Issue 33, 2013

The vanadyl chelate bis(acetylacetonato)oxovanadium(iv) increases the fractional uptake of 2-(fluorine-18)-2-deoxy-d-glucose by cultured human breast carcinoma cells

Abstract

Detection of breast cancer by positron emission tomography (PET) imaging with 2-(fluorine-18)-2-deoxy-D-glucose (FDG) as the tracer molecule is limited in part by both tumor dimension and metabolic activity. While some types of aggressive breast cancers are associated with a high capacity for FDG uptake, more indolent breast cancers are characterized by low FDG uptake. Moreover, detection of malignant lesions in most clinical settings requires tumor dimensions ≥10 mm. Development of a method to increase the fractional uptake of FDG by cancer tissue would provide a means to detect smaller tumors. However, there is no clinically available pharmacologic reagent known to enhance the preferential uptake of FDG by cancer tissue. Because the vanadyl (VO2+) chelate bis(acetylacetonato)oxovanadium(IV) [VO(acac)2] is known to enhance cellular uptake of glucose, we have investigated whether VO(acac)2 facilitates enhanced uptake of FDG by cultured human breast carcinoma cells. We observed that the fractional uptake of FDG by cultured human MDA-MB-231 carcinoma cells is increased in the presence of VO(acac)2 in a dose dependent manner. Preliminary results with xenograft tumors generated in severely compromised, immunodeficient (SCID) female mice showed that VO(acac)2 treatment of mice 3–4 h prior to FDG injection enhanced FDG uptake by the malignant tissue by a factor >2.0 compared with that by normal surrounding tissue.

Graphical abstract: The vanadyl chelate bis(acetylacetonato)oxovanadium(iv) increases the fractional uptake of 2-(fluorine-18)-2-deoxy-d-glucose by cultured human breast carcinoma cells

Article information

Article type
Paper
Submitted
28 Feb 2013
Accepted
25 Apr 2013
First published
25 Apr 2013

Dalton Trans., 2013,42, 11862-11867

The vanadyl chelate bis(acetylacetonato)oxovanadium(IV) increases the fractional uptake of 2-(fluorine-18)-2-deoxy-D-glucose by cultured human breast carcinoma cells

M. W. Makinen, R. Bamba, L. Ikejimba, C. Wietholt, C. Chen and S. D. Conzen, Dalton Trans., 2013, 42, 11862 DOI: 10.1039/C3DT50549A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements