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In this paper we report the successful incorporation of silicon into Sry_,Ca,MnO5_; perovskite materials
for potential applications in cathodes for solid oxide fuel cells. The Si substitution onto the B site of a 2°Si
enriched Sry_,Ca,Mn,_,5iy03_; perovskite system is confirmed by 296 MAS NMR measurements at low B,
field. The very large paramagnetic shift (~3000-3500 ppm) and anisotropy (span ~4000 ppm) suggests
that the Si** species experiences both Fermi contact and electron-nuclear dipolar contributions to the

3+/4+ centres. An improvement in the conductivity is observed for

paramagnetic interaction with the Mn
low level Si doping, which can be attributed to two factors. The first of these is attributed to the
tetrahedral coordination preference of Si leading to the introduction of oxide ion vacancies, and hence a
partial reduction of Mn** to give mixed valence Mn. Secondly, for samples with high Sr levels, the
undoped systems adopt a hexagonal perovskite structure containing face sharing of MnOg octahedra,
while Si doping is shown to help to stabilise the more highly conducting cubic perovskite containing
corner linked octahedra. The level of Si, x, required to stabilise the cubic Sry_,Ca,Mn;_,Si,O3_; perovskite
in these cases is shown to decrease with increasing Ca content; thus cubic symmetry is achieved at
x = 0.05 for the SrgsCagsMnq_,SiOs_s series; x = 0.075 for Srp;CagsMn;_,SiyOs_s; x = 0.10 for
Sro.8CagoMn;_,SixOs_s5 and x = 0.15 for SrMn,_,Si,O3_s. Composites with 50% Ceg9Gdg101.95 Were
examined on dense Cep9Gdg 10195 pellets. For all series an improvement in the area specific
resistances (ASR) values is observed for the Si-doped samples. Thus these preliminary results show that
silicon can be incorporated into perovskite cathode materials and can have a beneficial effect on the
performance.

incorporation of oxyanions into perovskite-type cuprate super-
conductors and related phases.®'* This work demonstrated

Perovskite manganites have attracted considerable interest due
to potential applications as cathode materials in the field of
solid oxide fuel cells (SOFCs). Traditionally doping strategies
for such materials have focused on substitution with cations
of similar size, e.g. Sr for La."” In this study we investigate an
alternative strategy, the incorporation of silicate. The approach
employed stems from prior observations on the successful
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that the perovskite structure can incorporate significant levels
of oxyanions (carbonate, borate, nitrate, sulfate, phosphate). In
such samples, the C, B, N, P, S of the oxyanion group was
shown to reside on the perovskite B cation site, with the oxide
ions of this group filling 3 (C, B, N)-4 (P, S) of the available 6
oxide ion positions around this site. Recently we have illus-
trated the potential of this oxyanion doping strategy in perov-
skite-type materials with potential for use in solid oxide fuel
cells.">™” For instance, phosphate and sulphate were success-
fully incorporated in SrCoOs;-type materials, leading to an
enhancement of the electronic conductivity, attributed to a
change from a 2H- to a 3C-perovskite."> More recently, phos-
phate and borate were also introduced in Ba; _,Sr,Coq gFeg ,03-
type materials with a small improvement in the electronic con-
ductivity for low levels of doping, along with improved thermal
stability, as demonstrated by long term annealing studies at
intermediate temperatures.'® Similarly, borate and phosphate
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were also successfully incorporated in CaMnO; and La;_,-
Sr,MnO; with improvements in the electronic conductivity and
in the ASR values with respect to the parent compounds.'’
This doping strategy has also been successfully applied to
potential electrolyte systems, with such work showing that
phosphate, silicate and sulphate could be introduced into the
ionic conductors Ba,(In/Sc),0s leading to a structural change
from brownmillerite, containing ordered oxide ion vacancies,
to a highly conducting cubic perovskite, where the oxide ion
vacancies are disordered."®>" ?°Si and *'P-NMR of such
systems confirmed the tetrahedral coordination of Si/P within
the structure So far our studies on electrode systems have
mainly focused on phosphate and borate. In this work, we
extend such studies to a detailed investigation of the effect
of the incorporation of silicate groups. This is of particular
interest, since silica is widely considered a detrimental
contaminant of SOFC materials, particularly -electrolyte
materials, as it has been reported to segregate at the grain
boundaries where it forms insulating siliceous phases,
lowering the conductivity, such that overall performance
is degraded.”*>® For example, it has been reported that
several hundreds ppm of SiO, can increase the electro-
lyte grain boundary resistance by over one order of
magnitude.?*!

