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Suppression of ghost distances in multiple-spin double
electron-electron resonancet
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Distance measurements by pulse electron paramagnetic resonance techniques are increasingly applied to
multiple-spin systems. In the double electron—electron resonance experiment, more than two dipolar
coupled spins manifest in an increased total modulation depth and in sum and difference dipolar frequency
contributions that give rise to additional peaks appearing in the distance distribution, which do not
correspond to the real interspin distances of the system and are hence referred to as ghost contributions.
These ghost contributions may be so prominent that they might be mistaken for real distance peaks or that
real distance peaks shift their position or disappear. We present a simple approximate procedure to
suppress ghost distances to a great extent by manipulating the experimentally obtained form factor during
data analysis by a simple power scaling with a scaling exponent {y = 1/(1—N), with N being the number of
coupled spins in the system. This approach requires neither further experimental effort nor exact
knowledge about labelling and inversion efficiency. This should enable routine application to biological
systems. The approach is validated on simulated test cases for up to five spins and applied to synthetic
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model samples. The suppression of ghost distances with the presented approach works best for symmetric
geometries and rigid molecules which, at the same time, are the cases where ghost contributions are most
disturbing. The distance distributions obtained by power scaling are consistent with distributions that were
obtained with previously obtained alternative approaches and agree, in some cases, strikingly well with the
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1 Introduction

Distance measurements by pulse electron paramagnetic resonance
techniques are widely applied for structure-determination studies
of biomacromolecules. ™ The conversion to the distance domain of
background-corrected time-domain data of the double electron-
electron resonance (DEER) experiment, also named PELDOR,
assumes well separated and homogeneously distributed spin pairs.
However, DEER is increasingly applied to systems containing
more than two spin labels,>® as for instance singly-labelled
homooligomeric proteins.”® More than two dipolar coupled
spins manifest in an increased total modulation depth'™ and

“ESR Group, Laboratory of Physical Chemistry, Wolfgang-Pauli-Strasse 10,

8093 Zurich, Switzerland. E-mail: gunnar.jeschke@phys.chem.ethz.ch;

Fax: +41 44 633 14 48; Tel: +41 44 632 57 02
b Universitiit Bielefeld, Fakultdt fiir Chemie, OC II, Universitdtsstr. 25,

33615 Bielefeld, Germany
T Electronic supplementary information (ESI) available. See DOI: 10.1039/
c3cp44462g
T Present address: Arbeitsgruppe von Prof. G. Erker, Corrensstr. 40, 48149
Miinster, Germany.

5854 | Phys. Chem. Chem. Phys., 2013, 15, 5854-5866

expectations for the true interspin distance distributions.

in higher-order sum and difference dipolar frequency contributions
which in turn cause additional peaks in the distance distribution."
These additional distance peaks do not correspond to the real
interspin distances of the system and are hence referred to as ghost
contributions. They may become so pronounced that they are
mistaken as real peaks or lead to shifts or relative suppression
of these real peaks. This can severely compromise the analysis
of the distance distribution.

Ghost contributions are most prominent and disturbing
in highly symmetric and relatively rigid systems, whereas they
can frequently, but not always, be negligible in unsymmetric
multiple-spin systems.

Therefore, it is crucial to separate the pair signal from higher-
order ghost contributions in order to identify ghost and real
interspin distance peaks. A procedure for separating pair and
three-spin contributions has been proposed.'® However, the
experimental effort and requirements on the signal-to-noise ratio
for this procedure are prohibitive for routine application to
biological systems.

We were systematically studying the influence of more than
two spins on simulated DEER data in time and distance
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domains and developed a further, computer-time demanding
approach based on self-consistent iterative approximation of
the true interspin distances starting from the primary experi-
mental data containing also ghost contributions. During this
work, we realized that the solution might be a lot more simpler
than we initially thought.

We accidentally found that superposition of the logarithm of
the form factor of a three-spin system with the logarithm of the
form factor of the pair contribution by linear scaling leads to
almost perfect agreement. Such linear scaling of the logarithm of
the form factor for comparison of two data sets was implemented
in earlier versions of the Deer Analysis software’" and has now
been replaced by linear scaling of the original form factor. A
further study of this effect revealed that the optimum scaling
factor depends only on the number N of coupled spins, but not on
modulation depth and labelling efficiency. The form factor, which
is the primary DEER data divided by the background function,
can be corrected simply by taking it to the power of {5 = 1/(N — 1).

In this work we show that this simple power scaling approach
leads to a very strong suppression of ghost contributions.

This work is structured as follows. In the theory section, we
depict the expressions for the DEER signal for an N spin system
in general and state them explicitly for up to five spins. We
show the origin of ghost frequency contributions and their
influence on the distance distributions of symmetric multiple-
spin systems. We introduce the general idea of power scaling
and depict why it is reasonable to choose a scaling exponent
{x=1/(N — 1). For a triradical system, we derive more explicitly
how power scaling with (5 accomplishes to suppress ghost
frequencies. The applicability range, especially concerning
inversion efficiency, and the result of the power scaling
approach on an equilateral triradical, a planar tetraradical
and a planar pentaradical system is examined in detail. We
furthermore demonstrate that power scaling does not signifi-
cantly distort the distance distribution when erroneously
applied to a two-spin system. It is investigated in detail whether
the optimum scaling exponent (.., giving best agreement
between the pair contribution and the ghost frequency contain-
ing expressions, coincides with {5 for a wide range of relative
widths of the interspin distance distribution for up to five-spin
systems. Our analysis based on simulated data is checked
against noise and experimental imperfections with triradical
model systems with equilateral and scalene geometry.

2 Theory
2.1 DEER signal of N coupled spins

Consider an N spin system with N(N — 1)/2 pairwise distances
within the sensitivity range of the DEER experiment (approxi-
mately between 2 and 8 nm), sufficiently and homogeneously
diluted such that the average distance between the nanoobjects
is much longer than the sensitivity range of the DEER experi-
ment. For simplicity we assume that all spins have the same
EPR spectrum, so that each of them can take the role of
observer or pumped spin. The nomenclature of interspin dis-
tances, angles within the nanoobject and towards the magnetic
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Fig. 1 Geometry of a multi-spin system. (A) Distances in a multi-spin system.
Each of the N spins can play the role of the observer spin K. (B) Orientation of a
triangular system with respect to the magnetic field vector B, with the observer
spin K at the origin of the frame being described by the polar angles 6, and ¢.
The angle between the two observer spin—pumped spin vectors is .

field vector is depicted in Fig. 1. The DEER signal V(¢) is obtained
by summing over the signals of all N possible observer spins'’

N N
V() = B S [l (1)

k=1 1#k

fult) is the dipolar evolution function of an individual spin pair
(k) and contains the intramolecular contributions within the
nanoobject. The background factor B(f) takes into account
the intermolecular contributions, e.g. the signal decay due to
couplings of the observer spin & to all pumped spins in other
nanoobjects. We furthermore assume that B(t) can be fitted and
extracted during data analysis and hence obtain the form factor
of an N spin system for a particular orientation relative to the
magnetic field vector B,.

N N
Ex(n0.9)= V(B0 =Y T[a0 @)

k=1 1#k
with
ﬁcl(t) =1 - )»1(1 — COS(U)kzt)) (3)

Here /; is the inversion efficiency of the pump pulse for the
pumped spin /. Neglecting orientation selection, the inversion
efficiency of all spins is equal, 4 &~ 4;, and can be determined
experimentally as the modulation depth for samples known to
contain only biradicals. The dipolar frequency wy; of a spin pair
(k1) depends on the interspin distance r;; and on the angle 0y,
included by the spin-spin vector and the external magnetic
field B,. Therefore, even in a rigid single crystal at an arbitrary
orientation, there are N(N — 1)/2 dipolar frequencies. For
example, in a three-spin system as depicted in Fig. 1B, the
dipolar frequencies of the observer spin & in the high-field
approximation are

2
_ Ho 8KELHB 2
W = ETU —3cos Ok[] (4)
2
Ho EKEMHB 2
o = O EREMEB 1 30020, 5
@k 4mh Vk,,,3 [ oSOk ] ( )
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where p, is the vacuum permeability, up the Bohr
magneton and gk, g and gy are the g values of the three
spins and

c0S Oy, = sin y sin O cos ¢ + cos y cos O (6)

The third frequency wy, is encountered when the observer
spin is / or m. Note that the sign of wy and wy,, was given
wrongly in ref. 10. Experimental data are independent of
absolute sign of the dipolar frequencies, since the cosine
function is even. However, in the presence of additional
exchange coupling, the sign matters."?

In general, the N(N — 1)/2 dipolar frequencies depend on as
many distances and angles as are required to define the
coordinates of the N spins up to translation and rotation. The
total number of Cartesian coordinates is 3N and the number of
translational and rotational degrees of freedom, to which
internal distance measurements are insensitive, is 6 for non-
linear systems. Hence, the total form factor depends on 3N — 6
geometric parameters. For the three-spin and four-spin case,
the three or six distances, respectively, fully determine the
geometry, while for larger systems the number of distances
exceeds the number of free parameters.

For an ensemble of uniformly distributed nanoobjects with
random orientation with respect to the magnetic field, as
observed in microcrystalline powders or glassy frozen solu-
tions, the form factor is obtained by powder averaging

2 pm/2
mmzﬁl A Fy(1,0,4)sin(0)d0d¢ (7

2.2 Contributions of the form factors by the number of
coupled spins

Taking all previous considerations into account, the generalized
form factor can be written as

11X
Fy() = (1 =)0 =2)" NT}:}:mmmn+ﬁ
I#k
N 311
x (1-— Nz'zz Z COS Wyt COS Wil

=1 I#k m#k,1
11

Al ) R
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Z Z Z COS Wyt COS Wil COS Wiepl
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k=1 l1#k m#k,In#k,lm
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A=)V
+AA =750

N

N N
Z Z Z Z COS Wyt COS Wiyt

#k m#kIn#klmo#k,lmn

<

=~
Il
~

X COS Wipl COSWppl + ...

This sum representation contains the constant, unmodulated
contribution that defines the modulation depth A4y =1 — (1 — )V *
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and frequency-modulated terms that are grouped by the number
of coupled spins involved. For clarity, we rewrite the form factor
in a more compact way.

F() = (1 — OV 4+ (1 = DV72Py(6) + 221 — )N TN(D)
+ 231 = VNG + 2 = NPV + ... (9)
where Pn(?) is the pair frequency contribution
1 N N
= NI—ZZCOS Wkt (10)
k=1 1%k

Tx(t) the three-spin frequency contribution

NZ' Z Z Z COS Wyt COS Wit

k=1 I#k m#k,1

(11)

Qx(?) the four-spin frequency contribution

1 NN N

= N?Z Z Z COS Wyt COS Wy, I COS Wyl

=1 l#k m+# k
(12)

and Vy(¢) the five-spin frequency contribution

LTSS Y sourcoson

=1 I#k m#kIn#klmn#klmo
X COS Wyl COS Wpt) (13)

Prefactors and contributions due to more than five spins follow
the same scheme. The sum in eqn (9) is truncated after N terms.
Accordingly, the form factor of a two-spin system contains only
pair frequency contributions

Fy(t) =1 — 2+ APy(2) (14)
The three-spin system form factor is
F3t)=1 — 24+ 2>+ A1 — A)P5(t) + 2°T5(t)  (15)

the four-spin system form factor is

Fy(t)=1—=3A+31% = 22+ 21 = 2PP,() + 22(1 — A)T4(6) + 22040

(16)

and the five-spin system form factor is

Fs(t)=1— 44 +6)>
+ 221 — 2)Qs(®) + A'vs(0)

— 422 + 70+ 21 = 2PPs(0) + 22(1 — A)PTs(0)
(17)

Standard DEER experiments performed at the X-band
(~9.3-9.4 GHz) on nitroxide spin labels have inversion
efficiencies of 0.2 < A < 0.6 with 4 &~ 0.57 being standard in
our laboratory for completely labelled systems on application of
a 12 ns pump pulse at the maximum of the nitroxide spectrum.
At the Q-band (& 34 GHz), typical inversion efficiencies that can
be reached are usually slightly lower, with 4 ~ 0.4 being a usual
upper limit in the absence of orientation selection and using
broadband excitation with all pulses set to 12 ns.'® Orientation
selection may have strong effects on the numerical 4 value.
Under such conditions, the pair frequency contribution is less
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Fig. 2 Simulated form factors (A) and distance distributions obtained by Tikhonov
regularization (B) of a two-spin (green), three-spin (red) and four-spin (violet)
system. All systems feature a single mean distance (equilateral triangle and
regular tetrahedron). Interspin distances are Rice distributed around 3 nm with
a standard deviation of 0.1 nm, inversion efficiency is 2 = 0.57. Most ghost
distances are slightly shorter and appear as clear and distinct peaks. The true
interspin distance peak in this and all following figures is marked with an asterisk.

and less predominant compared to the higher-order contribu-
tions the higher the number of coupled spins. Although an
inversion efficiency of 2 = 1 can be achieved in simulated data,
this value cannot be reached at current state with usual spectro-
meters for systems consisting of only nitroxide radicals. Study-
ing the influence of inversion efficiencies 4 > 0.6 is thus at this
point mostly of didactical and theoretical interest. Note how-
ever that this may change for other label types and with multi-
frequency excitation'* or arbitrary waveform generator based
spectrometers.'>"°

The influence of the number of coupled spins for the same
interspin distance and inversion efficiency 4 is shown on
simulated data in Fig. 2. In this simulation and all the following
ones we assume a Rice distribution of distances corresponding
to a Gaussian spatial distribution of the individual para-
magnetic centers.'”” The simulated dipolar evolution time is
8 us and the simulated dwell time is 8 ns in this and all
following simulations. The biradical curve (green) containing
only pair contributions is virtually indistinguishable from the
input distribution (grey). The most prominent ghost artefact is
a distinct peak at lower distances, already very pronounced in
the triradical (red) and almost as dominant as the real interspin
distance peak in the tetraradical case (violet).

The form factor at time ¢ = 0 is normalized to unity.
The multiplicities of higher-order frequency contributions follow
Pascal’s triangle with a value of 1 at ¢ = 0 for the highest-frequency
contribution. In a three-spin system P3(0) = 2 and T3(0) = 1, in a
four-spin system Q4(0) = 1, T4(0) = 3 and P,(0) = 3, in a five-spin
system V5(0) = 1, Q5(0) = 4, T5(0) = 6 and P5(0) = 4 and so on for
higher spin systems. Note that in a previous publication,'® the
normalization coefficients of the frequency modulated terms
(eqn (10)-(13)) missed the factorial in the denominator.

Previous work on spin counting showed that the inversion
efficiency A is well reproducible on a given spectrometer and a
given probehead.'®'® This inversion efficiency 4 can be varied
experimentally by variation of the pump pulse power. In the
case of incomplete labelling, when 4 is replaced by fA, with a
fraction f < 1 of labelled spins, all expressions given in this
work still hold.
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In the case of known labelling efficiency f, the modulation
depth

Av=1—-(1 - )" (18)

is thus well suited to determine the number of spins in the
system.'®'? Note however that this is susceptible to differences
in /1 between model substances and the sample under investi-
gation. Furthermore, not all frequencies are equally excited by
the pump and observer pulses, which also affects the numerical
value of 4y. In particular, signals at high sum combination
frequencies may be suppressed if these frequencies exceed the
excitation bandwidth of the pump pulse or observer refocusing
pulses, similar to the effects that cause the lower distance limit
of the DEER technique.>®*' The difference combination peak
could be at a frequency that is not well-defined in the time
when a DEER signal can be recorded. Therefore, signals at very
low difference combination frequencies may also be eliminated
by background correction. The ideal total modulation depths of
a two-, three-, four- and five-spin system are A, =/, 45 =21 — 12,
As=32—32>+ 2> and 45 = 4. — 6> + 4)*> — J*. Even though the
total modulation depth A, may slightly deviate from these ideal
values in an experimental setup, the best way to estimate the
inversion efficiency A of a multiple-spin system is to simply
invert eqn (18), taking furthermore into account a possible
reduction of labeling efficiency f.

Elimination of the constant contribution and renormaliza-
tion of the maximum value to unity gives the dipolar evolution
function Fy (¢) that contains only dipolar frequency contribu-
tions

Fy(1) — (1= )M
1—(1 =)Vt

Fyo(t) = (19)

The dipolar evolution functions are used to compare differences
between spin systems in the time domain and are the input
data for the Tikhonov regularization that provides the distance
distributions. Due to the differences in Ay, the form factors
Fn(t) do not converge to the same value at long times ¢ when
either N, f or A are different, whereas the dipolar evolution
functions Fy (t) converge to zero and are thus suitable to detect
differences in primary data.

2.3 Ghost distances originating from the form factor

When more than two spins are present, the signal (eqn (8))
contains products of cosines leading to combination frequency
contributions because

1
cos(wyt) cos(wpmt) = E[cos(wkl + W)t + cos(wrr — Ogm)1]
(20)

By repetitive application of eqn (20) it can be shown that in a
product of N — 1 cosine functions, cosines of all possible sums
and differences of the N — 1 dipolar frequencies occur.
Conversion from the time to the distance domain during
data analysis assigns distances to every frequency in the form
factor, thus also to the combination frequencies. We therefore
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refer to them as ghost distances as they appear in the distance
distribution, even though they do not correspond to real
interspin distances. In general, sum contributions of two
dipolar frequencies always introduce a peak at a distance that
is shorter than both distances. Difference combinations
however introduce a peak at a distance that is longer than
the shorter of the two distances when the difference frequency
is positive or a peak at a distance that is shorter than the longer
distance when the difference frequency is negative, because the
information content of a negative frequency is its absolute
value. Combinations of more than two frequencies may appear
anywhere in the distance distribution.

Knowing their position would be beneficial, but this is not
straightforward. By defining a ghost frequency wgnosc based on
eqn (20), a ghost distance rghos can be assigned analogous to a
real interspin distance (eqn (4)), assuming gr & gu-

Mo SKELUE

3

21
4nh T'ghost ( )

Wghost = Wkl T O =

By solving eqn (21) for the ghost distance, we obtain for a single
orientation of the system in the magnetic field

3.3
r el Viem

host =

gnos Frnt |1 — 3 €082 0| £ rii®|1 — 3 cos? Ok

(22)

However, no closed expressions can be obtained after pow-
der averaging. If the structure is known, which is usually only
the case for symmetric homooligomers, the ghost distances can
be predicted numerically. Note also that ghost distances are
broadly distributed even in the case of a completely rigid spin
system (Fig. 3).

1.5 3 4.5 6 75 15 3 4.5 6 7.5
r [nm] r [nm]

Fig. 3 Simulation of input interspin and ghost distances (A) and distance
distributions obtained from Tikhonov regularization of original and power scaled
form factors (B) in equilateral triradicals with Rice distributed interspin distances
of 3.0 nm (black), 4.5 nm (red), 6.0 nm (blue) and 7.5 nm (green) and a standard
deviation of 0.1 nm. (A) Simulated input distance distribution (solid lines) and
ghost distances (dashed lines) according to eqn (22). (B) Distance distributions
obtained after Tikhonov regularization (regularization parameter o = 10) from
simulation with 4 = 0.57 of triradical form factors (dashed lines) and scaled
triradical form factors (solid lines). The distance distributions obtained from the
pair contribution (grey) are hidden underneath the power scaled triradical
distance distributions. Slightly different distance distributions are obtained from
the form factor after Tikhonov regularization than by adding the modulation
depth scaled pair and ghost distance distribution. The areas of the simulated
distance distributions are normalized to unity.
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2.4 Approaches to extract true interspin distances

Using a series of DEER traces at variable attenuation of the
pump pulse power, it is possible to extract the true interspin
distance distribution.’® The form factor evaluated in eqn (15)
can be rewritten gathering terms according to the order of 4
instead of gathering terms according to the number of spins
involved.

