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Understanding photosynthetic light-harvesting:
a bottom up theoretical approach

Thomas Renger* and Frank Müh

We discuss a bottom up approach for modeling photosynthetic light-harvesting. Methods are reviewed

for a full structure-based parameterization of the Hamiltonian of pigment–protein complexes (PPCs).

These parameters comprise (i) the local transition energies of the pigments in their binding sites in the

protein, the site energies; (ii) the couplings between optical transitions of the pigments, the excitonic

couplings; and (iii) the spectral density characterizing the dynamic modulation of pigment transition

energies and excitonic couplings by protein vibrations. Starting with quantum mechanics perturbation

theory, we provide a microscopic foundation for the standard PPC Hamiltonian and relate the

expressions obtained for its matrix elements to quantities that can be calculated with classical molecular

mechanics/electrostatics approaches including the whole PPC in atomic detail and using charge and

transition densities obtained with quantum chemical calculations on the isolated building blocks of the

PPC. In the second part of this perspective, the Hamiltonian is utilized to describe the quantum

dynamics of excitons. Situations are discussed that differ in the relative strength of excitonic and

exciton-vibrational coupling. The predictive power of the approaches is demonstrated in application to

different PPCs, and challenges for future work are outlined.

1 Introduction

The investigation of primary reactions of photosynthesis1 is an
exciting research topic for many reasons. First of all, these
reactions provide the basis of our life on earth, which relies on
the conversion and storage of solar energy. Second, we know
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the molecular structures (e.g. ref. 2–4 and references therein)
and the photophysical properties5 of the key proteins, involved
in these reactions, in great detail. Third, the complexity of
these systems on the one hand requires theory for a structure-
based interpretation of experimental results.6,7 On the other
hand, it is a challenge for theory itself6,8 to find the
right approximations that still allow us to describe the
reactions and to draw conclusions about structure–function
relationships.

In this perspective, we will focus on the light-harvesting
process in photosynthetic pigment–protein complexes (PPCs)
and discuss bottom up theoretical approaches that shall be
used to understand building principles realized by Nature in
different systems for efficient light-harvesting. Two important
interactions that need to be described are the pigment–pigment
and the pigment–protein coupling. In most PPCs, the distances
between atoms of different pigments are large enough, so that
pigments do not exchange electrons. Nevertheless, the excited
state wavefunctions of PPCs are often delocalized due to the
Coulomb coupling between optical transitions of the pigments,
the excitonic coupling. This coupling allows for a non-radiative
transfer of excitation energy between different pigments. By
dynamically modulating the transition energies of the
pigments and their excitonic couplings, the protein introduces
a dissipative element that allows for a directional energy
transfer to the low-energy exciton states, which may still be
delocalized over a certain number of pigments. The spatial
location of these states is also controlled by the protein
environment, for example, by tuning the average optical transi-
tion energies of the individual pigments, the site energies.

The description of the dynamics of interacting electrons and
nuclei after optical excitation towards quasi-equilibrium is a
complicated many-body problem. In the spirit of the Born–
Oppenheimer approximation,9 the mass differences between
electrons and nuclei can be used to introduce potential energy
surfaces (PES) that govern the motion of nuclei in different
electronic states of the PPC. If appropriate PES have been
defined and nuclear relaxation in these PES is fast, excitation
energy transfer can be described by using the weak inter-PES
coupling as a perturbation and assuming a thermally relaxed
initial state of nuclei. For weak excitonic couplings, the nuclei
relax in PES of localized excited states of the PPC and the
transfer between such different PES is described by Förster
theory.9–11 If, on the other hand, the excitonic coupling is
strong, any nuclear reorganization, occurring upon optical
excitation or excitation energy transfer, may be neglected,
nuclei stay relaxed and provide a dissipative environment for
the excitons during relaxation between different delocalized
states, as described by Redfield theory (e.g. ref. 12 and
references therein). If the excitonic coupling between pigments
and the modulation of the pigments’ transition energies by the
protein are of similar strength, more advanced theories are
needed. In Modified Redfield theory,13–15 the nuclear reorgani-
zation after optical excitation of a delocalized exciton state is
taken into account by introducing excitonic PES. If relaxation in
these PES is fast compared to exciton transfer, a rate constant

can be defined. In photosynthetic complexes, often pigments
can be divided into domains with strong intradomain excitonic
couplings and weak excitonic couplings between pigments in
different domains. In this case, excitonic PES can be defined for
the pigments in one domain and second order perturbation
theory is used for the interdomain couplings, resulting in the
Generalized Förster theory rate constant.16–20 If, in a domain of
strongly coupled pigments, the coupling between different
excitonic PES and the corresponding exciton-vibrational
reorganization energy are of equal magnitude, there is no small
parameter, and the exciton-vibrational quantum dynamics
should be described using non-perturbative approaches,21–28

which are, however, numerically costly.
Besides the development of a dynamic theory necessary for a

description of the quantum-dissipative motion of excitons, the
PPC Hamiltonian has to be parameterized by structure-based
simulations. Three classes of parameters need to be deter-
mined: (i) the excitonic couplings between pigments, (ii) the
site energies of the pigments and (iii) the spectral density of the
exciton-vibrational coupling, describing the modulation of (i)
and (ii) by the protein dynamics.

Five principle approaches to the calculation of these
parameters can be distinguished: (a) quantum chemical
subsystem approaches (QM/QM),3,29 (b) quantum mechanics/
molecular mechanics (QM/MM) approaches,30–38 (c) polarizable
continuum models (PCM),39–42 (d) quantum chemical/classical
background charge approaches (QC/Back),43,44 and (e) quantum
chemical/electrostatic two-step approaches (QC/E2).45–48 These
methods differ in the way they account for the electronic
and nuclear polarization as well as the charge density of the
environment of a pigment. The most detailed description of the
protein environment is obtained with QM/QM and QM/MM
approaches. In QM/QM, the PPC is divided into subsystems
(e.g., pigments and protein parts) that all are described with
quantum chemistry (QC, which in this context is a synonym for
QM). Approximations occur in the treatment of subsystem
couplings and an eventually limited number of subsystems that
can be considered.3,29 In QM/MM, the environment is described
by classical (i.e., non-quantum) molecular mechanics. Here,
one has to distinguish two basic strategies. In the actual
QM/MM framework, the pigment is treated with QC, while the
dynamics of the environment is obtained from a classical
molecular dynamics (MD) simulation.49,50 Application of this
procedure to a PPC with many pigments is cumbersome,
however, as a separate simulation has to be performed for each
pigment being exclusively the QC part. Therefore, applications to
light-harvesting complexes employed an alternative strategy,
where the whole PPC is treated with classical MD, and single-
point QC calculations are performed on snapshots along the
MD trajectory.30–38 A major drawback of the latter strategy is
the mismatch between the pigment geometries generated by MD
and the optimal QC geometry.36,51 In any QM/MM approach,
the nuclear polarization is described explicitly by propagating
the classical equations of motion for the atoms and the electronic
polarization is taken into account either implicitly or explicitly
by using a polarizable force field.38,52 The charge density
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of the protein is included in the QC calculation in the form of
classical background charges. The latter type of QC is
also performed in the QC/Back approaches, but on a single
geometry that is meant to represent the average equilibrium
structure of the PPC in the electronic ground state.43,44 In PCM,
the electronic and nuclear polarization of the environment is
approximated by that of a dielectric continuum, where
the reaction field produced by the pigment–environment inter-
action is included in the electronic Schrödinger equation.39–42

A critical point in the semi-classical approaches (b)–(d) is the
neglect of the Pauli repulsion between electrons of the pigment
and the protein due to the classical treatment of the latter.
The electrons tend to be solvated by the classical dielectric or
attracted by positive classical point charges and, therefore, a
distortion of the electronic wavefunction may result, referred
to as the electron-leakage problem.3,53,54 In the alternative
QC/E2 approaches,45–48 first QC calculations are performed on the
pigment in vacuo and the electrostatic potentials of the charge and
transition densities are fitted by atomic partial charges. These
charges are used in a second step in classical electrostatics
calculations including the polarizability of the environment. In
this way, leakage artifacts are avoided, however, at the price of
neglecting all changes of the charge and transition densities due
to the pigment–protein interaction. We note that in all
approaches, one encounters the problem of the limited accuracy
of QC resulting from the necessarily approximate treatment of the
many-electron system.

In the light of the complexity of the problem, an evaluation
of the dynamic theories and parameter calculation schemes by
testing with experimental data is needed. Concerning the site
energies and excitonic couplings, a critical check is already
obtained from a simulation of linear optical spectra like
absorbance, and circular and linear dichroism.43–48 Concerning
the spectral density of exciton-vibrational coupling, line-
narrowing spectra55–58 provide valuable information to
compare with ref. 33, 37, 51 and 59. Exciton dynamics is
investigated by nonlinear time-resolved spectroscopy. Much
of our current knowledge about time scales of exciton transfer
and relaxation was obtained from pump–probe spectroscopy.6,7

In recent years, 2D Fourier transform electronic spectroscopy,
pioneered in the Fleming group,60,61 has been applied to
various PPCs and has revealed the most detailed visualization
of exciton-vibrational motion in PPCs.62–65 In particular,
long-lived quantum beats detected with this technique in PPCs
at low temperature,61 and even at room temperature66 and
for weakly coupled pigments,67 have raised the attention
of researchers from different fields68 and of the general
public.69

This perspective is organized in the following way. We start
with defining the standard PPC Hamiltonian that contains the
minimal ingredients for the study of the quantum dynamics of
excitons and point out the underlying assumptions and approx-
imations. In the next section, we provide a microscopic founda-
tion for this Hamiltonian and discuss its parameterization by
structure-based microscopic theory with a focus on QC/E2
approaches, since the latter so far have led to the best

agreement with experimental data. Afterwards, the PPC Hamil-
tonian is used to study the interplay of excitonic and vibrational
motion for different relative strengths of excitonic and exciton-
vibrational coupling. Finally, we discuss applications of the
theory and calculation schemes to simulate light-harvesting in
the Fenna–Matthews–Olson (FMO) protein from green sulfur
bacteria, the major light-harvesting complex of photosystem II
of higher plants (LHCII), cyanobacterial photosystem I and
photosystem II.

2 Hamiltonian of the pigment–protein
complex

The standard Hamiltonian of a PPC used to study energy
transfer contains three parts

H = Hex + Hex-vib + Hvib. (1)

The exciton Hamiltonian Hex, expanded with respect to
localized excited states |mi and |ni of the PPC, reads

Hex ¼
X
mn

Hð0Þmn jmihnj; (2)

where the exciton matrix H(0)
mn contains the local excitation

energies Em of the pigments in the diagonal and the inter-
pigment excitonic couplings Vmn in the off-diagonal parts

H(0)
mn = dmnEm + (1 � dmn)Vmn, (3)

and the superscript (0) indicates that these quantities are taken
at the equilibrium position of nuclei in the electronic ground
state of the PPC. In terms of molecular wavefunctions of the
pigments, the localized excited state |mi is given as the product
of the excited state wavefunction j(e)

m of pigment m and ground
state wavefunctions j(g)

k of pigments k a m, that is

jmi ¼ jðeÞm
Qkam

k jðgÞk . The excitation energy Em corresponds to
the energy at which pigment m in its local binding site in the
protein would absorb light, if its optical transition was not
coupled by Vmn to the optical transitions of the other pigments
n. Below, we will use microscopic theory to derive expressions
for Em and Vmn.

The exciton-vibrational coupling Hamiltonian Hex-vib

describes the modulation of site energies and excitonic
couplings by the vibrational dynamics of the complex. It is
assumed that the exciton parameters depend linearly on
the displacements of nuclei from their equilibrium position,
that is

Hex-vib ¼
X
mn

X
x

�hoxgxðm; nÞQxjmihnj (4)

where gx(m,n) and Qx are dimensionless coupling constants and
vibrational coordinates, respectively, and �hox is the energy of
vibrational quanta in mode x. A normal mode analysis (NMA)
will be used below to provide a microscopic foundation for this
Hamiltonian. We note that Qx is related to creation and
annihilation operators C†

x and Cx, respectively, of vibrational
quanta by9 Qx = Cx + C†

x. Rate constants for exciton transfer as
well as lineshape functions of optical transitions are related in
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the second part of this perspective to the spectral density of
exciton vibrational coupling

JmnklðoÞ ¼
X
x

gxðm; nÞgxðk; lÞdðo� oxÞ (5)

containing the coupling constants gx(m,n), introduced in
eqn (4), describing the fluctuations of site energies (m = n)
and excitonic couplings (m a n).

In the spirit of a NMA, the nuclear dynamics is described by
a Hamiltonian

Hvib ¼
X
x

�hox

4
Qx

2 þ Px
2

� �
(6)

of uncoupled harmonic oscillators with the dimensionless
momentum9 Px = i(C†

x � Cx).

2.1 Underlying assumptions and applicability

Concerning the electronic Hamiltonian Hex it is assumed that
electron exchange between different pigments is negligible. In
other words, the electrons stay at their pigments and change
their local quantum state by optical excitation and excitation
energy transfer. In most PPCs, the interpigment distances are
large enough to prevent considerable wavefunction overlap.
The presence of the latter would be a prerequisite for electron
exchange. Notable exceptions are the special pairs in the
photosynthetic reaction centers70 and a few long-wavelength
absorbing chlorophylls in photosystem I.71 In the latter case,
there exits, however, methods to treat electron exchange in an
effective way by including short-range contributions to site
energy shifts and excitonic couplings in the electronic Hamil-
tonian in eqn (2). One way to obtain these short-range con-
tributions is by relating monomer and dimer QC calculations
using an effective Hamiltonian of the type in eqn (2).72,73 In this
way, it became clear that 80% of the excitonic coupling in the
special pairs of purple bacteria and photosystem I is of the
short-range type and that the site energies are also considerably
red-shifted by electron exchange.73

Concerning the assumed linear coordinate dependence of
the exciton-vibrational coupling and the harmonic oscillator
form of the vibrational Hamiltonian in eqn (4) and (6), a recent
NMA and a comparison of the resulting spectral density with
experimental data showed that this Hamiltonian can be justi-
fied qualitatively by microscopic calculations.51 There are,
however, some quantitative deviations that most likely result
from anharmonicities experienced by the soft degrees of
freedom that govern the conformational flexibility of the
macromolecule. However, it is known that even a strongly
anharmonic system, in the spirit of a second-order cumulant
expansion, can be described by an effective spectral density of
harmonic oscillators.74

In summary, we may conclude that the present Hamiltonian
provides a description of a wide class of systems and that the
two missing aspects, namely, electron exchange and anharmonic
vibrational motion, may be included in an effective way by
adjusting the system parameters.

3 Microscopic foundation of the PPC
Hamiltonian and parameterization

In terms of elementary quantum mechanics/chemistry, the
electrons of the pigments move in the Coulomb field of the
other electrons and the nuclei of the PPC. Since the pigments in
most PPCs are non-covalently bound to the protein and the
interpigment distances are large enough, electron exchange
between pigments and between pigments and the protein can
be neglected to a good approximation. Hence, a Hartree ansatz
can be chosen for the electronic states of the PPC, where the
individual building blocks are the pigments and the protein
chains and residues, in which electrons delocalize. In principle,
the wavefunctions of the electronic ground and excited states of
these building blocks, when they are isolated from each other,
can be obtained from quantum chemical calculations. We want
to see in the following, how the optical properties of the
pigments change when the Coulomb coupling between these
building blocks is switched on. For this purpose, we consider
one pigment m with wavefunction |A(m)

a i (a = 0, 1, 2, 3,. . .),
where the index a counts the electronic states of the pigment,
which is surrounded by the N � 1 remaining building blocks
of the PPC. The latter comprise the other cofactors and
different parts of the protein of the PPC described by
wavefunctions |B(Z)

b i, where Z = 1 . . . N � 1 counts the building
blocks and b = 0, 1, 2, 3,. . . the respective electronic
states. The wavefunctions |A(m)

a i and |B(Z)
b i are eigenfunctions of

the molecular Hamiltonians H(m)
A and H(Z)

B of the
isolated building blocks, respectively. Hence, we have
H(m)

A |A(m)
a i = E(m)

a |A(m)
a i and H(Z)

B |Bbi = F(Z)
b |B(Z)

b with the
respective electronic energies E(m)

a of pigment m and F(Z)
b of

building block Z. The total Hamiltonian of the PPC

reads H ¼ H
ðmÞ
A þ

P
Z H

ðZÞ
B þ

P
Z V
ðm;ZÞ
AB þ 1=2

P
Z;Z0 V

ðZ;Z0Þ
BB , where

V(m,Z)
AB is the Coulomb coupling between pigment m and build-

ing block Z and V
ðZ;Z0Þ
BB that between building blocks Z

and Z0. In the absence of electron exchange between building

blocks, the Hartree product for the eigenfunction jcðmÞab i ¼

jAðmÞa i
Q

Z jB
ðZÞ
b i of the Hamiltonian of isolated building blocks,

with HA þ
P

Z H
ðZÞ
B

� �
jcðmÞab i ¼ E

ðmÞ
a þ Fb

� �
jcðmÞab i, can be used to

investigate the shift DE(m)
a of the electronic energies E(m)

a of

pigment m by the Coulomb coupling V ¼
P

Z V
ðZÞ
AB þ

1=2
P

Z;Z0 V
ðZ;Z0Þ
BB between building blocks. The multi index

b = b1, b2,. . .,bZ,. . . was introduced to abbreviate the notation
for the electronic states of the environment. Within perturba-
tion theory up to second order in the Coulomb coupling V, the
shift DE(m)

a is given as

DEðmÞa ¼ hcðmÞa0 jV jc
ðmÞ
a0 i �

X0
c;b

hcðmÞa0 jV jc
ðmÞ
cb i

��� ���2
E
ðmÞ
c � E

ðmÞ
a þ Fb � F0

: (7)

The index 0 = 0, 0,. . .,0 denotes the state, where all environ-
mental building blocks are in their electronic ground state, and
the prime at the sum indicates that c and b should not be
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simultaneously a and 0, respectively, that is, the sum includes
only off-diagonal matrix elements of the Coulomb coupling.
For the convergence of the perturbation theory, it is required
that the denominator in the sum be sufficiently large. If the
environment is in the electronic ground state, i.e., for b = 0,
we have c a a and, therefore, a large electronic transition
energy of the pigment in the denominator. For c = a we have
b a 0 and a large electronic transition energy of the environ-
mental building blocks appears in the denominator. Finally, we
investigate the case b a 0 and c a a. We are mainly interested
in the shifts of the ground (a = 0, S0) and first excited (a = 1, S1)
states of pigment m, since these are the states that are
predominantly involved in energy transfer (due to fast internal
conversion between higher excited and the first excited states
of the pigments). For a = 0, the denominator in eqn (7) is
again large, since it contains now the sum of electronic excita-
tion energies of m and of the building blocks. The only critical
case is obtained for a = 1. If c = 0, the negative electronic
transition energy E(m)

0 � E(m)
1 of pigment m may be compensated

by the electronic transition energy Fb � F0 of the building
blocks. For such a compensation, a single excitation on another
building block is required with transition energy F(Z)

b � F(Z)
0 .

If Z corresponds to a protein part, the denominator in eqn (7) is
still large, since the protein starts to absorb light at much
higher energies than the pigments. However, if the building
block Z is another pigment n, the denominator may even vanish
for resonant S0 - S1 transitions of the two pigments.
Therefore, we have to exclude those particular states, where
one pigment building block is in its first excited state and
the remaining are in their ground state. The respective
Coulomb coupling hw(m)

10 |V|w(n)
0bi is, instead, explicitly included

in the exciton Hamiltonian in eqn (3) as excitonic coupling
Vmn and, in this way, can be treated non-perturbatively.
Evaluating the Coulomb coupling V in this matrix element
gives

Vmn = hA(m)
0 B(n)

1 |V(mn)
AB |A(m)

1 B(n)
0 i (8)

It describes the Coulomb coupling between the transition
densities of the S0 - S1 transitions of pigments m and n, as
described in more detail below.

3.1 Site energies

The remaining parts of eqn (7) are used in the following to
derive a microscopic expression for the site energy Em in
eqn (3). The site energy of the optical transition between
the ground and the first excited state of pigment m then
follows as

Em = E0 + DE(m)
1 � DE(m)

0 , (9)

where E0 is the S0 - S1 transition energy of the isolated
pigment and DE(m)

1 and DE(m)
0 are the shifts of the S1 and S0

state energies, respectively, of this pigment that result from the
Coulomb coupling between the building blocks in the PPC,
excluding the excitonic couplings with the S0 - S1 (0 - 1)
transitions of the other pigments as discussed above.

By evaluating the Coulomb matrix elements in eqn (7), we
obtain for the shift of the electronic energy of state a = 0, 1 of
pigment m

DEðmÞa ¼
X
Z

AðmÞa B
ðZÞ
0 jV

ðm;ZÞ
AB jAðmÞa B

ðZÞ
0

D E

þ
X
ZZ0

B
ðZ0Þ
0 B

ðZÞ
0 jV

ðZ;Z0Þ
BB jB

ðZ0Þ
0 B

ðZÞ
0

D E

�
X0
Z;b

A
ðmÞ
a B

ðZÞ
0 jV

ðm;ZÞ
AB jA

ðmÞ
a B

ðZÞ
b

D E��� ���2
F
ðZÞ
b � F

ðZÞ
0

�
Xcaa

c;Z;b

A
ðmÞ
a B

ðZÞ
0 jV

ðm;ZÞ
AB jA

ðmÞ
c B

ðZÞ
b

D E��� ���2
E
ðmÞ
c � E

ðmÞ
a þ F

ðZÞ
b � F

ðZÞ
0

(10)

where the first term on the r.h.s. denotes the Coulomb coupling
between the charge densities of pigment m in electronic state
a and building block Z in the electronic ground state, the
second line is the Coulomb coupling between the charge
densities of building blocks Z and Z0 in their electronic ground
states, the third line contains the Coulomb coupling between
the charge density of pigment m in electronic state a and the
transition density of the 0 - b transition of building block
Z and the last line is the Coulomb coupling between the
latter transition density and the transition density of the
a - c transition of pigment m. Note that the first-order
terms involving couplings between environmental building
blocks Z and Z0 cancel out in the calculation of differences
DE(m)

a � DE(m)
b .

A rigorous examination of matrix elements of the type
occurring in eqn (8) and (10) was presented in ref. 75, where
these matrix elements were related to Coulomb interactions
involving charge and transition densities, starting from a many-
electron wavefunction. As shown there also, a matrix element of
the type

AðmÞa B
ðZÞ
0 jV

ðm;ZÞ
AB jAðmÞc B

ðZÞ
b

D E
¼
X
I ;J

q
ðmÞ
I ða; cÞq

ðZÞ
J ð0; bÞ

jRðmÞI � R
ðZÞ
J j

(11)

can be described by the Coulomb interaction between atomic
partial charges q(m)

I (a,c) and q(Z)
J (0,b) that are placed at the

positions R(m)
I and R(Z)

J of the Ith atom of pigment m and Jth
atom of building block Z. These charges are determined from a
fit of the electrostatic potential of the respective transition or
charge densities calculated with QC on the isolated building
blocks. In the following, we use these partial charges to obtain
insight into the physical origin of the third term on the r.h.s. of
eqn (10), which we denote with Wa. If a dipole approximation is

adopted for building block BZ and
P

J q
ðZÞ
J ð0; bÞ ¼ 0 is used, the

matrix elements in Wa become

AðmÞa B
ðZÞ
0 jV

ðm;ZÞ
AB jAðmÞa B

ðZÞ
b

D E
¼
X
I

q
ðmÞ
I ða; aÞd

ðZÞ
0b � ðR

ðmÞ
I � RZÞ

R
ðmÞ
I � RZÞ

��� ���3
(12)
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where RZ points to the center of building block Z with transi-

tion dipole moment d
ðZÞ
0b ¼

P
J q
ðZÞ
J ð0; bÞR

ðZÞ
J , and Wa can be

written as

Wa ¼ �
1

2

X
Z;I ;I 0

q
ðmÞ
I ða; aÞq

ðmÞ
I 0 ða; aÞ

� ðR
ðmÞ
I � RZÞ

R
ðmÞ
I � RZ

��� ���3âZ
R
ðmÞ
I 0 � RZ

R
ðmÞ
I 0 � RZ

��� ���3
(13)

where the polarizability tensor76 âZ of building block Z with

elements ðâZÞij ¼
P

b d
ðZÞ
0b

� �
i
d
ðZÞ
0b

� �
j

�
F
ðZÞ
b � F

ðZÞ
0

� �
and i, j = x, y,

z was introduced.
The physical meaning of Wa now becomes clear. The electric

field E ¼ q
ðmÞ
I 0 ða; aÞ R

ðmÞ
I 0 � RZ

� ��
R
ðmÞ
I 0 � RZ

��� ���3 of the partial

charge q
ðmÞ
I 0 ða; aÞ induces a dipole moment pZ = âZE at molecule

(building block) Z, and the field of this dipole moment interacts
with the partial charge q(m)

I (a,a) of the pigment. Hence, Wa is
the solvation energy of the permanent charge density of elec-
tronic state a of pigment m.

In a similar way, the last term on the r.h.s. of eqn (10) can be
related to solvation energies of transition densities for all
electronic transitions that start from state a.77 Physically, these
terms represent the London dispersive interactions of pigment
m in electronic state a with its environment for b a 0 and an
inductive effect of the environment on the pigment for b = 0.

3.1.1. The CDC method. In the charge density coupling
(CDC) method,46–48 only the first order shifts in eqn (10) are
explicitly considered for the calculation of the site energy in
eqn (9). The higher order terms arising from polarization are
included implicitly by scaling the Coulomb coupling by an
inverse effective dielectric constant eeff

�1. The site energy Em of
pigment m then is obtained as

Em ¼ E0 þ
1

eeff

X
Z

A
ðmÞ
1 B

ðZÞ
0 jV

ðZÞ
ABjA

ðmÞ
1 B

ðZÞ
0

D E�

� A
ðmÞ
0 B

ðZÞ
0 jV

ðZÞ
ABjA

ðmÞ
0 B

ðZÞ
0

D E�

¼ E0 þ
1

eeff

X
I

X
Z;J

q
ðmÞ
I ð1; 1Þ � q

ðmÞ
I ð0; 0Þ

� �
q
ðZÞ
J ð0; 0Þ

R
ðmÞ
I � R

ðZÞ
J

��� ��� :

(14)

As noted above, the partial charges q(m)
I (0,0) and q(m)

I (1,1) of the
ground and the excited state of the pigment, respectively, are
based on in vacuo QC calculations on the pigments and a fit of
the electrostatic potential.75

The ground state partial charges q(Z)
J (0,0) of the background,

formed by the remaining atoms of the PPC, comprise those of
the other pigments and those of the protein. The latter are
taken from standard molecular mechanics (MM) force fields
(e.g. CHARMM78,79). Since the protein contains residues with
variable charge density, the titratable groups, the protonation

pattern has to be determined before the site energy shifts can
be calculated. This problem is discussed in the following.

3.1.2. The protonation probabilities of titratable residues
of the protein. Every protein has titratable groups, i.e. groups
that can release a proton. Besides the N- and C-terminus of
each polypeptide chain (if not chemically modified), a number
of amino acid side chains are considered titratable including
those of the acidic amino acid residues Asp and Glu, the basic
residues Arg, Lys, and His as well as Tyr and Cys. Deprotonation
of any of these sites in the protein (and subsequent release of
the proton into the outer medium) changes the net charge state
of the respective site and hence affects the charge distribution
in the protein. Since the protonation states of different titra-
table groups depend on each other by virtue of their electro-
static interaction, the elucidation of the protonation pattern of
a PPC on the basis of a crystal structure poses a formidable
problem. This problem can be tackled by methods that involve
a numerical solution of the linearized Poisson–Boltzmann
equation (LPBE) and Monte-Carlo techniques. In the following
sections, we shall briefly summarize how these methods work
(for further details, see ref. 80–82 and references therein). The
methods have been extended to include the calculation of redox
potentials of protein-bound groups and their dependence on
protonation states.82–84 Our PB/QC method is a further exten-
sion of this approach to the calculation of excited state energy
shifts. Thus, parts of the following sections are also the basis
for the description of site energy calculations in Section 3.1.4.

Since each titratable site has two possible protonation
states, a PPC with N titratable groups has 2N possible protona-
tion patterns. (In the case of His, even three possible protona-
tion states are taken into account. For the sake of simplicity, we
shall not consider this case explicitly in the following.)
A protonation pattern can be characterized by a vector

xs = (x(s)
1 , x(s)

2 , . . ., x(s)
N ) (15)

where x(s)
m = 1, if site m is protonated, and x(s)

m = 0, if it is
deprotonated. Here, s = 1,. . .,2N counts the protonation
patterns and m = 1,. . .,N the titratable sites. In thermal equili-
brium, the protonation probability hxmi of group m is obtained
from the Boltzmann average

hxmi ¼
P2N

s¼1 x
ðsÞ
m e�Gs=kBTP2N

s¼1 e
�Gs=kBT

; (16)

where Gs is the Gibbs free energy of protonation pattern s. Due
to the huge number of possible protonation patterns, direct
evaluation of the statistical average is normally impossible. The
solution to this problem is the application of a Monte-Carlo
technique described in detail earlier.82 Note that Gs contains
entropic contributions arising from the distribution of protons
in the solution and the polarization of the dielectric. Hence, a
free energy is used instead of an energy.

3.1.2.1. Calculation of the Gibbs free energy of a protonation
pattern. For the evaluation of the average in eqn (16), the
dependence of Gs on the protonation vector xs is needed. This
dependence is obtained by introducing a reference protonation
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state x(0)
s and defining Gs with respect to this state, that is,

setting G0 = 0. The choice of the reference state is arbitrary. We
take the state of the protein, in which all titratable groups are
uncharged, as the reference state. Hence, x(0)

m = 0 for Arg, His,
N-terminus, Lys and x(0)

m = 1 for Asp, Glu, C-terminus, Cys, Tyr.
The free energy of an arbitrary protonation pattern s can then
be written as

Gs ¼
XN
m¼1

xðsÞm � xð0Þm

� �
DGpðAmH;AmÞ

þ 1

2

XN
m;n¼1

Wmn xðsÞm þ zm

� �
xðsÞn þ zn

� � (17)

where DGp(AmH,Am) is the free energy difference between the
protonated (AmH) and the deprotonated (Am) state of the protein-
bound group m at a given pH of the surrounding solution and
with all the remaining titratable sites in their reference state.
The second term is a correction for the interaction between
titratable residues, where we introduced the dimensionless
formal charge zm of the deprotonated group, i.e., zm = 0 for
Arg, His, N-terminus, Lys and zm = �1 for Asp, Glu, C-terminus,
Cys, Tyr. These formal charges are such that the second line
only has a non-zero contribution, if both sites m and n are in
their non-reference (i.e., charged) state. It is clear that in this
case the DGp(AmH,Am) and DGp(AnH,An) alone cannot describe
the whole change in free energy, since the latter only consider
single non-reference states and, therefore, miss the interaction
between two such states. The detailed form of Wmn will be inferred
below. We will first discuss the calculation of DGp(AmH,Am).