Our preliminary studies on Si incorporation were performed
in cobalt-based perovskite electrode materials, showing the
successful incorporation of Si into Lag ¢Sro.4C0g gFeq,03_s and
Sr;_,Y,CoO3_sbased materials, with significant results in term
of improvements in the conductivity and an enhancement in
the stability towards CO,.** Similarly, Si doping was shown to
be successful in the manganese/cobalt-based perovskite elec-
trode materials, STtMO;_; (M=Co, Mn).** The silicon doping
was shown to be successful results in terms of stabilization of
the 3C-perovskite containing corner linked octahedra (the
undoped composition is a 2H perovskite, containing face
sharing of octahedra), and a consequent enhancement in the
conductivity. However, for StMnO;_s, quite high levels (15%)
of Si were required to stabilise the 3C-perovskite, and while the
Si doping is beneficial in this respect, it might also be
expected to show some detrimental effect in terms of partially
disrupting the electronic conducting pathways. Therefore, in
this work we have examined mixed calcium-strontium, Sr,Ca;_y-
MnO;_; systems, with a view to lowering the Si level needed to
achieve this stabilisation. In this paper we therefore
report studies into the effect of Si doping into Sr,Ca;_,MnO;
and its effect on the electrical properties to examine the poten-
tial for SOFC applications. As a comparison to Si doping,
another isovalent dopant, Ti, was also examined for selected
systems.

The characterisation of these Si doped systems has been
undertaken using XRD, TGA, SEM, impedance measurements
and *°Si solid state MAS NMR spectroscopy. The *°Si MAS
NMR measurements reported within provide the first un-
ambiguous demonstration of the Si incorporation occurring
directly into the perovskite structure of such manganite
systems.
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2. Experimental

SrCO; (Aldrich, 99.9%), CaCO; (Aldrich, 99%), MnO, (Aldrich,
99%), SiO, (Aldrich, 99.6%), TiO, (Aldrich, 99.8%) were used
to prepare Sr,Ca; ,Mn;_,A,O3_5 (y=0,0.50.7,0.8 and 1; x <
0.175; A = Si and Ti). For the CaMn,_,Si,O;_; series, the
powders were intimately ground and heated initially to
1200 °C for 12 h. They were then ball-milled (350 rpm for
1 hour, Fritsch Pulverisette 7 Planetary Mill) and reheated to
1250 °C for a further 12 h. For the Sr,Ca,_,Mn;_,Si,O;_s series
(y = 0.5, 0.7, 0.8 and 1), the powders were intimately ground
and heated initially to 1300 °C for 12 h. They were then ball-
milled (350 rpm for 1 hour) and reheated to 1350 °C for a
further 12 h. For the *°Si solid state MAS NMR spectroscopic
studies *°Si enriched samples were formulated following the
same synthetic procedure but using *°Si-enriched SiO, (Cortec-
net, 97.1%) as the >°Si source. For the physical mixture,
Sro.5Cay,MnO; and the appropriate amount of >°Si-enriched
SiO, were mixed and ground together in order to represent a
theoretical doping level of Si = 0.1 and provide a standard to
monitor the possibility of the formation of phase separated of
SiO,.

Powder X-ray diffraction (XRD) (Bruker D8 diffractometer
with Cu Ko, radiation) was used to demonstrate phase purity,
as well as for cell parameters determination. For the latter, the
GSAS suite of programs was used.**

Oxygen contents were estimated from thermogravimetric
analysis (Netzsch STA 449 F1 Jupiter Thermal Analyser), a
method commonly used in the determination of the oxygen
content in cathode materials.>*” Samples were heated at
10 °C min~* to 1200 °C in N, and held for 30 minutes to
reduce the Mn oxidation state to 3+. This is consistent with
prior reports on the reduction of undoped SrMnO; to
Sr,Mn,0;.%® The original oxygen content and average Mn oxi-
dation state then was determined from the mass loss
observed.

Pellets for conductivity measurements were prepared as
follows: the powders were first ball-milled (350 rpm for
1 hour), before pressing (200 MPa) as pellets and sintering at
1350 °C for 12 h. Conductivities were then measured using the
four probe dc method. Four Pt electrodes were attached with
Pt paste, and then the sample was fired to 800 °C in air for
1 hour to ensure bonding to the sample. The samples were
then furnace cooled to 350 °C in air and held at this tempera-
ture for 12 hours to ensure full oxygenation.