F3(t) = (1 — 2)* + 2P5(8) + 2(T5(¢) — P3(0)) (23)

The series of DEER traces is a two-dimensional data set given at
discrete times ¢; = 0, 4t,...tmax and inversion efficiencies 4; =
Amins- - -Amax- At each point in time ¢, one can evaluate a
polynomial fit of 4; and extract the pair contribution

Fyft) = (1= 4 + @uedy + @i (24)

with a;, = P3(t;) and a,,, = T5(t;) — P;(t;). We found that this
fitting procedure requires an extremely good signal-to-noise
ratio at all values of /; and is only then a way to extract
also higher-order contributions. The obtained fit of the pair
contribution is usually not much better than the one obtained
by simply measuring for the same time at artificially lowered 1.
Such measurements at low inversion efficiency suppress ghost
peaks, because the relative amount of higher-order contributions
decreases drastically with decreasing A. This, however, reduces
signal-to-noise tremendously or increases measurement time
correspondingly.

It is furthermore possible to extract the three-spin contribution
modeled with a Monte Carlo simulation of the uncorrected
distance distribution until a self-consistent solution is obtained.
Briefly, assuming that the distances are uncorrelated and the
number of spins N is known, all multi-spin form factors can be
estimated from the distance distribution and can then be
subtracted from the complete form factor to obtain an estimate
of the pair contribution. Tikhonov regularization of this
estimate provides an improved distance distribution. This
procedure is repeated until the distance distribution is self-
consistent. Although this algorithm leads to improved distance
distributions in some cases, we found that it is easily unbalanced by
errors in the estimate of the total inversion efficiency Af. Further-
more, the assumption of uncorrelated pair distances is poor except
for equilateral three-spin systems and rare four-spin systems
with tetrahedral symmetry. Moreover, the algorithm may not
always converge - especially when the spin system does not
have such a symmetric geometry. For geometries lacking such
high symmetry, we observed at times convergence to the wrong
distance distribution, especially when the first guess was poor.

2.5 Power scaling to suppress ghost distances

We accidentally observed that
{In[F;(4)] ~ In[F,(¢)] (25)

where { was obtained by minimizing the root mean square
deviation (rmsd) between the left-hand and the right-hand side
of eqn (25). As this rmsd is dominated by the deviation between
the constant contributions 1 — 4; = (1 — 2)2 and1—4,=1- 2,
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we have { ~ 1/2 for a triradical. For cases with higher N, the
analogous procedure results in { & {5 =1/(N — 1), according to
eqn (18). The power-scaled form factor is denoted Fy“(f) =
[Fy@] in the following. For a single orientation and for all
observer spins being equivalent, such power scaling provides
exactly the pair form factor, as can be inferred from eqn (2). In
the absence of orientation correlation between the spins in the
system, powder averaging could be performed before taking the
product in eqn (2). In that case power scaling would still
provide the correct pair form factor for equivalent observer
spins, e.g. homooligomers. Since orientation correlation is not
negligible, power scaling provides only an approximate correc-
tion. The approximation is expected to become worse if the
observer spins are not all symmetry equivalent.

The effect of power scaling on an equilateral triradical
system for a range of interspin distances at a single inversion
efficiency 4 = 0.57 is shown in Fig. 3B. The true interspin
distance information is indeed recovered.

We have furthermore tested the power scaling approach on
simulated data for a three-spin system with C; symmetry, a
four-spin system with C, symmetry and a five-spin system with
Cs symmetry for a broad range of inversion efficiencies A (Fig. 4).

The unscaled dipolar evolution functions as well as the
distance distributions show dwindling agreement with the
corresponding pair contribution data at the higher 4. In a
nutshell, for moderate inversion efficiencies 4 < 0.6, as they
are usual in nitroxide-nitroxide DEER measurements, scaling
with an exponent {5 indeed suppresses ghost peaks efficiently
up to N = 4. For N = 5, some intentional reduction of inversion
efficiency to 4 = 0.4 is required. For the triradical (Fig. 4A-D),
the data scaled with {, = 1/2 show a good agreement with the
pair contribution except for the high A-values of 0.8 and 1.0.
For the tetraradical (Fig. 4E-H), the data scaled with (y = 1/3
show a good agreement with the pair contribution except for
high values of 4 > 0.6. The relative intensity is however not
exactly the one of the pair contributions. For the pentaradical
(Fig. 4I-L), at the larger A the ghost distance peaks have become
so prominent that the real distance peak at 4.85 nm seems like
a rather insignificant artefact. In fact, already at 4 = 0.6 close to
our experimental X-band inversion efficiency of 4 = 0.57, the low
distance ghost peak near 2.4 nm is significantly stronger than
the real distance peak at 4.85 nm. Even at / = 0.2, the influence
of ghost distances is still visible. Power scaling with {, = 1/4
improves the distance distribution, but only for values of
/. < 0.4 the agreement is good.

For the triradical case, we have also checked whether (y is
the optimum scaling exponent for ghost peak suppression
assuming 4 = 0.57 as we have it under optimized experimental
conditions (Fig. 5A and B). Indeed the ghost peak is not fully
suppressed for higher values of {, whereas lower values cause
slight artificial narrowing of the real distance peak.

