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The synthesis of rhodium()) and iridium()) complexes of chiral
MOP-phosphonite ligands is reported. The full characterisation of
1'% (c-P, n-arene) chelated 18VE rhodium(i) complexes reveals
hemilabile binding on the arene which has been quantitatively
analysed.

Monodentate phosphorus ligands based on the MOP architec-
ture are proven as valuable ligands in asymmetric catalysis." It
is widely recognised that these ligands can act as P,arene
bidentate chelates to stabilise coordinatively unsaturated elec-
tron deficient metal centres.” As such, hemilabile arene inter-
actions are anticipated to be present, or indeed imperative, in
catalytic processes. Whilst palladium® and ruthenium* com-
plexes of this class have been investigated in detail, studies on
rhodium-MOP complexes remain scarce, and some controversy
persists about the exact nature of the ligand’s coordination via
its aryl backbone, as no X-ray crystal structures have been
reported.”® This is despite the demonstrated catalytic ability of
Rh-MOPs in a number of important asymmetric carbon-
carbon bond forming reactions of biologically relevant
targets,” and the presence of an additional spectroscopic
probe in the form of the NMR active rhodium nucleus (***Rh,
I = 1/2),® which better facilitates the study of these metal
bonding modes.

As part of our on-going research on the stability and reactiv-
ity of MOP-type primary phosphines,’ we recently reported the
synthesis of MOP-phosphonite ligands 1a,b and 2a,b (Fig. 1),
and elucidated their coordination behaviour towards palla-
dium by extensive NMR and X-ray crystallographic studies."’

We have established that changing the stereochemistry of
the binol fragment from (S)- to (R)- shuttles the position of the
palladium from the front towards the back of the lower
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naphthyl ring in [PdCl(n*-C,H;)(1/2a,b)] complexes. Coordi-
nation to the 1'-aryl carbon was observed in the [Pd(n*-C,H,)
(2a,b)]" derivatives, indicating that these ligands were acting as
an 1',n'-chelate. As a result we were able to probe the ramifica-
tions of this behaviour on the asymmetric hydrosilylation of
styrene, a classic benchmark reaction for MOP ligands.""!
Herein, we investigate rhodium(i) and iridium(i) complexes of
MOP-phosphonites 1a,b and 2a,b and examine their metal-
ligand binding modes.

For an initial evaluation of their coordination behaviour,
two equivalents of the respective ligands 2a,b were reacted
with [RhCI(n*-cod)],. The resulting complexes [RhCl(2a)(n"-
cod)] (3a) and [RhCI(2b)(n*-cod)] (3b) were both formed quanti-
tatively; the *'P{'"H} NMR spectra show a doublet caused by
coupling to the rhodium nucleus (3a: 162.9 ppm, Jpp, = 223
Hz; 3b: § = 161.5 ppm, YJpgn = 224 Hz, Fig. S17). In the case of
3a, single crystals suitable for X-ray analysis were obtained
from slow diffusion of hexane into a dichloromethane solution
(Fig. 2). Typical bond lengths are found within the coordi-
nation sphere of the metal. As expected, the Rh-P distance of
this phosphonite donor (2.2112(7) A) is shorter than the bond
lengths typically observed for aryl phosphine ligands
(2.308(2)-2.3607(14) A)'* due to their stronger n-acceptor charac-
ter."®'® The n*-cod ligand shows the dominant trans effect of
the phosphorus donor compared to the chloride; the alkene
bond coordinated in the cis position is longer and closer to the

| (Ro) or (S)

(S,Ry)-1a  (S,Sp)-1b
(RRp)2a (R,Sp)2b

R = OMe

Fig. 1 MOP-phosphonite ligands utilised in this study with numbering.
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Fig. 2 View of the molecular structure of [RhCl(2a)(n*-cod)] (3a) (50% prob-
ability thermal ellipsoids). Hydrogen atoms are omitted for clarity.

rhodium compared to the alkene bound ¢rans to the phos-
phorus atom.

In order to investigate the possibility of a hemilabile aryl
coordination of the MOP-type ligand, an anion exchange from
chloride to the non-coordinating tetrafluoroborate ion was
carried out on 3a,b. Initial attempts produced large amounts
of oxidation and no pure product could be isolated, however
when another equivalent of the appropriate ligand 2a or 2b
was added to the reaction mixture a clean, quantitative conver-
sion was achieved to yield [Rh(2a),]BF, (4a) or [Rh(2b),|BF,
(ab). The n*-cod ligand was thus replaced by a second phos-
phorus donor during the course of the reaction. Alternatively,
the two compounds could also be obtained from the reaction
of two equivalents of either 2a or 2b with [Rh(n*-cod),]BF,,
although in some cases oxidised by-products were formed.