The morphology of the sintered pellets was studied using a
JEOL SM-6490LV scanning electron microscope. The ceramic
surfaces were polished with diamond spray from 6 to 1 mm of
diameter and then thermally etched at 50 °C below the sinter-
ing temperature for 15 min at a heating/cooling rate of
5 °C min~". Finally, the samples were sputtered with graphite
for better image definition.

To elucidate the potential of these materials as SOFC cath-
odes, symmetrical electrodes were coated on both sides of
dense Ce9Gdy 101,95 (CGO10, Aldrich) pellets (sintered at
1500 °C for 12 h) using a suspension prepared with a mixture
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of electrolyte and electrodes (1: 1 wt%) and Decoflux™ (WB41,
Zschimmer and Schwarz) as binder material. The symmetrical
cells were fired at 900 °C for 1 h in air. Afterwards, a Pt-based
ink was applied onto the electrodes to obtain a current collec-
tor layer and finally fired at 800 °C for 1 hour. Area-specific
resistance (ASR) values were then obtained under symmetrical
air atmosphere in a two electrode configuration. Impedance
spectra of the electrochemical cells were collected using a
HP4912A frequency analyser, at open circuit voltage (OCV), in
the 5 Hz-13 MHz frequency range with ac signal amplitude of
100 mV. The spectra were fitted to equivalent circuits using the
ZView software,*® which allows an estimation of the resistance
and capacitance associated with the different cell contributions.

All *°Si MAS NMR measurements were performed on a low
field Chemagnetics CMX-100 spectrometer (B, = 2.35 T) operat-
ing at a *°Si Lamor frequency of 29.88 MHz. MAS NMR exper-
iments were undertaken using a Doty 4 mm MAS probe in
which MAS frequencies (v,) of 15 kHz were achieved. Pulse
time calibration was performed on a sample of solid kaolinite
where a B, field of 83 kHz delivered a =/2 pulse width of 4 ps.
The 2°Si MAS NMR data were acquired using both single pulse
and rotor-synchronised spin echo (6 — 7 — 20 — 7) experiments.
Single pulse measurements used a =n/4 flip angle which
equated to an excitation pulse width of 2 ps, while the rotor-
synchronised spin echo experiments utilised 6/26 flip angles of
n/4/ m/2 (2/4 ps, respectively) and a ¢ delay of 50 ps. The
reported >°Si chemical shifts are referenced to the primary
TUPAC standard of TMS (6 0 ppm) via a secondary solid stan-
dard of kaolinite (5§ —92 ppm) which was also used for the
pulse time calibration. Single pulse measurements which
focussed on diamagnetic components within each sample
used recycle delays of 60 s, while the spin echo experiments
were used to study the paramagnetic component of these
samples which permitted much shorter recycle delays of 0.25 s
to be implemented.

3. Results and discussion
Solid solution range

First of all, it is necessary to state the symmetry of the
undoped samples, i.e. Sr;Ca;_yMnO;_s. The calcium endmem-
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Sr samples, SryCa;_yMnOj_;s, there is gradual transition from
the orthorhombic to the hexagonal form as the strontium
content increases.

For the Ca endmember samples, CaMn,_,Si,O;_s5, X-ray
diffraction data showed the successful incorporation of silicon
up to x = 0.05 with no change in cell symmetry on doping.
Higher dopant amounts led to the segregation of secondary
phases, such as Ca,Mn;0;, (PDF 089-5427). For these doped
compositions, although they were still orthorhombic, the
difference between the a and ¢ parameters became lower,
suggesting that the silicon doping increases the “tetragonality”
of this series (see Table 1). If we examine the ratio a/c for this
series we can see that this number decreases from 1.0030 for
CaMnO;_; to values around 1.0008 for the doped compo-
sitions. Confirmation of the introduction of silicate was shown
by the fact that equivalent Mn deficient samples CaMn;_,03_s
(x = 0.05) with no added silicate gave the segregation of
secondary phases, such as Ca;Mn;04.