We have also tested how erroneous power scaling with { =
{n=3 = 1/2 affects the pair form factor (N = 2, proper scaling
factor (-, = 1, see Fig. 5C) and the corresponding distance
distribution (Fig. 5D). Such scaling leads to changes in the
decay of the dipolar oscillation, but does not introduce prominent
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Fig. 4 Comparison between original and power scaled dipolar evolution functions
(A, C, E, G, |, K) and distance distributions after Tikhonov regularization with
regularization parameter « = 10 (B, D, F, H, J, L) of a simulated equilateral triradical
(A-D), a square geometry tetraradical (E-H) and a planar pentagon pentaradical (I-L)
versus the corresponding pair contributions with Rice distributed interspin distance
of 3 nm =+ 0.1 nm for inversion efficiencies 4 =[0.2, 0.4, 0.6, 0.8, 1.0]. (A) Three-spin
dipolar evolution functions and pair contribution. (B) Distance distributions of the
original three-spin dipolar evolution functions Fo(t). (C) Scaled three-spin dipolar
evolution functions and the pair contribution. (D) Distance distributions of the scaled
three-spin dipolar evolution functions Fob(@d). (E) Four-spin dipolar evolution functions
and pair contribution. (F) Distance distributions of the original four-spin dipolar
evolution functions Fy(t). (G) Scaled four-spin dipolar evolution functions and the pair
contribution. (H) Distance distributions of the scaled four-spin dipolar evolution
functions Fo-(t). (I) Five-spin dipolar evolution functions and pair contribution. (J)
Distance distributions of the original five-spin dipolar evolution functions Fy(t). (K)
Scaled five-spin dipolar evolution functions and the pair contribution. (L) Distance
distributions of the scaled five-spin dipolar evolution functions Fo®(t).
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Fig. 5 Effect of a scaling exponent between { = 0.1 (light grey) and no scaling
(¢ =1, black) on a simulated Rice distributed interspin distance of 3 nm with
standard deviation of 0.1 nm at an inversion efficiency 2 = 0.57 in time and
distance domains for an equilateral triradical (A and B) and a biradical (C and D)
and the effect of a scaling exponent {y = 1/(N — 1) for N = 3 (red), N = 4 (violet),
N =5 (blue) on a mixture of biradical signals (E and F). (A and B) Data for the
scaling exponent {y = 1/2 (red) are nearly indistinguishable from the biradical
contribution (green, hidden underneath the red curve), whereas the triradical
curve without scaling (black) differs. (C and D) In the biradical (green), only
the amplitude of the modulation increases with decreasing {. Neither Fo'(t) nor
P(r) changes drastically. (E and F) Mixture of Rice distributed pair contributions
with 2.39 &+ 0.1 nm, 3 & 0.1 nm and 3.7 £ 0.2 nm with the intensity ratios of
0.37:1:0.1, modelling approximately the equilateral triradical distance distribu-
tion in (B). Application of power scaling affects the distance distribution, how-
ever, none of the true interspin distances disappears completely as in the
triradical case.

significant ghost peaks. Only slight broadening or narrowing of
the real peak in the distance domain is observed. Application of
power scaling with {y=1/(N — 1)for N=3,N=4and N=5o0n a
mixture of pair contributions that approximately models an
equilateral triradical case does however have a non-negligible
effect on the distance distribution (Fig. 5E and F). A slight shift
of the relative intensities is observed, but none of the peaks
disappears completely as in the triradical case.

In contrast to experimental data, simulated data can have
zero noise. We have added stochastic noise on simulated time
domain DEER data of an equilateral triradical (Fig. 6) in order
to check what signal-to-noise ratio (SNR) is needed to reliably
apply the power scaling approach. This test however does not
include noise-related uncertainties in background correction
that may arise in an experimental case. Fig. 6 shows that power
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Fig. 6 Influence of a decreasing signal-to-noise ratio on the original (A and C)
and power scaled (B and D) dipolar evolution functions (A and B) and distance
distributions (C and D) of an equilateral triradical system with simulated Rice
distributed interspin distance of 3 nm with a standard deviation of 0.1 nm at an
inversion efficiency 4 = 0.57. Shown are zero noise data (black), SNR = 100 (blue),
SNR = 50 (light blue), SNR = 20 (green), SNR = 10 (orange) and SNR = 5 (red),
Tikhonov regularized with a regularization parameter of « = 10, the zero noise
data are shown in every plot for direct comparison. Simulations were done for
dipolar evolution times of 8 ps. (A) Original dipolar evolution functions Fo(t).
(B) Dipolar evolution functions Fo*(t) power scaled with ¢y = 1/2. (C) Original
distance distribution P(r). (D) Distance distributions P*(r) obtained from dipolar
evolution functions power scaled with {y = 1/2.

scaling but also the emergence of ghost peaks are relatively
robust towards noise. Up to SNR = 50 (light blue), there is
virtually no difference in the original distance distribution or
the one obtained from the power scaled form factor. For SNR =
20 (green), the shape of the ghost peak changes slightly, but
correction is still almost complete, however with a tiny shift of
the main peak at 3 nm, but this is also present in the original,
uncorrected data. Even for SNR = 10 (orange) and SNR = 5 (red),
power scaling cleans up the distance distribution almost
completely even though the power scaled dipolar evolution
functions look extremely noisy. In these cases, however, the
original distance distribution is already so noisy that a ghost
peak would probably anyway be interpreted as a residual noise
artefact by an experienced experimentalist.

Such power scaling is easily implemented into data analysis
and does not require further experimental effort. However, to
obtain quantitative understanding why this approach works so
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nicely is rather tedious. As a first step we rewrite the form factor
(eqn (9))

Fy(0) = (1 = 2" '[1 + Xy (26)
with
] 2 A
Xy = Py(t Tn(t t 27
¥ =TIV TN+ 00+ @)
in order to subsequently apply a series expansion of the form
¢ -1
(1iXN)4:1igXNi%XNZi... (28)
With a scaling exponent { = {5 = 1/(N — 1), we obtain
. 1 2—-N
S = (1—2 2
Fy()y=(1-24)|1 +ty 1XN+2(N_ 1)2XN +... (29

As all powers of Xy are frequency-modulated terms, power
scaling converts the total modulation depth of an N-spin system
almost exactly to the modulation depth of a biradical. A small
deviation may arise as some of the difference frequencies may
be exactly zero, so that they contribute to the unmodulated
part of the signal. Due to powder averaging, the amount of
such zero-frequency contributions in higher-order frequency-
modulated terms is negligibly small for all possible distance
combinations. After removing the constant contribution and
normalization, the power scaled dipolar evolution function is
given by

Fy (1) = (1=7)

Fy ot (1) = - (30)
This power scaled dipolar evolution function needs to be
examined in order to understand the effect of power scaling

on the distance distribution.

2.6 Power scaling in a three-spin system
Applying power scaling to the form factor of a three-spin system

and collecting terms involving the same power of / up to the
order A%, one obtains a scaled form factor of

F) = 1=t igpy(0) + 7 En(z) - éc@(z)}

Al 1 1 1
+73 {6T3(z) - 6G3(2)(z) - §G3(3)(l‘) + EG&(Z)] +...

(31)

with a newly introduced ghost-term containing squared
frequencies

Z Z COS Wyt

=1 l#k

(32)

furthermore a newly introduced cube frequency containing a
ghost term

Z Z COS Wyt

=1 1#k

(33)
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and a newly introduced ghost term containing combination
frequencies

N2' Z Z Z COS Wy COS Wiy I COS Wyt

=1 l#k m#k,l

(34)

More new ghost terms appear when considering orders
greater than 1°.