3.1.2.2. Thermodynamic cycle. The DGp(AmH,Am) contains an
electrostatic contribution and a contribution that is due to the
breaking of the chemical bond between the proton and the
amino acid Am. The calculation of the latter part can be
circumvented by considering the thermodynamic cycle in
Fig. 1. In this figure are depicted the four relevant states of
the titratable group: protonated (AmH) and deprotonated (Am)
and in each case either bound to the protein (left, index p) or
isolated in an aqueous solvent (right, index s). Accordingly,
DGp(AmH,Am) and DGs(AmH,Am) are the Gibbs free energies of
deprotonation for the protein-bound and isolated group,
respectively, at a given pH, while DGsp(Am) and DGsp(AmH) are
the Gibbs free energies of transfer from the aqueous environ-
ment to the protein site for the deprotonated and protonated
form of the group, respectively. The thermodynamic cycle
connecting these states (Fig. 1) indicates that

DGp(AmH,Am) = DGs(AmH,Am) + DGsp(Am) � DGsp(AmH).
(18)

Here, DGs(AmH,Am) at a given pH value of the solution can be
determined from the experimental pKa value of a model
compound that represents the titratable group in an aqueous
environment (for a comprehensive list of pKa values and
references, see ref. 82)

DGs(AmH,Am) = kBT ln 10(pKa � pH). (19)

To complete the thermodynamic cycle, we have to calculate
DGsp(Am) and DGsp(AmH). This is done on the basis of an
electrostatic model of the protein.

3.1.2.3. Electrostatic model of the protein. The protein is
modeled as a system of point charges situated in a dielectric
medium and surrounded by a solution containing ions. These
point charges are the atomic partial charges of a MM force field
that are assigned to the atom positions of the PPC. The
positions of heavy atoms are inferred from the crystal structure
of the PPC, while the positions of hydrogen atoms are deter-
mined by MM modeling. In modeling the dielectric medium, in
which the partial charges are placed, a compromise has to be
made between precision and computational effort. The usual
procedure is to distinguish between the volume occupied by the
atoms of the protein and the environmental aqueous phase and
to assign different static dielectric constants to the different
regions. In the case of membrane proteins, a further distinction
can be made between the membrane region and the remainder
of the surrounding medium. Moreover, an ionic strength
is assigned to the aqueous phase to represent the ions. Within
the electrostatic model, the transfer free energies DGsp(Am)
and DGsp(AmH) are simply the difference in the electrostatic
interaction energy W of atomic partial charges on group m
with their environment between the protein (p) and the
solution (s). More precisely, only those atomic partial charges
Qa of group m are considered that differ in the protonated
and deprotonated form of the group (where the index a labels
the corresponding atoms). These charges produce an
electrostatic potential f that is obtained as the solution of
the LPBE:

r eðrÞrfðrÞð Þ ¼ �4p
X
a

Qadðr� RaÞ þ k2ðrÞfðrÞ (20)

where Ra is the position of the ath atom of group m. In eqn (20),
e(r) and k(r) are the position dependent dielectric constant and

Fig. 1 Thermodynamic cycle for the calculation of the deprotonation free
energy DGp(AmH,Am) of a protein-bound group AmH at site m. The red and dashed
circumferences symbolize the molecular surface and the ion exclusion layer,
respectively, and Hs the solvated proton.
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inverse Debye length, respectively. The latter is related to the
ionic strength I(r) of the solvent by k2(r) = 8pFI(r)/e(r)kBT, where
F is Faraday’s constant. The r dependence of e(r) and I(r) arises
from the distinction of protein, membrane and solvent volume.
Hence, I(r) is zero except, if r points to the solvent region
(outside the ion exclusion layer), where I(r) = Isolv. The dielectric
environment is divided into a membrane part with e(r) = emem, a
solvent part with e(r) = esolv and a protein part with e(r) = ep. The
definition of the protein part is based on the molecular surface
(Connolly surface)85,86 of the PPC.

Whereas the solvent properties Isolv and esolv can be deter-
mined experimentally, the membrane and in particular the
protein dielectric constants are not so well defined, because of
inhomogeneities and rigidities of the latter parts. Accordingly,
there has been a long-lasting debate about the appropriate
value of ep to be used in the computation of protonation
patterns.81,82,87,88 In early work, a value of ep = 4 was
suggested89,90 and is still widely used. The problem of hetero-
geneity in the protein interior is actually not as severe as one
might think at first sight. Simonson and Perahia91 tackled this
problem by microscopic simulations. They found that the fast
component of the polarization can be well approximated by a
homogeneous continuum model with an optical dielectric
constant eopt = n2 = 2 (a result that is exploited in the
Poisson-TrEsp method, see Section 3.2.2). The static dielectric
constant, containing both the fast and the slow component,
was found to be less homogeneous and a fit to a continuum
model less satisfactory, but still reasonable with an optimal
value of ep = 4, which is supported also by other microscopic
simulations.92–94 In the case of membrane proteins, it is
possible to approximate the dielectric properties of the
membrane (or a detergent belt) by defining a slab outside
the PPC, to which emem is assigned95 as implemented in the
software TAPBS96 based on APBS.97 We use emem = 2 akin to a
liquid hydrocarbon phase. An illustrative example is shown in

Fig. 2. We note that there are other membrane models98–100

that remain to be tested in the present context of photo-
synthetic light-harvesting complexes. Another application of
the slab approximation is the modeling of a water soluble
PPC in the interstitial region between two membranes
(e.g. the FMO protein between the cytoplasmic membrane/
reaction center complex and the chlorosome/baseplate48).

The LPBE can be solved numerically on a grid as detailed
elsewhere.81,82,87,103,104 The interaction energy W is then
given by

W ¼
X
i

qifðRiÞ þ
1

2

X
a

QafðRaÞ (21)

where qi = qi(0,0) and Ri are the partial charge and position,
respectively, of atom i of the environment in the electronic
ground state. The sum over i in eqn (21) runs over all environ-
mental atoms including those of the other groups n a m with
partial charges corresponding to the reference protonation
state as well as those atoms of group m that carry the same
partial charge in both protonation states. The two terms in
eqn (21) represent the interaction of the charges Qa with the
background charges qi and with their own reaction field
contained in f(r). In order to determine W for the four states
depicted in Fig. 1, the LPBE has to be solved four times for each
group m with two different charge sets Q(h)

a and Q(d)
a corres-

ponding to the protonated (index h) and deprotonated form
(index d) of m and with two different dielectric environments
corresponding to protein (p) and solvent (s). (In the case of His,
even three different protonation states are considered, and the
LPBE has to be solved six times.) Thus, in general, we obtain for
each group four different electrostatic potentials f(h/d)

p,m/s,m(r)
that, when put into eqn (21), yield four different energy terms
W(h/d)

p/s finally resulting in

DGsp(Am) � DGsp(AmH) = W(d)
p � W(d)

s � W(h)
p + W(h)

s

(22)

By using eqn (19), (21) and (22), we obtain from eqn (18)
the deprotonation free energy of group m for the reference
protonation state of the protein as

DGp(AmH,Am) = kBT ln 10(pKa � pH) + DDG(m)
back + DDG(m)

pol

(23)

with the background charge term

DDGðmÞback ¼
Xprotein
i

qi fðdÞp;mðRiÞ � fðhÞp;mðRiÞ
� �

�
Xmodel

k

qk fðdÞs;m ðRkÞ � fðhÞs;m ðRkÞ
� � (24)

and the polarization term (often referred to as ‘‘Born-term’’)

DDGðmÞpol ¼
1

2

X
a

QðdÞa fðdÞp;mðRaÞ � fðdÞs;m ðRaÞ
� �h

�QðhÞa fðhÞp;mðRaÞ � fðhÞs;m ðRaÞ
� �i (25)Fig. 2 Assignment of static dielectric constants to different regions of space in

the calculation of protonation patterns of trimeric LHCII.101 The figure created
with VMD.102
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Note that the first sum in eqn (24) runs over all background
charges of the PPC and the second sum over all background
charges of the model compound. Note also that the sum over
a in eqn (25) contains no self-interaction of any charge Qa, since
the corresponding terms drop out in the calculation of the
differences.

Finally, we identify the correction term Wmn in eqn (17) from
the following considerations. As seen above, the change in free
energy contains a background and a polarization term.
The coupling between charge densities contributes to the
background term. If we consider two titratable groups m and n,
which are both in their non-reference (charged) state, the sum
over i has to be corrected for those atoms that belong to the
titratable group n. This correction is done by the term

Wmn(x
(s)
m + zm)(x(s)

n + zn) (26)

in eqn (17) with

Wmn ¼
X
a

QðhÞa;n �QðdÞa;n

� �
fðdÞp;mðRa;nÞ � fðhÞp;mðRa;nÞ
� �

(27)

If, for example, we consider a state where n is a protonated Arg,
the respective qi in eqn (24) correspond to Q(d)

a,n which are
replaced by the non-reference state charges Q(h)

a,n due to
eqn (26) and (27), since x(s)

n + zn = 1 in this case. If, on
the other hand, n is a deprotonated Asp, the qi in eqn
(24) would correspond to Q(h)

a,n, which are replaced by Q(d)
a,n, since

x(s)
n + zn = �1.

3.1.2.4. Temperature dependence of the protonation pattern.
PPCs are routinely investigated at cryogenic temperatures. In
order to obtain an optically transparent sample for spectro-
scopic studies, the buffered aqueous solution has to be supple-
mented with a glass-forming agent to a significant amount (e.g.,
70% glycerol). For an adequate structure-based simulation of
optical spectra under these conditions, we have to take
into account the influence of temperature and the dielectric
properties of the glass on the protonation pattern. In earlier
work,45 we assumed the protonation states to be equilibrated at
all temperatures. Later, we learned that this assumption was a
severe oversimplification. Unfortunately, information about
proton activities and pKa values under cryo-conditions is scarce.
The only work that we are aware of is that of Schulze et al.105

who studied proton activities in 70% aqueous glycerol as a
function of temperature. They found that above 210 K, the pKa

values followed the expected behavior (i.e., obeying van’t Hoff’s
equation with a constant enthalpy for deprotonation). There-
fore, we concluded that in this temperature range, the standard
procedure outlined above can be applied with ep = 4, esolv = 80
and emem = 2 as reasonable approximations and using the
appropriate temperature in the Monte-Carlo titration.101 The
only critical parameter is the pH, which has to be rescaled
according to the temperature coefficient of the used buffer.
Thereby, it is assumed that the glass-forming agent has a
negligible influence on the temperature coefficient based on
the work of Douzou.106 Schulze et al.105 found the pKa values to
approach constants between 210 and 180 K, which they

ascribed to an increase in the viscosity of the glycerol–water
mixture close to the glass transition at 180 K. At this tempera-
ture, the acid–base-equilibria were found to be frozen in, and
no further change of pKa values or proton activities was found
upon further cooling. Hence, proton transfer is kinetically
hindered at temperatures below 210 K, and the protonation
pattern does not represent that of a true thermal equilibrium.
This interpretation is further substantiated by the finding of
Schulze et al.105 that the cooling rate has an influence on the
finally established pKa value. Based on these results, we use in
our simulations, as a first approximation, the equilibrium
protonation pattern established at 210 K, also at lower tempera-
tures. We note that the problem of non-equilibrium protonation
states in cryo-samples requires further research.