For the Sr,Ca;_yMn,_,Si,O;_s series (y = 0.5, 0.7 and 0.8),
single phase samples could be achieved up to higher levels of
silicon, x < 0.125. As for Si doping in CaMnOs;_;, exceeding
this Si content led to the segregation of secondary phases.
Without Si doping, the samples were shown to be either hexa-
gonal perovskites (at high Sr levels, y = 0.8) as for the Sr end-
member, SrMnO;_;, a mixture of hexagonal and cubic
perovskites (y = 0.7), or a mixture of tetragonal and orthorhom-
bic (y = 0.5). As the silicon content was increased, the level of
cubic perovskite was increased, with the amount of silicon
needed to produce a single phase cubic perovskite sample
increasing as the strontium content increases (Fig. 1). The
single phase cubic samples were achieved at x = 0.05 for the
Sry 5CagsMn;_,Si,O;_s series, x = 0.075 for Sr,-,CayzMn;_,-
Si,O5_s5, and x = 0.10 for Sr, gCag,Mn;_,Si,O5_s, which com-
pares to x = 0.15 for SrMn;_,Si,O;_; in our previous study.*?
The Rietveld refinement for Sr,,Cay 3Mng 9,551¢.07503 is shown
in Fig. S1.T The figure shows a very good fit with very low R
factors (Ryp, = 2.40% and Ry = 1.43%). In addition the Bragg
reflections for this composition are marked and it can be seen
that there are no secondary phases. Moreover, if we refine the
occupancy factors for the Ca and Sr and the Mn and Si pairs,
the values are very close to the theoretical values. Similar
results and R factors are obtained for the rest of the samples.

ber (y = 0) composition, CaMnO;_g, is orthorhombic, while for In Fig. 2, SEM micrographs are shown for (a)
strontium (y = 1), StMnO;_, it is hexagonal. For the mixed Ca/ Srg;CagsMnO;_g; (b) Sro.5Ca0.5Mg.05810.0503_s; (c)
Table 1 Cell parameters and normalised cell volumes for Sr,Ca;_,Mn;_,Si,O5_; (y = 0 and 0.5; x < 0.15)

Sr,Ca;_,Mn;_,Si,0;_s

Sr (y) 0 0.5

Si (x) 0 0.05 0.10 0 0.10 0.15

a(A) 5.2673(1) 5.2800(2) 5.2929(5) 5.3308(11) 3.7916(1) 3.7988(2)
b (A) 5.2828(1) 5.2855(3) 5.2967(4) 5.3303(12) 3.7916(1) 3.7988(2)
c(A) 7.4575(1) 7.4682(3) 7.4770(6) 7.5448(3) 3.7916(1) 3.7988(2)
viZ (A%) 51.89(1) 52.10(1) 52.40(4) 53.60(2) 54.51(1) 54.82(1)
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Sry.,Cay3Mn0O;_s and (d) Sty ;Cag 3Mng 9255i0.07503-s. Compar-
ing Sry5CaysMnO;_s and Sty 5Cag.sMng 95Si0.0503_s, there is no
significant difference in the morphology on Si doping. In the
case of Sr,;Cay;MnO;_s the SEM micrographs show evidence
for striations on the grains, consistent with strain effects.
These strain effects can be explained by the fact that hexagonal

c) f)
—
b) e)
S R . .
a) d)
ww i I 3
20 30 4o 50 60 20 30 40 50 60
20(9)

Fig. 1 X-ray diffraction patterns for (a) Srg7Cag3MnOs_s (b) Sro7Cap3Mng.gs-
Si0.07503-5 () Sro.7Ca0.3Mno.9Sio.103_5 (d) SrogCap2MnOs_s; (e)
Sro.8Cap.2Mng 925Si0.07503_s; and (f) Sro.8Cap2MngoSig 103_s. Hexagonal perov-
skite peaks marked with asterisks.

”

P y. ¢ , e
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¢ 08 40 SEI
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Fig. 2 SEM micrographs for (a) SrosCapsMnOs_s (b) SrosCapsMnggs-
Si.0503-5_; (€) Sro.7Cap3Mn0O3_5 and (d) Sro.7Ca0.3MNo .9255i0.07503_5--

View Article Online

perovskites typically transform to cubic perovskites at elevated
temperatures (e.g. those used in the sintering), reverting slowly
back to hexagonal perovskites on cooling. In contrast, the
grains for the Si doped sample, Srq,Cag3Mng.925Si0.07503-s,
showed no such evidence of strain effects, which can be
explained by both the low temperature and high temperature
structure being cubic, and thus there being no phase changes
on heating and cooling.