Examining eqn (31) gives interesting insights. Comparing
pair and higher-spin contributions to Fj(¢) in eqn (15) shows
that the prefactors of the frequency contributions have
changed. The leading ghost frequency terms in both eqn (15)
and (31) are of the order A>. These and higher terms still
contain the original ghost frequency contributions Tj(¢), but
with a reduced relative amplitude. Scaling does however also
introduce new ghost terms containing unphysical combination
frequencies. They are unphysical as only one spin can be the
observer spin. The ratio of the pair to the ghost signal in the
original three-spin dipolar evolution function, Rp 1, can be
deduced from the coefficients in eqn (15) taking into account
an additional factor of 2 for the pair contribution, as Ps(t = 0) = 2,
whereas Ty(t = 0) = 1. One obtains Rp,_7, = 2(1 — 24" After power
scaling, this ratio is in the second order approximation Rp, _r, Loz =
6/"" and in the third order approximation Rp__7%* = 6(/ + /12) !
The improvement coming from scaling is hence the ratio of
pair to ghost before and after scaling. In second order approxi-
mation, the improvement coming from scaling is

Rp-1,9* 3
e B HERS . (35)
Rp,_, 1-2
and in third order approximation
Rp,_1,"9? 3
Bl - (36)
Rp,—1y 1-2

These considerations are only reasonable for small values of 7,
where limitation to terms of the order /* is justified.

It might appear that the newly introduced G-terms (eqn (32)-(34))
decrease the signal-to-ghost ratio, but note that they have
opposite sign. To the extent that they contain similar frequen-
cies as Tj(¢), destructive interference will actually improve
the signal-to-ghost ratio. This is particularly the case in
highly-symmetric systems where the orientation dependent
dipolar frequencies between all spins are very similar, wy ~
oim- Hence, the more symmetric and rigid the system under
observation is, the better is this destructive interference.

The remaining ghost contributions G;(t) and G;®)(¢) are
spread over a broader frequency range and thus the distance
range. Moreover, except for G;*(£), they are cancelled by Tikhonov
regularization with the non-negativity constraint P(r) > 0, as
due to their sign they correspond to negative peaks in the
distance distribution.

This combination of partial interference of original and
newly introduced ghost contributions and suppression of the
remaining leading newly introduced ghost contributions by the
non-negativity constraint semi-quantitatively explains the good
performance of simple power scaling.
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2.7 Optimization of the scaling exponent

Although the scaling exponent { provides good results, it is not
clear whether the remaining ghost contributions are indeed
minimized at this exponent. We define the optimum scaling
exponent (¢ as the exponent giving best agreement between
the scaled dipolar evolution function Fy,'(f) and the pair
contribution. Such comparison in the time domain is not only
closer to the primary experimental data than comparison in the
distance domain, it is also unaffected by the mathematical
difficulties that arise from the ill-posed problem of converting
the time-domain data to a distance distribution. Minimization
of the deviation in the time domain has the disadvantage that
the beneficial effect of the non-negativity constraint P(r) > 0 in
Tikhonov regularization is not considered. Still we prefer
optimization in the time-domain, since otherwise the result
would depend on the choice of the regularization parameter o
in Tikhonov regularization.

However, to check whether there is a substantial difference
in {,p between time and distance domains, we tested the
agreement for an equilateral triradical and a tetraradical with
square geometry (Fig. 7) and a planar regular pentaradical
(Fig. 8). There is a small deviation between (,p in time and
distance domains that is somewhat more pronounced for a
tetraradical, but there is a substantial improvement for any
of the two (o, values and also for taking (y. Fig. 7A and C
show that the rmsd-valley of the scaling exponent optimization
is relatively broad and even though there exists a distinct
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Fig. 7 Optimization of the scaling exponent { in time and distance domains for
a triradical with equilateral geometry (A and B) and a tetraradical with square
geometry (C and D) with side lengths of 3 nm Rice distributed with a standard
deviation of 0.1 nm at 2 = 0.57. (A and C) Rmsd of the power scaled dipolar
evolution function Fo'(t) with the pair signal (red) and of the power scaled
distance distribution P*(r) with the pair distance distribution (black). {y is
indicated by the vertical dashed line. (B and D) Comparison of pair distance
distribution (black), the original multi-spin distance distribution (dashed red) and
the power scaled distance distributions with the scaling exponents {y (red),
Zopt @@ (cyan) and Lo (green).
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Fig. 8 Optimization of the scaling exponent in time and distance domains (A) of
a pentaradical with regular pentagon geometry with a side length of 3 nm, Rice
distributed with a standard deviation of 0.1 nm with the corresponding distance
distributions (B and C) and optimization of the pentaradical scaling exponent in
the time domain as a function of the relative width a,/r of the distribution (D).
Results are shown for 2 = 0.57 and 4 = 0.4. (A) {opt ©? & {opt’” & {y for 2= 0.4
(solid lines), but the deviation is larger for 2 = 0.57 (dashed lines). {y = 1/4 is
indicated by the vertical dashed line. (B) 4 = 0.57: original, pair and power scaled
distance distributions. (C) A = 0.4: original, pair and power scaled distance
distributions. (D) The power scaling approach breaks down for 2 = 0.57
(red) (compare Fig. 4l-L). {ope does not follow any trend for a given value of
o,/r for /. = 0.57, but for 2 = 0.4 (green), {opt & {n. Simulated side lengths
were between 2 and 8 nm, Rice distributed with standard deviations between
g, =0.01 nm and 0.5 nm.

minimum, {qp is neither far away from the value of {y, nor
does the rmsd-value differ drastically. The disagreement is
higher for N = 4 than for N = 3, the corresponding distance
distributions (Fig. 7B and D) differ only very slightly. Power
scaling almost completely removes the ghost peaks in the
distance distribution of the triradical, all distributions are
virtually indistinguishable. The distribution of the tetraradical
is improved and small differences between the Copf @ and
Copt ) can be seen.

The same is in principle true for a pentaradical (Fig. 8). As
was already seen in Fig. 4I-L, power scaling only gives good
results for 4 < 0.4. It is thus plausible that also the determina-
tion of the optimum scaling exponent in time and distance
domains differs more for 4 = 0.57 than for 4 = 0.4. Power scaling
of the form factor at an inversion efficiency of A = 0.57 (Fig. 8B)
does not recover the true interspin distance distribution, even if
taking the optimized scaling exponent. Even though this
implies a break-down of the power-scaling approach, the
changes in the distance distribution of the scaled and unscaled
form factors do reveal the presence of ghost peaks, which may
be a useful hint when analysing experimental data. For 4 = 0.4,
the agreement with the pair contribution (Fig. 8C) is very good
for all scaling exponents and the true distance distribution is
recovered with an accuracy that is comparable to experimental
errors in distance distributions of biradicals.
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Fig. 9 Optimum scaling parameter (., determined by minimized rmsd in the
time domain for triradicals with equilateral geometry and tetraradicals with
regular tetrahedron and square geometry. Simulated side lengths are between
2 nm and 8 nm, standard deviations of the Rice distribution between o, =
0.01 nm and ¢, = 0.5 nm. Simulated dipolar evaluation time was 20 ps and
inversion efficiency 4 = 0.57.