3.1.3. Protonation state dependent site energies with the
CDC method. In order to take into account the dependence of
the site energy Em in eqn (14) on the protonation state s of the
PPC, we introduce a site energy value Em(0) which refers to the
site energy obtained for the reference protonation state and
take into account the deviations from this value. We have

EmðsÞ ¼ Emð0Þ þ
X
m

Wmm xðsÞm þ zm

� �
(28)

where Em(0) is given by eqn (14) and for the atom J = a of
titratable group Z = m includes the partial charge of the
reference protonation state. The second term on the r.h.s. of
eqn (28) with

Wmm ¼
1

eeff

X
I

X
a

q
ðmÞ
I ð1; 1Þ � q

ðmÞ
I ð0; 0Þ

� �
Q
ðhÞ
a;m �Q

ðdÞ
a;m

� �
R
ðmÞ
I � RðmÞa

��� ��� (29)

corrects the Coulomb interaction contained in Em(0) between
pigment m and those titratable groups m that are in a non-
reference state. There are different possibilities to proceed with
the calculation of energy transfer and optical spectra as will be
discussed further below. Before that we will describe another
method for the calculation of site energies.

3.1.4. The PB/QC method. In the Poisson–Boltzmann/
quantum chemical (PB/QC) method45,46,101,107 besides the
first-order contributions in eqn (10) representing the charge
density interaction, also the part of the second-order site energy
shift, that has been identified as solvation energy Wa (eqn (13))
and higher order terms, representing the screening and local
field corrections of the charge density interaction, are explicitly
taken into account. This is done in an approximate way by
assigning dielectric constants to certain regions of space and
solving the LPBE. Any dispersive interactions, which are of the
type given in the fourth term on the r.h.s. of eqn (10) (b a 0),
are neglected.

3.1.4.1. Thermodynamic cycle. In Fig. 3 are depicted four
relevant states involving pigment m: the state |mi of the PPC,
in which pigment m is in its first electronic excited singlet state
S1 and all other pigments n a m are in their electronic ground
state S0, the state |0i, in which all pigments are in their
electronic ground state S0, as well as the electronic ground
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state |S0i and first excited state |S1i of the isolated pigment in
an aqueous environment. The site energy is defined as a vertical
transition energy, i.e., with the nuclei fixed to the equilibrium
positions of the electronic ground state. In the framework of an
electrostatic solvation model, this means that the excited state
is equilibrated only with respect to the fast polarization
component of the environment representing the instantaneous
response of the solvent or protein electrons to the change of the
pigments’ electronic state. However, the slow polarization
component of the environment needs more time to relax, so
that the excited state is initially out of equilibrium. Thus, the
site energy Em of pigment m has two contributions:

Em ¼ E0m þ ElðmÞ (30)

where E0m is the energy difference between excited and ground
states, when both are fully equilibrated, and El(m) is the
reorganization energy. In the following, the calculation of
E0m is described. The treatment of El(m) will be discussed
in Section 3.1.4.4. The thermodynamic cycle in Fig. 3
indicates that

E0m ¼ E0 þ DGspðS1Þ � DGspðS0Þ (31)

Here, DGsp(S1) and DGsp(S0) are the Gibbs free energies of
transfer from the aqueous environment to the protein site for
the pigment in the first excited and the ground state, respec-
tively, which are computed on the basis of the LPBE (see
Section 3.1.4.2). E0 is a reference value that corresponds to
the transition energy of the pigment in the solvent environ-
ment. At present, E0 is an adjustable parameter that is deter-
mined from a comparison of simulated and measured optical
spectra of the PPC. Note that E0 is different for chemically
distinct pigments (e.g., chlorophylls a and b in LHCII). How-
ever, the site energies of chemically identical pigments are
calculated with respect to the same reference value E0, so that
the actually computed quantities are the site energy differences
between pigments of the same type. In the application of
eqn (31), conformational variations between pigments in

different sites are neglected. The inclusion of these variations
requires a quantum chemical treatment that is discussed in
Section 3.1.5.

Direct experimental information about E0 is not available,
because the pigments are not water-soluble. A possible solution
to this problem is the extension of the thermodynamic cycle
in Fig. 3 to include the transfer of the pigment from a
non-aqueous solvent to water. Then, one has to critically check
the limits of a continuum description of the solvent.

3.1.4.2. Calculation of site energies based on the LPBE. The
electrostatic model of the PPC is the same as described in
Section 3.1.2.3. In addition, we need for each pigment the two
sets of atomic partial charges q(m)

I (0,0) and q(m)
I (1,1) introduced

in Section 3.1.1, describing the permanent charge distribution
of the chromophore in the ground and the excited state,
respectively. We note that these charges are the same for
chemically identical pigments as long as conformational varia-
tions are neglected. Nonetheless, the index m is justified, as the
position, to which the charge is assigned, is different for
different sites. The determination of these charges is discussed
in Section 3.1.5. As in the case of the CDC method, the
protonation state dependent site energy E0mðsÞ can be written as

E0mðsÞ ¼ E0mð0Þ þ
XN
m¼1

Wmm xðsÞm þ zm

� �
(32)

where E0mð0Þ is the site energy obtained for the reference
protonation state, which in addition to the charge density
coupling term (background term DDG(m)

back) includes a polariza-
tion term DDG(m)

pol

E0mð0Þ ¼ E0 þ DDGðmÞback þ DDGðmÞpol (33)

with

DDGðmÞback ¼
Xprotein
i

qi fð1Þp;mðRiÞ � fð0Þp;mðRiÞ
� �

�
Xpigment

k

qk fð1Þs;mðRiÞ � fð0Þs;mðRiÞ
� � (34)

and

DDGðmÞpol ¼
1

2

X
I

q
ðmÞ
I ð1; 1Þ fð1Þp;mðRI Þ � fð1Þs;mðRI Þ

� �h

�qðmÞI ð0; 0Þ fð0Þp;mðRI Þ � fð0Þs;mðRI Þ
� �i

:

(35)

Here f(0/1)
p,m/s,m are the four solutions of the LPBE (eqn (20) with

Qa replaced by q(m)
I ) corresponding to the four states depicted in

Fig. 3 with (0) and (1) referring to the charge sets q(m)
I (0,0) and

q(m)
I (1,1), respectively.

The background charges qi comprise all partial charges in
the PPC that do not belong to pigment m (including those of all
pigments n a m in their electronic ground state) as well as
those charges of pigment m that are the same in the ground
and the excited state (e.g., the phytyl chains of chlorophylls).
The latter subset is termed qk in the second sum in eqn (34)

Fig. 3 Thermodynamic cycle for the calculation of the site energy E0m of a
protein-bound pigment with the PB/QC method.
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(representing the pigment in an aqueous environment). In
complete analogy to eqn (27) and (29), the Coulomb correction
term Wmm for non-reference protonation states in eqn (32) reads

Wmm ¼
X
a

QðhÞa;m �QðdÞa;m

� �
fð1Þp;mðRaÞ � fð0Þp;mðRaÞ
� �

: (36)

3.1.4.3. Choice of dielectric constants. In contrast to the
protonation states discussed in Section 3.1.2.4, the solvent
dielectric constant esolv relevant to the calculation of site
energies is the one found for the temperature, at which the
experiments are performed that are to be simulated. Thus, we
use esolv = 80 for ambient temperatures. At cryogenic tempera-
tures, one has to take into account that the protonation
patterns are frozen below 210 K and that the static dielectric
constant of a glass-forming medium changes drastically due to
the glass transition. Unfortunately, information about dielec-
tric constants of the glasses used in optical experiments with
light-harvesting complexes under cryo-conditions is as scarce
as information about proton activities. Yu108 investigated
glycerol–water mixtures. The data suggest that esolv = 5 is a
reasonable approximation at temperatures below 200 K, but the
dielectric constant in the range of 4 to 77 K relevant for most
spectroscopic data is actually unknown. In applications of the
PB/QC method, the effective dielectric constant of the protein ~ep

is varied to optimize simulated optical spectra and, therefore, is
essentially an adjustable parameter. This parameter not only
accounts for dielectric screening and local field effects in the
protein interior at different temperatures, but also compen-
sates for a possible inadequateness of the quantum chemical
charge sets of the pigments. Thus, ~ep does not solely represent
the static polarizability of the protein. As a consequence, its
value used in site energy calculations may differ from ep used
for protonation patterns and may be even smaller than eopt.

3.1.4.4. Non-equilibrium corrections. Finally, we turn to the
non-equilibrium correction El(m) of the site energy shift in
eqn (30). As discussed above the optical excitation occurs
between the equilibrium ground state and an excited state of
the PPC where only the electronic polarization is in equili-
brium, but the nuclear polarization is not. Hence, we may write
the transition energy as

Em = G̃m � G0 (37)

where G̃m is the non-equilibrium free energy of the excited state
and G0 is the equilibrium free energy of the ground state.
According to Marcus,109 a non-equilibrium free energy of
an excited state may be obtained from the equilibrium free
energy Gm of the excited state and equilibrium free energies
G(1�0,opt)

m and G(1�0)
m of two fictitious systems, which carry the

charge density difference between excited and ground states of
state |mi of the PPC and are embedded in a dielectric with
optical dielectric constant eopt or static dielectric constant e,
respectively,

G̃m = Gm + G(1�0,opt)
m � G(1�0)

m (38)

With eqn (30) and E0m ¼ Gm � G0 considered in the thermo-
dynamic cycle above, we obtain for the reorganization energy

El(m) = G(1�0,opt)
m � G(1�0)

m . (39)

Since the terms on the r.h.s. only contain charge differences,
which are zero for all atoms of the PPC except for those
on pigment m, which take part in the excitation, i.e., Dq(m)

I =
q(m)

I (1,1) � q(m)
I (0,0), there are no background charges and only

polarization terms contribute to G(1�0,opt)
m and G(1�0)

m . Then,
El(m) is obtained as

ElðmÞ ¼
1

2

X
I

DqðmÞI fð1�0Þeopt;mðR
ðmÞ
I Þ � fð1�0Þe;m ðRðmÞI Þ

� �
; (40)

where the potentials f(1�0)
f,m are obtained from the solution of

the Poisson equation

r f ðrÞrfð1�0Þf ;m ðrÞ
� �

¼ �4p
X
I

DqðmÞI dðr� RI Þ (41)

for f(r) = eopt(r) and f(r) = e(r).
It turned out that the site-dependence of El(m) is weak and

can be neglected in applications of the PB/QC method.45,101

This result does not mean that El(m) is really site-independent,
but rather that the electrostatic continuum model of the PPC is
not able to reveal such a dependence. The recently introduced
calculation of exciton-vibrational coupling on the basis of a
NMA offers a new approach to the reorganization energy
discussed further below (eqn (55) and (59)). Results obtained
so far for the FMO protein suggest that, indeed, the contribu-
tion of El(m) to site energy differences is small.51

3.1.5. Atomic partial charges of the pigments and quan-
tum chemical correction. In the CDC and PB/QC methods,
relative site energy shifts are calculated by electrostatics rather
than site energies Em directly by quantum chemistry (QC).
Nonetheless, the electrostatic methods use atomic partial
charges q(m)

I (1,1) and q(m)
I (0,0) of the pigments obtained

from QC, based on methods described in detail earlier.75 If
conformational variations between pigments in different sites
of the PPC are neglected, these calculations are based on
pigment structures optimized in a vacuum. Here, one encoun-
ters the problem that different QC methods (e.g., different
exchange–correlation functionals in time-dependent density
functional theory) may produce different sets of atomic partial
charges and, hence, different site energy shifts, and it is not
clear a priori, which method to use. Decisions can be made
based on a comparison of simulated and experimental optical
spectra of the PPC, but in this way of evaluating the charge
sets, the result depends on details of modeling the optical
lineshape, so that different approaches may suggest different
charge sets to be optimal (see, e.g., LHCII110). Ideally, the QC
method should reproduce several properties of the pigment
molecule with high accuracy, so that the electronic wave-
functions and atomic partial charges are trustworthy without
such an a posteriori evaluation, but this ideal is far from
being reached for molecules as large as photosynthetic
pigments. Nonetheless, present research activities aim at an
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implementation of recent developments in QC3,4,111 to closer
approach this ideal.