Crystals of 4b suitable for crystallographic analysis were
obtained from slow diffusion of diethyl ether into a dichloro-
methane solution (Fig. 3). The complex contains two phos-
phorus ligands, one of which is coordinated in the anticipated
n' binding mode via the phosphorus atom (Rh-P bond length:
2.2145(14) A). The second ligand fills the coordination sphere
of the rhodium metal by acting as an n',n° chelate; in addition
to the n'-phosphorus donor (Rh-P bond length: 2.1882(14) A),

Fig. 3 View of the molecular structure of [Rh(2b),]BF,; (4b) (50% probability
thermal ellipsoids). Hydrogen atoms, the BF,~ anion and co-crystallised solvent
are omitted for clarity.
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Table 1 Selected Rh—C bond lengths and '>C NMR resonances of 4b

Rh-C?[A] (')’ [ppm] c(nY)’ [ppm]
c1’ 2.189(5) 101.6 118.8
c’ 2.296(5) 145.3 155.8
c3’ 2.337(5) 90.1 112.3
ca’ 2.324(5) 93.1 129.9
c10’ 2.477(5) 114.0 129.1
cy’ 2.431(5) 122.0 133.8

“ From X-ray data. ? Solution NMR analysis (126 MHz, CD,Cl,, 21 °C).

the lower naphthyl ring coordinates side-on via its n-system in
an n°fashion. Selected Rh—~C bond lengths of the coordinated
aryl group are given in Table 1. The plane of the n°®-arene is
only slightly distorted; the distance from its centre to the
rhodium is 1.85 A. To the best of our knowledge this is the
first time that such a bonding motif of a MOP-type ligand has
been unveiled in the solid-state.

NMR studies confirmed that the coordination environment
retains these characteristics even in solution. The *'P{'H}
NMR spectra show two doublets of doublets (4a: 181.3,
179.6 ppm; 4b: 5 = 183.5, 178.4 ppm), caused by the two
inequivalent phosphorus atoms coupling to each other (4a:
%Jpp = 22.3 Hz; 4b: *Jpp = 23.5 Hz) and to the rhodium nucleus
(4a: YJprn = 290 Hz, 300 Hz; 4b: “Jpry = 277 Hz, 309 Hz,
Fig. S11). We attribute the smaller Rh-P coupling to the n'-
bound ligand, based on "H->'P correlations and 'H NOE con-
tacts. In the ">C NMR spectra the n°-aryl binding situation of
the coordinated carbon atoms is accompanied by a change in
chemical shift to upper field relative to their counterparts in
the n'-bound ligand, by a magnitude of 4.7 to 32.3 ppm in 4a
(Table S1t) and 10.5 to 36.8 ppm in 4b (Table 1). Sections of
the "*C-"H HSQC and HMBC spectra of 4b are shown in
Fig. S2 and S3 respectively.t

The proton NMR spectra show the expected 48 independent
aromatic resonances, from which 24 originate from each
ligand. At room temperature, exchange of all 24 pairs of
signals is observed in the 'H-NOESY of 4a and 4b (Fig. 4); at
—50 °C the NOESY spectrum of 4b showed strong positive NOE
peaks without exchange (Fig. S41). Combining the information
from variable temperature NOESY experiments allowed for the
unambiguous assignment of all 48 proton resonances in 4a,b.
NOE contacts confirmed the solid-state structure of 4b in solu-
tion; the solution structure of 4a was also analysed, and the
NOE signals in this case revealed a rotation of the n'-ligand
about its C2-P bond in comparison to 4b (further details are
given in Fig. S57).

The dynamic behaviour in 4a,b is a result of the hemilabile
binding of the aryl group; the side-on coordination of the n*,n°
chelating ligand is released, while in the same instance the n'-
bound ligand coordinates as a chelate, ultimately reproducing
the complex (Fig. S6t). Quantitative analysis of the "H-NOESY
spectra yielded exchange rate constants of kyesc = 1.2 s™* and
k273x = 0.12 s~ for 4b in CD,Cl,. The values only changed
slightly when the experiments were carried out in CDCl; (kyo4x
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Fig. 4 Aromatic resonances of 4b in the "H-NOESY spectrum (mixing time of
500 ms) in CD,Cl; at 21 °C. Negative NOE correlations are shown in blue, posi-
tive exchange correlations are shown in red.