For tri- and tetraradicals (Fig. 9), {,p¢ as a function of g,/r is a
distinctive curve. For relatively rigid equilateral triradical cases
(o./r < 0.07) we find {,pe & {n. For the monodistanced regular
tetrahedron tetraradical (o, ~ {y for a broad range of o,/r. For
the square tetraradical however, (,p differs from (y for most
values of ¢,/r. When interspin distances become more flexible,
Copt approaches 1, being equivalent to less correction. This agrees
with the observation that for a wider distance distribution, the
ghost peaks are not that distinct and may be more hidden
underneath the anyway relatively broad interspin distance peak.
This is plausible as ghost contributions are even more broadly
distributed than the initial dipolar frequencies.

Note however that less scaling does not mean that ghost
contributions are absent. It only means that the suppression of
multiple-spin pollutions through scaling is not as successful
anymore.

We have also examined the dependency of {, for different
values of 1 (data not shown). In the region where power scaling
gives reasonable results, e.g. where (o as a function of a,/r
follows a clear-cut trend, {,p for a given value of o,/r is nearly
independent of 4.

2.8 Power scaling on triradical model systems

The tests with simulated data discussed above have the advan-
tage that the true distance distribution is precisely known. To
check for stability of the approach against noise and experi-
mental imperfections, we performed experiments on triradical
model systems®>** at X-band frequency. The outcome of such
experiments is not expected to depend on EPR frequency if
inversion efficiency is the same and as long as orientation
selection can be avoided. In general, inversion efficiency A
tends to decrease with increasing EPR frequency which makes
the problem of ghost contributions less serious and ghost
suppression more efficient.
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Fig. 10 Comparison of the different approaches to retrieve the true interspin
distance information of the equilateral triradical model system T111 (A) in time
(B and C) and distance domains (D). (A) Structure of triradical T111. (B) Series of
form factors at variable 4 with maximum 4 =~ 0.5 (red, dashed), minimum A =~ 0.1
(grey). (C) Comparison of the dipolar evolution functions. The trace at maximum 4
differs the most. (D) Results of the distance domain. The different approaches all
yield a similar P(r).

We choose the two triradicals T111 (Fig. 10) and T111;y,
(Fig. 11) with equilateral geometry and triradical T012 (Fig. 12)
with scalene geometry (r, # 1, # 7o)

Data for triradical T111;,, can be compared to the corres-
ponding biradical B11;,,, which has the same length and
relative orientation of the spin-labelled arms. Only in this case
the true interspin distance information is known. Otherwise,
the power scaled dipolar evolution functions can be compared
with the distance distribution measured at minimum A and
with the pair contribution originating from fitting a series of
DEER traces at variable /, as described in ref. 10.

In principle, a determination of the optimum scaling exponent
{opt can be done by comparing the pair contribution from the
variable 4 approach with the power scaled dipolar evolution
function. However, we observed that this determination is
instable as it is extremely sensitive towards differences in back-
ground correction and other experimental uncertainties. At times,
we obtained values of (. close to zero (data not shown).

T111 and T012 are spin labelled with the conformationally
flexible dehydroperoxyl (DHP) and T111;,,, and B111;,, with the
conformationally unambiguous spin label (CUSL).>*>*

When comparing experimental data, the maximum of the
distance distribution and not the area, as in the simulated
cases, is normalized to unity because artefacts coming from
noise, short dipolar evolution times and incomplete back-
ground correction often manifest in the form of distance peak
artefacts.

The results for triradical T111 are self-consistent (Fig. 10).
The distance distributions of the pair contribution originating
from the variable 4 approach, scaling with {y and from the form
factor with the lowest inversion efficiency (minimum /) agree
very well with each other.
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Fig. 11 Model triradical T111;,, (A) with the same interspin distance as biradical

B11;n (B) in time (C, D, F) and distance domains (E). (A) Structure of triradical
T11 1. (B) Structure of biradical B11in,. (C) Series of form factors at variable A
with maximum 4 ~ 0.4 (dashed red) and minimum 4 ~ 0.2 (grey). (D) Dipolar
evolution functions of biradical B11;,, (green) and triradical T111;,, at minimum 4
(grey) and maximum 2 (dashed red), power scaled with {y = 1/2 (red) and the
pair contribution from the variable 4 approach (black). (E) Distance distributions
obtained from the biradical form factor (green), the pair contribution of the
variable 4 approach (black), the triradical form factor at maximum 4 (dashed red),
the form factor power scaled with {y (red) and the form factor at minimum 4
(grey). Scaling with {y, measuring at minimum 4 and the variable 1 approach
reduce the ghost peak in the distance distribution. (F) Residuals against the
biradical data of the triradical dipolar evolution functions at maximum /4 (dashed
red), power scaled with {y (red) and at minimum 7 (grey).

For triradical T111;,, (Fig. 11), scaling with {5 = 0.5 (solid red
line in Fig. 11E) improves the distance distribution with respect
to the one obtained at maximum inversion efficiency (dashed
red line) and leads to a similar result as measured at a low
inversion efficiency (minimum 4, solid grey line). Orientation
selection and thus incomplete excitation are tentatively
assigned to cause the relatively low values of total modulation
depth and inversion efficiency at maximum pump pulse power
of only 4 =0.63 and 4 = 0.39 respectively. The spin label CUSL of
T111;,, and B11;,, is conformationally unambiguous and might
therefore be problematic. To verify that the multispin effect is
not strongly biased by orientation selection, we conducted field
averaged DEER measurements of B11;,, and T111;,,, in addition
to the single-point DEER experiment, in order to suppress
orientation selection effects.”® There is no significant change
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Fig. 12 Attemptive extraction of the true interspin distance information for
scalene triradical T012 (B) with power scaling and extraction at variable / in time
(A) and distance domains (C). (A) Pair contribution from the variable 1 approach
(black) and dipolar evolution functions at maximum 4 (red), power scaled with {y
and at minimum A. (B) Structure of triradical T012. (C) Distance distributions of
T012. Power scaling with {y does not lead to a completely reasonable distribu-
tion, however the distribution is less broadened and distance peaks at longer
distances start to appear. The pair contribution originating from variable 2 (black)
seems most reasonable, but still not completely corrected and agrees with the
power scaled distance distribution.

in the distance distributions obtained from DEER traces mea-
sured with and without field average (field averaged data not
shown). We have furthermore checked for triradical T111;,,
that the emergence and power scaling behaviour of ghost
contributions is not strongly biased by matrix changes by
conducting DEER measurements in toluene instead of o-ter-
phenyl (data shown in ESIf).