If conformational variations between chemically identical
pigments in different sites become relevant, one encounters
two additional problems: (i) the QC calculations require a
careful structure re-optimization of each individual pigment,
while keeping the characteristics of the conformational change
by introducing constraints.45,46,112 Sub-optimal structures
can cause large errors. (ii) The site energy shift has an
additional contribution from the changed electronic wavefunc-
tion of the pigment, the quantum-chemical correction. The
problem of the limited accuracy of the QC method then shows
up in a new guise, as there is now not only a QC influence
on the atomic partial charges, but also a direct QC contribu-
tion to the transition energy shift.45 As with the unconstraint
pigments, there is research activity to investigate this
contribution by exploiting recent innovations in QC
methodology.3,4,111

3.1.6. Protonation state dependent site energies and calcu-
lation of energy transfer and optical spectra. There are different
possibilities to proceed after the protonation state dependent
site energies Em(s) have been determined either with CDC
(eqn (28)) or with PB/QC (eqn (30) and (32)): (a) we can take
the site energies Em(s) and excitonic couplings Vmn (determined
as described in the next section) and put them into the exciton
Hamiltonian Hex in eqn (2), resulting in Hex(s). Based on the
latter we can calculate optical spectra, energy transfer rates etc.
for each protonation pattern separately and determine the
proper thermal average over these spectra or rates by taking
into account the Gibbs free energies Gs (eqn (17)). This
procedure is cumbersome and has not yet been applied, but
work in this direction is in progress. (b) As an approximation,
we can thermally average the site energies over protonation
patterns and use the averaged site energies as input to Hex.
This procedure has been applied in our earlier work on the
FMO protein,45 but is actually an oversimplification. (c) We can
single out the most probable protonation pattern or a small
fraction of patterns. In particular at cryogenic temperatures,
where the optical spectra with the highest resolution are
measured, most of the protonation probabilities are close to
either zero or one. Specifically, we set x(s)

m = 1 in eqn (28)
and (32), if hxmi Z 0.8, and x(s)

m = 0, if hxmi r 0.2. For groups
with 0.2 r hxmi r 0.8, the two cases x(s)

m = 0 and x(s)
m = 1

are checked separately for their influence on site energies.
For an application of this procedure, see ref. 48, 101 and 107.
If these influences are significant, spectra, etc. can be
calculated for a smaller number of protonation patterns
and averaged by taking into account the free energy Gs of these
patterns.

3.2 Excitonic couplings

As noted before, the excitonic coupling, in general, contains a
short-range contribution due to electron exchange and a
Coulombic part, where the electrons stay at their molecules73

(for recent reviews see ref. 11 and 113). The Coulombic part,
which dominates the large majority of excitonic couplings

between photosynthetic pigments, Vmn is obtained from the
matrix element in eqn (8) reading

Vmn ¼
Z

dr1 � � � drN
Z

d�r1 � � � d�rN

� cðmÞ1 ðr1; � � � ; rNÞc
ðnÞ
0 ð�r1; � � � ; �rNÞe2

X
i:j

1

jri � �rj j

� cðmÞ0 ðr1 � � � ; rNÞc
ðnÞ
1 ð�r1; � � � ; �rNÞ:

(42)

The integration is over the spatial coordinates of the N
electrons r1,. . .,rNm

of molecule Am and %r1,. . .,%rNn
of molecule

Bn. The integration over the respective spin variables is also
included, but not explicitly denoted, and real wavefunctions are
assumed for simplicity. The intermolecular Coulomb coupling
between pigments V(mn)

AB in eqn (8) contains the intermolecular
coupling between electrons, between electrons and nuclei and
between nuclei. Of these three contributions, only the first is
shown in eqn (42), since it is the only one that gives a non-zero
contribution, because of the orthogonality of electronic
wavefunctions, i.e., hA(m)

1 |A(m)
0 i = hB(n)

0 |B(n)
1 i = 0.

By using Pauli’s principle for the exchange of electrons and
changing names of integration variables, the above matrix
element can be written as75

Vmn ¼ NmNne
2

Z
dr1 � � � drN

Z
d�r1 � � � d�rN

� cðmÞ1 ðr1; � � � ; rNÞc
ðnÞ
0 ð�r1; � � � ; �rNÞ

1

jr1 � �r1j

� cðmÞ0 ðr1 � � � ; rNÞc
ðnÞ
1 ð�r1; � � � ; �rNÞ:

(43)

It is seen thereby that the integrations over coordinates r2. . .rNm

and %r2. . .%rNn
can be performed by introducing one-particle

densities r(m)
10 (r1) and r(n)

10(%r1) with

rðmÞ10 ðr1Þ ¼ Nme

Z
dr2 � � � drNcðmÞ1 ðr1; � � � ; rNÞc

ðmÞ
0 ðr1; � � � ; rNÞ

(44)

of molecule Am and similarly r(n)
01 (%r1) of molecule Bn.

The matrix element in eqn (43) then follows from the
Coulomb coupling of the transition densities of the two
pigments:

Vmn ¼
Z

dr1 dr2
rðmÞ10 ðr1Þr

ðnÞ
10 ðr2Þ

jr1 � r2j
: (45)

The above 6-dimensional integral may be evaluated numeri-
cally, as in the transition density cube (TDC) method.114

A numerically much less involved method of the same accuracy
is given by the transition charge from the electrostatic potential
(TrEsp) method,75 which will be discussed in the next
subsection.

For large intermolecular distances, a multipole expansion
may be used to evaluate the integral in eqn (45). By using the
orthogonality of molecular wavefunctions, which gives rise

to the relation
R
drrðm=nÞ10 ðrÞ ¼ 0, it is seen that the first

non-vanishing contribution to Vmn is due to the coupling
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between transition dipole moments, the point-dipole approxi-
mation:

Vmn �
dð10Þm � dð10Þn

R3
mn

� 3
ðdð10Þm � RmnÞðdð10Þn � RmnÞ

R5
mn

 !
(46)

where the transition dipole moment d(10)
m is the first moment of

the transition density r(m)
10 (r),

dð10Þm ¼
Z

drrðmÞ10 ðrÞr: (47)

Examples for the validity of the point-dipole approximation are
discussed below.

Finally, we note that the shape of the transition density of
chlorine type pigments has a dipolar form that can be qualita-
tively well approximated by two point charges of opposite sign
that are placed at a distance of about 9 Å.75,77 Therefore, often a
considerable improvement in the point-dipole approximation
is obtained by just replacing the point-dipole by an extended
dipole.

3.2.1. TrEsp method. In the TrEsp method,75 the Coulomb
coupling Vmn between transition densities in eqn (45) is eval-
uated by using atomic partial charges that are determined such
that they fit the ESP of the transition densities r(m)

10 (r1) and
r(n)

10(r2). The numerical fit is performed on a three dimensional
grid surrounding the pigments.

A scaling factor f for the Coulomb coupling is included in
order to implicitly take into account screening and local field
effects by the dielectric environment,

Vmn ¼ f
X
I ;J

q
ðmÞ
I ð1; 0Þq

ðnÞ
J ð1; 0Þ

jRðmÞI � R
ðnÞ
J j

; (48)

where the atomic transition charges of the 0 - 1 transitions of
the pigments are placed at the atom positions R(m)

I of pigment m
and R(n)

J of n. As the results obtained with different quantum
chemical methods show, there are uncertainties about the
absolute magnitude of the transition charges, whereas the
relative magnitudes, characterizing the shape of the transition
density, differ much less. These uncertainties can be removed
by comparing the resulting first moment of the transition
charges, the transition dipole moment, with the experimental
vacuum transition dipole moment of the pigment. The transi-
tion charges are rescaled by a constant factor in order to reach
agreement. The experimental values for different pigment types
were obtained by Knox and Spring115 from their analysis of the
pigments’ oscillator strengths in different solvents.

3.2.2. Poisson-TrEsp method. In the Poisson-TrEsp
method, the influence of the dielectric environment on the
excitonic coupling is modelled explicitly, removing thereby the
unknown scaling factor of the TrEsp approach discussed above.
As quantum mechanical derivations suggest,116,117 these effects
can be considered in the following way: the transition charges
of the pigments are placed in molecule-shaped cavities that are
surrounded by a homogeneous dielectric with dielectric con-
stant e = n2, which equals the square of the refractive index and
represents the optical polarizability of the protein and solvent

environments. A Poisson equation is solved for the potential
fm(r) of the transition charges of pigment m46,118

r eðrÞrfmðrÞð Þ ¼ �4p
X
I

q
ðmÞ
I ð0; 1Þdðr� R

ðmÞ
I Þ (49)

where the dielectric constant e(r) = 1, if r points inside a
pigment cavity, and e(r) = n2 otherwise. The excitonic coupling
of pigment m with pigment n is then obtained as

Vmn ¼
X
J

fmðRJÞqðnÞJ ð0; 1Þ (50)