Cell parameters for these systems were determined from
the X-ray diffraction data using the Rietveld method (see
Tables 1 and 2). The change in cell parameters for these oxy-
anion doped perovskite materials is a balance between the
effect of the smaller size of Si**, which would be expected to
lead to a reduction in cell volume, and the associated
reduction in the average Mn oxidation state, which would be
expected to lead to an increase in cell volume. In line with
prior works on manganite systems, mixed valence Mn***" is
assumed, although there is a possibility that Si incorporation
may locally stabilize some Mn>". The partial reduction of Mn**
through Si doping is predicted by the following defect
equation, assuming tetrahedral coordination for Si and
reduction to Mn>", which illustrates that for each Mn replaced
by Si a reduction of 2Mn** to Mn®* would be predicted.

SiO, + 3Mnyy + Oo — Simn + 2Mnyy' 4+ Vo + 1/20, + MnO,
(1)

As can be seen from the above equation, a key driving force
for the reduction of Mn is the introduction of oxide ion
vacancies due to the lower coordination (tetrahedral rather
than octahedral) preference of the Si dopant (i.e. for x = 0, the
B cation site is completely occupied by 6 coordinate Mn, while
for x > 0 some Si is on this site, with the tetrahedral coordi-
nation preference leading to a reduction in the total oxygen
content). Thus, while we are nominally performing an iso-
valent (Si*" in place of Mn*") substitution, the generation of
oxide ion vacancies results in partial reduction, ie. electron
doping. The stabilization of the cubic perovskite polymorph
on silicon doping can then be related to the lower average Mn
oxidation state, and hence average B cation size, reducing the
tolerance factor. The difference in Si content required to
achieve this stabilisation across the Sr,Ca;_,MnO;_; series can
be explained by the fact that for samples with the highest
levels of Sr, the average size of the A site is higher, and hence
the starting tolerance factor for the parent phase is higher.

Table 2 Cell parameters and normalised cell volumes for Sr,Ca;_,Mn;_,Si,O5_; (y = 0.7, 0.8 and 1; x < 0.175)

Sr,Ca;_,Mn,;_,Si,0;_s

Sr (v) 0.7 0.8 1

Si (x) 0 0.075 0.1 0 0.10 0.125 0 0.15 0.175
a(A) 5.3963(1) 3.7988(1) 3.8019(1) 5.4072(1) 3.8127(2) 3.8157(2) 5.4481(1) 3.8380(3) 3.8456(3)
b (A) 9.3424(1) 3.7988(1) 3.8019(1) 9.3755(1) 3.8127(2) 3.8157(2) 5.4481(1) 3.8380(3) 3.8456(3)
c(A) 9.1208(1) 3.7988(1) 3.8019(1) 9.0990(1) 3.8127(2) 3.8157(2) 9.0796(2) 3.8380(3) 3.8456(3)
ViZ(A%)  57.47(2) 54.82(2) 54.95(1) 57.66(2) 55.42(1) 55.55(1) 58.35(1) 56.53(1) 56.87(3)
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Fig. 3 Low field (B, = 2.35 T) solid state 29Si MAS NMR data for (a) the physical
mixture of 2°Si0, and SrggCag>MnOs (5 —113 ppm), and (b, c) the 2°Si doped
Sro.8Ca0.2MngSin 1035 (6 =70 ppm and ~3000-3500 ppm). The data from the
295i0,/Sro gCag>Mn0O5 physical mixture in (a) and the narrow component from
the doped SrgCag-Mnge?°Sip 1055 system in (b) were acquired at ambient
temperature with a single pulse experiment and an MAS frequency of v, =
15 kHz. The broad data from the doped SrogCag2Mng.>?Sip105_s system in (c)
was acquired with a rotor synchronised spin echo experiment with v, = 15 kHz
and a frequency offset of +35 kHz.

Consequently, it is necessary to reduce a larger amount of
Mn*" to Mn*" and hence introduce a larger Si content.