=1.3 s7') or THF-Dg (ko4 = 0.9 s™'). Thus, we propose a con-
certed reaction mechanism as the rate of exchange showed no
increase in coordinating solvent. Comparable exchange rate
values were also found for 4a (in THF-d8: kyosx = 0.9 s™). The
free energies of activation of 4b in CD,Cl, were calculated
from the appropriate rate constants and gave values of AGoux
=71.2 k] mol™" and AG},;x = 71.5 k] mol ™. Related studies by
Mirkin and co-workers gave free energies of activation of
similar magnitude for their system.®

In order to clarify whether the phenomenon of n° side-on
coordination to rhodium is exclusive to our bulky MOP-phos-
phonite ligands 2a,b or is valid for complexes of other MOP
type ligands too, we utilised Hayashi’s OMe-MOP ligand to syn-
thesise the analogous [Rh(OMe-MOP),|BF, (5) complex. Full
characterisation by NMR spectroscopy revealed a similar (c-P,
m-arene)-binding situation as observed for 4a,b. Its two *'P
NMR resonances are observed at 50.0 and 37.2 ppm (Ypgp, =
217 Hz, 197 Hz; *Jpp = 32.1 Hz). The **C NMR resonances of
the six coordinated carbon atoms show the characteristic
upfield shift (shifted by 8.4 to 38.4 ppm) which is slightly less
pronounced for C9' and C10’ (Table S1f). In contrast to 4a,b
we detected no dynamic exchange in the NOESY NMR spec-
trum at room temperature, suggesting the arene-coordination
is stronger in this case. Reaction of [Rh(acac)(n*-C,H,),] with
two equivalents of OMe-MOP in CDCIl; also gave characteristic
upfield peaks in the *C NMR spectrum indicative of some
degree of m-arene bonding, which could have implications in
the aforementioned catalysis,””™ however phosphine oxidation
precluded a full characterisation.

Under adapted experimental conditions (to prevent hydro-
lysis of our phosphonites) we found 2a performed best in the
asymmetric addition of phenylboronic acid to 1-napthaldehyde,
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Fig. 5 View of the molecular structure of [IrCI(Za)(nA»cod)] (6a) (50% prob-
ability thermal ellipsoids). Hydrogen atoms are omitted for clarity.

with a conversion of 85% and an enantioselectivity of 34% (com-
pared to MOP: conversion of 78%, enantioselectivity of 41%).7%

To further understand the coordination behaviour of MOP
ligands with the catalytically important group nine transition
metals, we also reacted, in an analogous manner, MOP-phos-
phonites 2a,b with [IrCl(n*-cod)], and were able to synthesise
(to the best of our knowledge) the first iridium-MOP com-
plexes [IrCl(2a)(n*-cod)] (6a) and [IrCI(2b)(n*-cod)] (6b); the *'P
NMR spectra show a resonance at 140.4 (6a) or 139.6 ppm (6b).
The crystal structure of 6a is depicted in Fig. 5; bond lengths
and angles are very similar to the corresponding rhodium
complex 3a (Ir-P distance: 2.2242(8) A).

In contrast to the bonding situation found for rhodium,
treatment of 6a with silver tetrafluoroborate and an additional
equivalent of 2a gave [Ir(2a),(n*-cod)]BF, (7a). The *'P NMR
exhibits a single resonance at 156.3 ppm; rather than side-on
coordination of the arene, the coordination sphere of the
metal accommodates two equivalently bound n'-phosphines
and the n*-cod ligand (Fig. S71). When a solution of complex
7a in CDCl; was reacted with hydrogen, we observed an
immediate colour change from green to orange. The '"H NMR
spectrum showed the disappearance of the cyclooctadiene reso-
nances and the formation of a singlet at 1.53 ppm (indicative
of cyclooctane formation) — an assignment of the aryl signals
was not possible due to broadened and overlapping reson-
ances. The *'P NMR spectrum revealed the formation of mul-
tiple products, with the starting material being completely
consumed. Two major product peaks were observed as broad-
ened singlets at 167.4 and 135.0 ppm, and the spectrum also
showed a pair of doublets at 130.7 and 125.7 ppm with an
associated coupling constant of 43.1 Hz (in addition to a
number of other minor peaks between 155 and 142 ppm).
These doublets indicate that two inequivalent phosphorus
nuclei are coupled to each other, which might suggest the for-
mation of an iridium analogue of the rhodium complex 4b.
However, we were unable to isolate any of the products for the
in-depth analysis which would be required to prove the exist-
ence of such a complex.

In summary, we have reported the first structural confir-
mation of a n',n°(c-P, n-arene) chelated MOP-type ligand on
rhodium(i) and the extent of the bonding has been analysed
quantitatively by NOESY NMR. The fine tuning between metal-

This journal is © The Royal Society of Chemistry 2013
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stabilisation and catalytic activity will be the focus of future
research.
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