The transition charges q(m)
I (0,1) of the pigments are obtained

and corrected as described above for the TrEsp method. The
value of the optical dielectric constant of PPCs is approximately
2, as determined119 from the change in oscillator strength of
protein-bound and solvent-extracted pigments of photosystem
I,120 and from microscopic simulations.91 Comparison of Pois-
son-TrEsp couplings obtained with e = 2 and e = 1 (corres-
ponding to TrEsp with f = 1) showed that the screening and
local field corrections of the Coulomb coupling can be well
approximated by a constant factor f, which varies between
0.6107 and 0.8118 for the different complexes investi-
gated.47,107,110,118 Detailed analysis shows that f depends on
the mutual orientation of the pigments rather than on their
distance. In exceptional cases,117 the surrounding dielectric can
increase the excitonic coupling between two pigments com-
pared to vacuum.116,117 Comparison of the Poisson-TrEsp and
TrEsp couplings to excitonic couplings obtained with the point-
dipole and extended-dipole approximations shows that the
point-dipole approximation is reasonable for the FMO protein
(we note, however, that the effective dipole strength has to be
determined with Poisson-TrEsp). In the case of the LHCII
complex, the point-dipole approximation is reasonable as well,
except for one pigment pair.101 In the case of the CP43 core
antennae of photosystem II, the coupling of one pigment pair
connecting the stromal and the lumenal layer of pigments shows
large deviations in point-dipole approximation, whereas an
extended dipole approximation was found to be valid.107 Finally,
neither the point- nor the extended-dipole approximation is valid
for a large number of closely spaced pigments in photosystem I.47

3.3 Spectral density

So far, we have determined site energies and excitonic cou-
plings for the equilibrium positions of nuclei in the electronic
ground state of the PPC. In the following, we want to study how
these quantities change, if the nuclei are displaced, and deter-
mine the linear exciton-vibrational coupling constants gx(m,n)
introduced in eqn (4). For this purpose, we consider the
coordinate dependence of the exciton matrix elements Hmn,
whose equilibrium position values H(0)

mn were introduced in
eqn (3). The Hmn are expanded into a Taylor series with respect
to small displacements of the positions RJ of atoms J =
1. . .Natom of the PPC from their equilibrium values R(0)

J .
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Including terms up to first order in the displacements gives

Hmn � Hð0Þmn þ
X
J

ðrJHmnj0Þ � ðRJ � R
ð0Þ
J Þ; (51)

where H(0)
mn and (rJHmn|0) are the values of Hmn and of its

gradient taken with respect to the three Cartesian coordinates
of atom J, respectively, at the equilibrium position of nuclei in
the electronic ground state of the PPC.

The mass-weighted normal coordinates qx(t) are related to
the displacements (RJ(t) � R(0)

J ) by12

RJ � R
ð0Þ
J ¼M

�1=2
J

X
x

A
ðxÞ
J qx; (52)

where MJ is the mass of atom J and A(x)
J contains the contribu-

tions of this atom to the eigenvector of normal mode x. From

eqn (51) and (52) we obtain, using also qx ¼ ð�h=2oxÞ1=2Qx,

Hmn �Hð0Þmn þ
X
x

�hoxQx

� o�3=2x ð2�hÞ�1=2
X
J

M
�1=2
J A

ðxÞ
j � ðrJHmnj0Þ;

(53)

which equals Hex + Hex-vib introduced in eqn (2) and (4), if the
dimensionless coupling constant gx(m,n) is introduced as

gxðm; nÞ ¼ o�3=2x ð2�hÞ�1=2
X
J

M
�1=2
J A

ðxÞ
J � ðrJHmnj0Þ: (54)

In order to evaluate the r.h.s. of eqn (54), we need to know how
the matrix elements Hmn({RJ}) depend on the nuclear coordi-
nates RJ. These dependencies are revealed by the TrEsp and
CDC methods introduced above. Using eqn (14) and (48), the
coupling constants gx(m,n) finally are obtained as51

o3=2
x ð2�hÞ1=2gxðm; nÞ ¼

dmn

eeff

X
I ;J;Z

q
ðZÞ
J q

ðmÞ
I ð1; 1Þ � q

ðmÞ
I ð0; 0Þ

� �
R
ð0Þ
J;Z � R

ð0Þ
I ;m

��� ���3
� R

ð0Þ
J;Z � R

ð0Þ
I ;m

� �
� M

�1=2
I A

ðxÞ
I �M

�1=2
J A

ðxÞ
J

� �

þ 1� dmnð Þf
X
I ;J

q
ðmÞ
I ð0; 1Þq

ðnÞ
J ð0; 1Þ

R
ð0Þ
I ;m � R

ð0Þ
J;n

��� ���3
� R

ð0Þ
I ;m � R

ð0Þ
J;n

� �
� M

�1=2
J A

ðxÞ
J �M

�1=2
I A

ðxÞ
I

� �
;

(55)

where the equilibrium vectors R(0)
J are taken from the crystal

structure after modeling of hydrogen atoms and energy mini-
mization. The A(x)

J are obtained from the eigenvectors of the
NMA, providing also the vibrational frequencies ox. Since a
NMA provides a microscopic model for the atomic polarization,
the eeff should be chosen smaller than the one used for static
site energy calculations with the CDC method (eqn (14)). In the
application to the FMO protein, we used eeff = 1/f = 1.25, where
f = 0.8 was obtained from a comparison of Poisson-TrEsp and
TrEsp excitonic couplings118 and takes into account the effect
of the electronic polarizability. The resulting spectral density
Jmnkl(o) is dominated by site energy fluctuations (Jmmmm(o)) and

correlations between site energy fluctuations (Jmmnn(o), m a n),
whereas those parts containing fluctuations of excitonic cou-
plings are at least one order of magnitude smaller.51 The
dominating diagonal parts of the spectral density Jmmmm(o)
are close in shape and in magnitude to the experimental J(o)
(Fig. 4). There are, however, some systematic deviations. At low
frequencies, the NMA spectral density is above and at higher
frequencies it is below the experimental values. One reason
could be the neglect of anharmonicities, another reason the
neglect of intramolecular modes of the pigments. Anharmoni-
cities were included in a recent combination of molecular
dynamics with CDC by Jing et al.,36 which, however, did not
reach long enough timescales to resolve the important low-
frequency region of the spectral density and the correlations in
site energy fluctuations. Intramolecular modes of the pigments
can be included by performing a QC-based NMA for the
pigments in their ground and excited states.36,121

3.4 Critical approximations and comparison with other
methods

In most of our applications of the methods described above
to chlorophyll-binding PPCs, we neglected conformational
variations between pigments in different sites. This appears
to be a suitable approximation so far.45,46,48,101,110 Nonetheless,
additional contributions to site energy shifts can be expected,
as it is well known that out-of-plane distortions of tetrapyrroles
have an influence on their optical spectra.122,123 This concerns
the out-of-plane orientation of conjugated substituents such
as acetyl or vinyl groups as well as of the four pyrrole moieties
and eventually the isocyclic ring E, leading to a distortion of
the p-system (for a discussion of chlorophyll structures,

Fig. 4 Average diagonal part of the spectral density �JðoÞ ¼ 1

7

P7
1 JmmmmðoÞ

obtained by NMA on the monomeric subunit of the FMO protein
(histogram, red bars)51 compared to spectral densities extracted from experi-
mental data. The black solid line was obtained59 from an analysis of fluorescence
line narrowing spectra of the B777 complex55 and the blue solid line from
the FLN spectra of the FMO protein.56 The area under the curves corresponds
to the Huang-Rhys factor S, which for the two experimental spectral densities
was obtained from a fit of the temperature dependence of the absorbance
spectrum of the FMO protein resulting in S = 0.42. The NMA value for the average
S is 0.39.
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see ref. 124). To take into account these conformational
variations in a QC/E2 approach, one has to add a quantum
chemical correction to the electrostatically calculated site
energy shift as discussed in Section 3.1.5 besides considering
deformation effects on the charge distributions and transition
densities. Such a procedure has two strict requirements:
(i) the crystal structure of the PPC has to be of sufficiently
high resolution to get reliable information about structural
variations, and (ii) a QC method has to be available that
allows for a sufficiently accurate determination of molecular
properties as a function of nuclear coordinates. Concerning
requirement (i), we think that the crystal structure has to have
a resolution of 2.0 Å or better. At lower resolutions, it is
particularly difficult to pinpoint the orientation of conjugated
substituents (for a recent example, see ref. 125). Concerning
requirement (ii), there is ongoing research activity to improve
electronic structure methods.3,4,111 As an alternative to a
rigorous ab initio calculation, one may apply a semi-empirical
approach. First steps in this direction were taken by Zucchelli
et al.,126,127 who estimated ring deformation effects on the
chlorophyll site energies in LHCII. Their method is based
on a normal mode decomposition method developed by
Shelnutt and coworkers,123,128 who found that the distortions
of protein-bound porphyrins are dominated by displacements
along the macrocycle normal modes with the lowest frequen-
cies. By projecting the pigment conformations, found in
the crystal structures, on the eigenvectors of the low frequency
normal modes, the structural information for an evaluation
of site energy changes due to macrocycle deformations
becomes available. However, for a comparison with experi-
mental data, besides the influence of the substituents
discussed above, one has to take into account also the electro-
static pigment–protein interaction. Combining the normal
mode decomposition method reported by Zucchelli et al. with
the CDC or PB/QC methods might be a promising direction for
future work.

A subtlety, when combining classical force field calculations
of molecular geometries with QC calculations of electronic
transition energies lies in the geometry mismatch. The latter
is due to the fact that the classical force field constants are not
fully compatible with the QC.36,51 This artifact most likely is
responsible for the drastic deviations observed between spec-
tral densities of the exciton-vibrational coupling calculated by
using a QM/MM approach (see the Introduction) and the
experimental data (e.g. Fig. 5d of ref. 37 and Fig. 6 of ref. 33),
in particular at high frequencies. Fortunately, for chlorine type
photosynthetic pigments the Franck–Condon factors of intra-
molecular vibronic transitions are very small and the spectral
density in the energy range relevant for exciton relaxation is
dominated by intermolecular vibrational degrees of freedom.
As discussed above, the latter has been studied with NMA,51

revealing good qualitative agreement, but also some systematic
deviations. The latter might be removed by including anhar-
monic molecular motion and intramolecular vibrational
degrees of freedom, e.g., by MD simulations and QC-based
NMA, respectively.

Another object of future research concerns the inclusion
of so-far missing terms of the perturbation theory. These terms,
e.g., include dispersive and inductive intermolecular
couplings that may involve the heterogeneous polarizability of
the PPC.

Within polarizable continuum models (PCMs),39–42 it is
possible to include the homogeneous polarizability of
the environment directly in QC calculations of electronic
properties. However, the neglect of Pauli repulsion between
the electron density of the QC part and the environment in this
type of treatment may cause an overpolarization of the former,
also known as an electron leakage problem.3,53,54 The inclusion
of the charge density of the environment by classical
point charges in QC calculations30,33,37 causes the same
problem. To avoid these artifacts, a two step procedure can
be applied, as discussed above, however, at the expense of
neglecting all polarization effects on the wavefunctions of the
pigments. A quantification of these effects is an important
future goal.

A first treatment of the heterogeneous polarizability of the
protein, in the framework of a polarizable force field model,
was presented recently by Curutchet et al.38 in calculations
of excitonic couplings. They reported an enhancement of
resulting energy transfer rates by as much as a factor of 4, as
compared to calculations assuming a homogeneous dielectric
environment38 with average dielectric constant.