Direct evidence for Si*" incorporation into the perovskite
structure is provided by the low field *°Si MAS NMR results
shown in Fig. 3. This figure compares the data obtained from
a physical (highly ground) mixture of *°Si enriched SiO, with
undoped Sr,gCa,,Mn0O;_s (see Fig. 3a), and that acquired
from a *°Si doped Sr, 5Cag,Mng oSip.103_s sample (see Fig. 3b
and c). As observed from Fig. 3a and the expansion of this data
shown in Fig. 4a, the >°Si0,/Sr, sCa, ,MnO;_s mixture yields a
single ?°Si resonance with a chemical shift § —113 ppm which
is characteristic of the 2°SiO, component only. However,
similar measurements on the 2°Si doped Sr,sCagy,Mng ¢Sig 1~
0O;_;5 system produces two very different signals; one narrow
resonance that occurs downfield from the ?°SiO, resonance at
& =70 ppm (see Fig. 3b and 4b), and one very broad resonance
with a large downfield shift of ~3000-3500 ppm (see Fig. 3c).
From the narrow linewidth and long T; (>180 s) characterising
the § —70 ppm resonance it is concluded that it represents a
diamagnetic impurity phase formed under the Si incorpo-
ration conditions, and the chemical shift suggests that it’s
likely to be a strontium/calcium silicate phase. In this respect,
this sample did indeed show very weak impurities, such as
Sr,Si0,. It has been previously reported that the chemical shift
for Si is —69.42 ppm,*° very close to the experimental value
determined, —70 ppm. The significantly broadened resonance
centred at ~3000-3500 ppm shown in Fig. 3¢ was acquired
with a rotor synchronised spin echo experiment using a short
recycle delay of 0.25 s. These characteristics establish that this

This journal is © The Royal Society of Chemistry 2013
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Fig. 4 Expansion of the solid state 2°Si MAS NMR data for (a) the physical
mixture of 29Si0, and SrogCagoMnOs (5 —113 ppm), and (b) 2°Si doped
Sr0.8Cap.2Mng 9Sin 103_s (6 =70 ppm), acquired at low By field (2.35 T) and at
ambient temperature. These data were acquired using a single pulse experiment
and v, = 15 kHz.

is a paramagnetically influenced Si species in the
Sty sCag ,Mng ¢Sip103_5 structure which is probably experien-
cing both Fermi contact and electron-nuclear dipolar contri-
butions within the overall paramagnetic interaction with the
Mn centres, as evidenced by the large paramagnetic shift and
broad anisotropic lineshape spanning ~4000 ppm, respect-
ively. These data, therefore, provide the first direct evidence of
Si incorporation into the perovskite framework in such manga-
nite perovskites. The tetrahedral environment of silicon is not
possible to state due to the fact that its resonance is paramag-
netically influenced and very displaced. The only previous
reports of Si in perovskites relates to their high interest for
earth scientists, where perovskites such as CaSiO;, and
MgSiOj; are believed to be the main components of the earth’s
lower mantle. These studies have shown that to achieve octa-
hedral Si, extremely high pressures are required, and at lower
pressures Si will be tetrahedral. It is therefore quite reasonable
to propose tetrahedral coordination for Si and indeed this
tetrahedral coordination helps to explain the observed reduction
in the Mn oxidation state and enhancement in conductivity/
change to a cubic cell.

The average oxidation states of Mn in these systems are
reported in Table 3, and as can be seen, the average oxidation
states are closer to 3 as the silicon content increases. Overall
the oxygen contents determined from TGA, suggest that once
the cubic perovskite forms, further loss of oxygen occurs, since
the oxygen contents determined are lower than the value
assuming eqn (1) is the only origin of oxide ion vacancies (e.g.
for 5% Si doping, a stoichiometry of CaMn ¢5Sip.050,.95 might
be predicted from eqn (1), while TGA studies indicated a lower
oxygen content, CaMny ¢5Si.0502.5)-

An illustration of the importance of the lower coordination
preference of Si (4 versus 6 for Mn) in these systems is shown
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Table 3 Oxygen deficiencies (5), Mn oxidation states (from TGA), conductivity data at 700 °C and ASR values at 800 °C for Sr,Ca;_,Mn;_,Si,O3_; series. The error
estimated for the oxygen deficiencies and manganese oxidation states from the noise of the TGA line are +0.01 and +0.02 respectively