The performance of the power scaling approach for a scalene
triradical is illustrated on triradical T012 (Fig. 12). Again, all
approaches for suppressing ghost contributions lead to similar
changes with respect to the uncorrected distribution. Also in
agreement with the other two experimental examples, the largest
change is observed with the variable 4 approach. Due to the scalene
geometry of triradical T012, the ghost contributions are more
broadly distributed than in a completely symmetric geometry and
the multi-spin effect is mostly a broadening of the lower distance
edge. However, the correction appears less significant than for the
equilateral triradicals and we may suspect that even with the
variable / approach it is incomplete.

We have observed simulated scalene triradical cases where
scaling with {5 actually worsens the distance distribution, but
also cases where it improves the distance distribution (data not
shown). In any case the fact that power scaling does change
the distance distribution reveals that ghost contributions
must be present.

Power scaling is a very fast way of checking whether the
experimentally obtained distance distribution contains significant
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amounts of multi-spin contributions and yields very reliable
results for symmetric geometries. However, if the result is
not clear without ambiguity, especially in the presence of
aggregation, unknown or irregular interspin geometry or
unknown flexibility of the sample under investigation, we
recommend to combine the power scaling approach with
the minimum A approach, a measurement at artificially
lowered inversion efficiency, subsequently followed by a check
for self-consistency. When the geometry of the sample under
investigation is asymmetric and relatively flexible, the distance
distributions obtained from the variable /1 approach, the
minimum 4 approach and the power scaling approach might
not differ very much from each other and also from the
distance distribution obtained from the original form
factor at maximum inversion efficiency. In a symmetric and
conformationally relatively rigid case however, ghost distance
contributions should be very disturbing.

3 Experimental
3.1 Modelling and data analysis

Experimental data were analyzed with DeerAnalysis2011."
Home-written Matlab (The MathWorks Inc, Natick, MA, USA)
routines were used for the simulation of the multiple-spin
systems and for all analysis exceeding a simple background
fit of the experimental data traces. Tikhonov regularization was
performed with adapted subroutines of DeerAnalysis2008.

3.2 Sample preparation of the model system

Detailed descriptions of the syntheses of the biradical and the
triradical are described in ref. 10 and 26.

The samples with total concentrations of ~100 pumol L™*
were produced by dissolving the pure sample substance in
perdeuterated o-terphenyl heated slightly above the melting
point. The crystallized samples were powdered and filled into
3 mm tubes. Immediately before introducing the probes into
the EPR probehead, the probes were melted again in the hot air
stream of a heat gun, shock-frozen in liquid nitrogen and
immediately introduced into the EPR probehead precooled
to 50 K.

3.3 Pulse EPR

The EPR experiments were performed on a Bruker Elexsys E580
and an Elexsys II pulse EPR spectrometer (Bruker Biospin,
Karlsruhe, Germany) at X-band frequencies (~9.3-9.4 GHz)
equipped with an overcoupled Bruker Flexline MS3 split-ring
resonator at a temperature of 50 K. For the Elexsys E580
spectrometer, the second microwave frequency was provided
by an E8257D PSG Analog Signal Generator (Agilent, Santa
Clara, CA) limited to 17 dBm output and fed into one of the
pulse forming units of the spectrometer. For the Elexsys II
spectrometer, the built-in second frequency source was used.
Dipolar time evolution data were obtained using the four
pulse double electron-electron resonance (DEER) experi-
ment.”” The experiments were performed with the pump pulse
frequency coinciding with the maximum of the nitroxide

This journal is © the Owner Societies 2013
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spectrum. The flip angle = n of the pump pulse at a pulse
length of 12 ns was determined by setting the pump pulse to
the spectrometer frequency and optimizing the echo inversion
using the pulse sequence (Bpump) — T — (1/2) — (7) — (1) — (7) —
echo. After pump pulse optimization, the frequency of the
spectrometer (observer pulses) was increased by 65 MHz and
the observer pulses were set. The length of all observer pulses
was 32 ns. The first observer pulse was phase cycled [+(x) —
(—x)] to cancel the receiver offset.

Lower flip angles  of the pump pulse were obtained by
decreasing the pump pulse power at a constant main attenuator
setting of 0 dB. The numerical values of the inversion efficiency A
used for fitting the series of DEER traces at variable 4 were
obtained by inverting eqn (18).

4 Conclusion

Power scaling of the form factor with an exponent {5 =1/(N — 1)
significantly suppresses combinations of dipolar frequencies in
systems with N spins (N > 2) that otherwise manifest as ghost
peaks in the distance distribution.

The approach provides only an approximation to the true
pair contribution in the form factor, but is computationally
efficient, does not require additional experimental effort and
does not depend on a very high signal-to-noise ratio. In contrast,
a previously established approach requires the measurement of
several DEER traces with very high signal-to-noise ratio.

Furthermore, there is no need to know the exact value of
labelling efficiency f or inversion efficiency A. The approach
works best on relatively rigid and symmetric three- and four
spin systems for inversion efficiencies up to 4 ~ 0.6 and is also
effective for five-spin systems with C5 symmetry, if the inversion
efficiency is lowered to 4 = 0.4 or less. We would expect that the
approach is also useful for even larger numbers of coupled
spins, if the inversion efficiency is further lowered.

For symmetric tri- and tetraradicals, analysis of simulated
data shows that the approach gives a distance distribution
that agrees almost perfectly with the true interspin distance
information. For symmetric pentaradicals, this is true for low
inversion efficiencies.

These simulation results are broadly confirmed by experi-
mental results for triradicals, although performance on experi-
mental data is slightly worse. However, not in a single case we
observed worsening of the distance distribution of symmetric
multiple-spin systems by power scaling. The extent of the improve-
ment varies, but some improvement was always observed.

The power scaling approach might be extensible to not only
suppress ghost frequency contributions, but to also retrieve
them in order to extract further information on the interspin
distance geometry.

However, when the symmetry is not high, the corrections are
less significant and the approaches may not perform as well.
Data obtained on scalene triradicals are in line with these
expectations.

Orientation selection and other experimental uncertainties
might seriously compromise the determination of the optimum
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scaling exponent, but do not seriously compromise the perfor-
mance of the power scaling approach.

But even for these and for cases where complete suppression of
higher-order contributions cannot be achieved, power scaling may
help to identify the presence of ghost contributions. If the applica-
tion on a trace with reasonable signal-to-noise data significantly
changes the distance distribution, this means that couplings to
more than two spins are existing within one nanoobject and that
the distance distribution has to be interpreted with care, possibly
after remeasuring with lower inversion efficiency.

The approach described in this work is available in the
program DeerAnalysis2013, which can be downloaded at
www.epr.ethz.ch/software/index.
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