnP);c-ImCg, and
P(ZnP),6-PyCeo.'>*> The lower IPCE values of P(ZnP),c~ImCqgo
and P(ZnP);,-PyCs, systems as compared with that of
P(ZnP);4-Cgo System may result from the poor electron-trans-
port properties of Cg, derivatives due to the steric hindrance of
the ligand moiety."*® Thus, a key element for efficient photo-
current generation is mainly the hole and electron transport in

This journal is © The Royal Society of Chemistry 2013
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Fig. 18 (A) Current-voltage characteristics of (a) (P(H2P)16 + Ceo)m, (b) (P(H2P)g
+ Cgo)m, and (c) (P(H2P); + Ceo)n modified electrodes. (B) Current-voltage
characteristics of (a) (P(ZnP)16 + Ceo)m and (b) (P(ZnP); + Cgp)m- Electrolyte: 0.5 M
Nal and 0.01 M I, in acetonitrile. Input power: 3.4 mW cm~2, 1 > 400 nm.

the thin film rather than the charge separation between por-
phyrins and Cg."*?

I/V characteristics of (a) (P(HyP)is + Ceo)ms (D) (P(HoP)g +
Ceo)m and (c) (P(HyP); + Cgo)n modified electrodes under
visible light irradiation (4 > 400 nm) are shown in Fig. 18. The
(P(H,P)16 + Ceo)m System has a larger fill factor (FF) of 0.47, an
open circuit voltage (V,.) of 320 mV, a short circuit current
density () of 0.36 mA cm™>, and the overall power conversion
efficiency (i7) of 1.6% at input power (Wjy) of 3.4 mW cm™>.">?

The 7 values of the (P(H,P);6 + Cep)r, System was remarkably
enhanced (around 40 times) in comparison with the (P(H,P), +
Ceo)m modified electrode (7 = 0.043%) under the same experi-
mental conditions. The 5 value of (P(ZnP);s + Ceo)n is also
determined as 1.4% and this value is much larger than that of
(P(ZnP); + Ceo)m (0.047%) as shown in Fig. 18B."**

6. Conclusions

As described above, porphyrin monomers, dimers, trimers and
oligomers form supramolecular complexes with fullerene
derivatives via electrostatic interactions, n-n interactions and
coordination bonds. Photoexcitation of the supramolecular
complexes resulted in efficient photoinduced electron transfer
from the porphyrin moiety to the fullerene moiety to produce

This journal is © The Royal Society of Chemistry 2013
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the long-lived CS states as revealed by laser flash photolysis
measurements. In particular, a supramolecular complex of a
cyclic Ni porphyrin dimer with Li'@Cgo [Li'@Cgo C Nip-
CPDp,(OGg)] affords a long-lived triplet CS state with 0.63 ms
lifetime. A high IPCE value (77% at 450 nm) was achieved for a
supramolecular solar cell using the OTE/SnO,/(ZnTPPS*7/
Li'@Ceo), electrode. The use of porphyrin oligomer peptides
has also enabled to construct multiple photosynthetic reaction
centres composed of light-harvesting multiporphyrin units
and charge-separation units linked by both the coordination
bond and n-= interactions, which afforded long-lived CS states.
Supramolecular organic solar cells composed of porphyrinic
oligopeptides and Cg, exhibited higher overall power conver-
sion efficiency with increasing the number of porphyrin units.
Supramolecular complexes formed between porphyrins and
fullerenes in particular Li'@Cg, provide promising materials
for more efficient solar energy conversion.
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