Sr,Ca;_,Mn;_,Si,0;5_s

Sr (v) 0 0.5 0.7 0.8 1

Si (x) 0 0.05 0 0.10 0 0.075 0 0.10 0 0.15
Oxygen deficiency (5) 0.04 0.20 0.01 0.27 ~0 0.29 ~0 0.31 ~0 0.23
Oxidation state 3.93 3.56 3.98 3.41 ~4 3.37 ~4 3.31 ~4 3.23
Conductivity at 700 °C (S cm™) 3.2 38.1 2.5 34.2 0.4 29.5 0.3 24.9 0.01 11.2
Conductivity at 800 °C (S cm™) 7.6 40.2 3.4 36.3 0.7 30.4 0.6 26.1 0.03 14.0
ASR at 700 °C (Q cm?) 12.3 3.49 11.07 1.21 0.70 0.44 1.60 0.49 1.23 0.67
ASR at 800 °C (Q cm?) 1.50 0.35 1.73 0.20 0.11 0.08 0.36 0.07 0.20 0.09

by a comparison with Ti-doped Sr;_,Ca,MnO;_; samples:
SrMny g5Tig 1505_s and Sry gCag,Mng oTip105_s. As in the case
of Si-doping, for these latter Ti doped systems, we are also
nominally performing an isovalent (Ti*" in place of Mn*") sub-
stitution. However, in this case we do not expect any reduction
of Mn*" or generation of oxide vacancies, due to the preference
of the Ti for octahedral coordination, as for the Mn, rather
than the tetrahedral coordination of Si. Therefore, Ti-doping is
not expected to lead to any decrease in the average Mn oxi-
dation state, and, thus, no change in the symmetry from the
undoped compositions to the Ti-doped ones for low level Ti
doping. If we examine the XRD patterns of StMng g5Ti.1503-5
and Sr, gCap,Mn, oTip103_5, we can see that the predicted be-
haviour is confirmed, ie. the cubic form is not stabilized
(Fig. S21). This illustrates that it is the oxygen vacancies incor-
porated as a result of the lower coordination of Si that are key
to the beneficial effects on Si doping.

Conductivity measurements. For the Ca endmember
systems, CaMn;_,Si,O3;_s, the undoped composition showed
low conductivities (1.9-7.6 S em™" between 600-800 °C), as
expected, due to the lack of significant mixed valence. For all
doped samples a large improvement in the conductivity was
observed, which can be attributed to the introduction of mixed
valency as illustrated by defect eqn (1). The maximum conduc-
tivity values were reached for x = 0.05 (43.0-52.8 S cm™"
between 600-800 °C) (Fig. 5).

As for the CaMn,_,Si,O;_s; systems, the mixed Sr/Ca
systems, Sr,Ca;_,Mn;_,Si,O;_; showed very low conductivities
between 600 and 800 °C for the samples without Si (x = 0):
0.16-0.57 S cm_1, for SrygCay,MnO;_s; 0.17-0.70 S cm‘l, for
Sry,CagsMnO;_s; and 1.7-3.4 S ecm™' for SrysCagsMnO;_s.
The low conductivities can be attributed to the lack of signifi-
cant mixed valency, as well as the presence of poorly conduct-
ing hexagonal perovskite. In all doped compositions there is
an improvement in conductivity, even for the Si-doped
samples where complete conversion to the cubic perovskite
has not occurred. The highest conductivity values were,
however, reached for the samples which XRD showed were
single phase cubic perovskites; i.e. x = 0.10 for Sry gCag ,Mn;_,-
Si,05_s (23.1-26.1 S cm™", between 600-800 °C) and x = 0.05
for SrosCapsMn;_,Siy0;_5 (31.5-36.3 S em™'); and x = 0.075
for Sry,CagsMn;_,Si,O5_s (28.0-30.4 S cm™"). Fig. 6 shows the
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Fig. 5 Plot of log ¢ vs. 1000/T for CaMnOs_s (0), CaMng 975Si0.02503_5 (O),
CaMng.955i0.0503-5 (A) and CaMng.905i0.1003-5 (V).

temperature dependence of the conductivity for Sry gCag,Mn;_,-
Si, O;_s series. All other series show a similar behaviour.

As shown previously,”® for the strontium endmember
samples, SrMn;_,Si,O;_s, the undoped (x = 0) composition
showed very low conductivities, 0.008-0.03 S cm™" between
600-800 °C, while the Si doped samples for which a cubic per-
ovskite was observed (x > 0.15) showed much higher conduc-
tivities. The highest conductivity values were achieved for x =
0.15 (24.0-29.4 S cm™ " between 600-800 °C).

Overall the results from this work show a significant
enhancement in the conductivity on Si doping, with the
maximum conductivity for all series matching the composition
with the minimum Si content that achieves the full stabili-
zation of the cubic form. Increasing the Si contents beyond
this amount led to lower conductivities, likely due to a partial
disruption of the electronic conduction pathways by silicon at
these high doping levels. This conclusion is consistent with
the fact that maximum conductivity observed for these Si

This journal is © The Royal Society of Chemistry 2013
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doped samples decreases in moving across the series from
CaMnO;_; to StMnO;_;, since for the latter end higher Si con-
tents are necessary to stabilise the cubic perovskite and hence
achieve this maximum.

Area-specific resistance study. Following the promising con-
ductivity results, cathode testing was performed for both the
samples without Si doping, as well as the Si doped samples
which showed the highest conductivities. These experiments
used a composite of the perovskite and CGO10 (1:1 wt%) on
dense CGO10 pellets. For all series, the XRD patterns of the
samples and CGO10 mixtures show no evidence of additional
diffraction peaks due to impurities at temperatures up to
900 °C (Fig. S3t). At 1000 °C, however, there were weak extra
peaks, indicating some reaction between the system and CGO.
The reaction product has been identified as Ca;Mn;0,, (PDF
089-0815) and Sr;Mn,O, (PDF 024-1217). Consequently the
composite deposition temperature was limited to 900 °C.

In Fig. 7, we show the impedance spectra for the symmetri-
cal cells with SrMnO;/CGO10 and SrMn, g5Si.1505;_s/CGO10
cathodes. The spectra can be decomposed into two overlapped
contributions, a high frequency arc (assigned to the transport
of O*” ions and intermediate species through the cathode and
at the cathode-electrolyte interface), and a low frequency arc
(assigned to the competitive reactions at the TPB: adsorption,
transfer of species and surface diffusion).*’ As can be seen, the
two phenomena are much smaller for the Si-doped sample,
which can be explained by the increase in electronic conduc-
tivity and likely also oxide ion conductivity (due to the gener-
ation of oxide ion vacancies caused by the oxyanion doping).

The dependences of ASR with temperature are shown in
Fig. 8 and Table 3. For all series an improvement in the ASR
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Fig. 7 Impedance spectra of the symmetrical cells for SrMnOs (O) and
SrMng gsSi 1503_5 (M)/CGO10 composites at 700 °C. The serial resistance was
subtracted for better comparison of the spectra.
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Fig. 8 Plot of log(area-specific resistance (ASR)) vs. 1000/T for SrMnOs_; (W),
SrMng gsSio.1503-5 (0), SrogCap2MnOs_s (@), SrogCag2Mno.90Sio.1003-s (O),
CaMnOs_s (A) and CaMng g5Sip.0503_5 (A).

values was observed for the Si-doped samples with respect to
the undoped compositions. For instance, for CaMny 95Si¢.0503,
Sry.7Cay.3Mng 925510.07505; and SrMng gsSig 1505, the values
obtained at 800 °C, were 0.35, 0.08 and 0.09 Q cm?” respect-
ively, and these results entail a significant improvement with
respect to the corresponding samples without Si doping: 1.50,
0.11 and 0.20 Q cm? for CaMnOj, Sty ;Cay ;MnO; and SrMnOs,
respectively. We can see that there is a non-linear behaviour of
the ASR data, with a bigger drop in the values at the higher
temperatures. This behaviour is likely due to the greater loss of
oxygen at high temperature, causing a higher amount of oxide
vacancies and a better oxide ion mobility and ASR values.
Thus, in this work we show that in addition to enhancing the
conductivities, silicon doping has a positive effect on the ASR
of the perovskite-CGO cathode composites. Overall the lowest
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ASR values were observed for the Sr rich systems, which may
be related to improved oxide ion conduction in such systems
as a result of the increase in cell size.

4. Conclusions

Sr,Ca;_,Mn,_,Si,O;_s cathode materials have been prepared
by solid state reaction, and direct evidence for the incorpo-
ration of Si into the structure provided for the first time by
9Si NMR. In each case, Si doping is shown to enhance the
conductivity, which can be attributed to electron doping
(driven by the introduction of oxide ion vacancies due to the
preference for Si to adopt tetrahedral coordination), as well as
a change from a hexagonal (containing face sharing of octa-
hedra) to a cubic perovskite (containing corner sharing of octa-
hedra) for samples with high levels of Sr. For the latter, the level
of Si needed to stabilise the cubic perovskite increases with
increasing Sr content. Cathode (perovskite-CGO composites)
testing showed an improvement in the ASR values for the
Si-doped samples with respect to the undoped compositions.
Thus, these preliminary results show that silicon doping can
have a beneficial effect on the performance of perovskite
manganite cathode materials, provided that it is accommo-
dated within the perovskite structure.
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