Another promising route to include the mutual polarization
of building blocks of the PPC is the density-fragment inter-
action (DFI) approach proposed by Fujimoto and Yang.29 This
method has recently been applied to calculate excitonic
couplings (referred to as the transition density fragment inter-
action (TDFI) method) either excluding129,130 or including131

interpigment electron exchange. What is still missing is
the effect of the polarization of the protein environment.
A combination of TDFI with Poisson-TrEsp might be one
possible way to go. Related in spirit to DFI is the subsystem
DFT approach.3

In the methods discussed in the previous subsections there
is still one adjustable parameter, namely the transition energy
E0.† So far, this quantity can only be evaluated indirectly via the
calculation of optical spectra. As long as a single pigment type
is considered, varying E0 would just displace the resulting
optical spectrum along the energy (wavelength) axis and would
have no influence on its shape. In the case of different pigment
types absorbing in close spectral regions, the determination
of the related E0 values becomes more ambiguous. In any
case, improved QC calculations would be desirable for
an independent evaluation of these parameters. We will
not discuss the pitfalls and challenges of QC calculations, but
refer, instead, to some comprehensive reviews on this
topic.3,4,111

† In fact, also the vacuum dipole strength of the optical transition of the
pigments is not calculated directly, but taken from experiment and used to
rescale the transition charges, as described before.

PCCP Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

13
. D

ow
nl

oa
de

d 
on

 7
/3

1/
20

25
 4

:0
6:

00
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c3cp43439g


This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 3348--3371 3363

4 Quantum dynamics of excitons

In this section, we use the exciton Hamiltonian given in Section
2, which was motivated and parameterized by microscopic
theory in the previous section, to study excitation energy
transfer. Different possible scenarios are discussed,
which result from different relative strengths of pigment–
pigment and pigment–protein couplings.

4.1 Weak excitonic coupling

In the case of weak excitonic coupling, it is reasonable to
assume that the exciton-vibrational coupling is dominated by
the fluctuation of site energies and that the fluctuation of
excitonic couplings is negligible. Then, the exciton-vibrational
coupling constants gx(m,n) in Hex-vib (eqn (4)) are dominated by
the diagonal parts m = n. After optical excitation, the strong
fluctuation of site energies on the one hand localizes the
excited states, and on the other hand leads to a fast relaxa-
tion of nuclei in response to the change in charge density
between the ground and the excited state of the pigment.
In order to describe the change in equilibrium positions
of nuclei, occurring after excitation energy transfer, we
introduce potential energy surfaces (PES) of localized
excited states of the PPC by rewriting the PPC Hamiltonian
(eqn (1)) as

H ¼
X
m

UvibðmÞ þ Tnucl½ �jmihmj

þ
Xman

mn

Vmnjmihnj
(56)

where Tnucl denotes the kinetic energy of nuclei, and the PES of
the excited state of the PPC localized at pigment m reads

UvibðmÞ ¼ E0m þ
X
x

�hox

4
Qx þ 2gxðm;mÞð Þ2: (57)

It contains the energy difference E0m between the minimum of
the PES of the excited state and that of the PES of the ground
state. Due to the exciton-vibrational coupling, these PES are
shifted with respect to each other by �2gx(m,m) along the
coordinate axis. E0m is given as

E0m ¼ Em � ElðmÞ; (58)

with the reorganization energy El(m) of the mth excited state
reading

ElðmÞ ¼
X
x

�hoxðgxðm;mÞÞ2: (59)

El(m) is the energy that is released after optical excitation by
relaxation of the nuclei into a new equilibrium position. It
corresponds to the non-equilibrium correction obtained from
continuum electrostatics calculations in eqn (40). If El(m) is
much larger than the excitonic coupling, the system can lower
its energy more by keeping the excited states localized than by
delocalization of excited states, discussed below. From another
point of view, the vibrational environment introduces a large

dephasing of electronic coherences that does not allow for
delocalization to occur. The Liouville–von Neumann equation
for the statistical operator Ŵmn in the representation of loca-
lized states reads

d

dt
Ŵmn ¼

1

i�h

X
l

ðHmlŴ ln � ŴmlHlnÞ: (60)

For a perturbative treatment of the coupling Vmn, we use the
interaction representation

Ŵ
ðIÞ
mn ¼ UymðtÞŴmnUnðtÞ (61)

where the time evolution operator Uk(t) of the vibrational
degrees of freedom in the PES of the kth electronic state is
given as

UkðtÞ ¼ exp � i

�h
UvibðkÞt

� 	
(62)

The equation of motion for Ŵ(I)
mn then reads

d

dt
Ŵ
ðIÞ
mn ¼

1

i�h

X
l

V
ðIÞ
ml Ŵ

ðIÞ
ln � Ŵ

ðIÞ
mlV

ðIÞ
ln

� �
(63)

with

V
ðIÞ
kl ¼ U

y
kðtÞVklUlðtÞ: (64)

The population Pm of the excited state of pigment m is
obtained by performing a trace over all vibrational degrees of
freedom of Ŵmm

Pm(t) = trvib{Ŵmm} = trvib{Ŵ(I)
mm}. (65)

A second-order perturbation theory in the excitonic coupling
V(I)

mn then results in the generalized rate equation

d

dt
PmðtÞ ¼ �<

X
n

Z t

0

dt km!nðtÞPmðt� tÞ � kn!mðtÞPnðt� tÞ½ �

(66)

where R denotes the real part. The generalized (time-depen-
dent) rate constant km-n(t) reads

km!nðtÞ ¼
2jVmnj2

�h2
trvib UymðtÞUnðtÞŴ

eq

mm

n o
(67)

containing the equilibrium statistical operator of the vibra-
tional degrees of freedom of the PPC in the mth electronic state

Ŵ
eq

mm ¼
e�UvibðmÞ=kBT

trvib e�UvibðmÞ=kBTf g; (68)

which describes the vibrationally relaxed initial state. Since
harmonic PES have been assumed, the trace over the vibra-
tional degrees of freedom in eqn (67) can be carried out
analytically (e.g. by using a second order cumulant expansion,
which is exact for harmonic oscillators), giving

km!nðtÞ ¼
2jVmnj2

�h2
eiomnteGmnðtÞ�Gmnð0Þ; (69)
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with

omn ¼ E0m � E0n
� �

=�h: (70)

The time-dependent function Gmn(t) is related to the spectral
densities Jmmmm(o), Jnnnn(o), and Jmmnn(o), characterizing the
fluctuations of site energies of pigments m, n, and the correla-
tions between both, respectively, by

GmnðtÞ ¼
Z 1
0

do e�iotð1þ nðoÞÞ þ eiotnðoÞ
� �

KmnðoÞ (71)

where

KmnðoÞ ¼
X
x

gxðm;mÞ � gxðn; nÞð Þ2dðo� oxÞ

¼ JmmmmðoÞ þ JnnnnðoÞ � 2JmmnnðoÞ;
(72)

and n(o) is the Bose–Einstein distribution function of
vibrational quanta

nðoÞ ¼ 1

e�ho=kBT � 1
: (73)

It is seen, thereby, that for perfectly correlated site energy
fluctuations, i.e., for gx(m,m) = gx(n,n), there would be no energy
transfer possible.

4.1.1. Förster theory. The Förster rate constant follows
from the above expressions, if two simplifying assumptions
are made: (i) the generalized rate constant km-n(t) decays
rapidly on the time scale of the changes of the populations
Pm(t) and Pn(t). In this case, the Pk(t � t) (k = m,n) in the integral
in eqn (66) may be approximated by their value at time t and
taken out of the integral, and the upper integration limit
may be formally extended to N, giving a master equation
with the rate constant km!nðtÞ ¼ 1=2

R1
�1 dtkm!nðtÞ. Using

km!nðtÞ ¼ k�m!nð�tÞ, this rate constant reads

km!n ¼
jVmnj2

�h2

Z 1
�1

dteiomnteGmnðtÞ�Gmnð0Þ: (74)

A second approximation of Förster theory is to assume that
there is no correlation in site energy fluctuations. In this case,
Jmmnn(o) = 0 for (m a n) in eqn (72), and we may write the rate
constant as

km!n ¼
2p

�h2
Vmnj j2

Z 1
�1

doD0mðoÞDnðoÞ (75)

with the line shape function for donor emission

D0mðoÞ ¼
1

2p

Z 1
�1

dte�i o�E0m=�hð ÞteGmðtÞ�Gmð0Þ (76)

and acceptor absorbance

DnðoÞ ¼
1

2p

Z 1
�1

dtei o�E0n=�hð ÞteGnðtÞ�Gnð0Þ (77)

with

GkðtÞ ¼
Z 1
0

do e�iotð1þ nðoÞÞ þ eiotnðoÞ
� �

JkkkkðoÞ (78)

We note that for correlated site energy fluctuations, such a
factorization of the integrand in eqn (75) into donor and
acceptor properties is not possible.132

4.2 Strong excitonic coupling � Redfield theory

In the case of strong excitonic coupling, delocalized states

jMi ¼
P

m c
ðMÞ
m jmi are excited, which are obtained by diagona-

lizing the exciton Hamiltonian Hex in eqn (2) giving

Hex ¼
X
M

�hoM jMihMj (79)

with eigenenergies �hoM and eigenvectors containing the coeffi-
cients c(M)

m . The exciton-vibrational coupling in the representa-
tion of delocalized states

Hex-vib ¼
X
M;N

X
x

�hoxgxðM;NÞQxjMihNj

¼
X
M;N

V̂MN jMihNj
(80)

with

gxðM;NÞ ¼
X
mn

cðMÞm cðNÞn gxðm; nÞ (81)

is treated in the following as a small perturbation to derive a
rate constant kM-N for exciton relaxation between two deloca-
lized states |Mi and |Ni. The following interaction representa-
tion of the statistical operator is used

Ŵ
ðIÞ ¼ UexUvibŴUyexU

y
vib (82)

with the time evolution operators Uex ¼ exp � i
�h
Hext

� 	
and

Uvib ¼ exp � i
�h
Hvibt

� 	
of the excitonic and vibrational degrees

of freedom, respectively, using the Hvib in eqn (6).
The Liouville–von Neumann equation for this statistical

operator expanded with respect to the delocalized states Ŵ
ðIÞ
MN

then reads

d

dt
Ŵ
ðIÞ
MN ¼

1

i�h

X
l

V̂
ðIÞ
MLŴ

ðIÞ
LN � Ŵ

ðIÞ
MLV̂

ðIÞ
LN

� �
(83)

with

V̂
ðIÞ
KL ¼ eioKLtU

y
vibðtÞV̂KLUvibðtÞ (84)

where oKL = oK � oL, and the exciton-vibrational coupling V̂KL

(eqn (80)). A quantum master equation can be derived along the
same lines as for the weak coupling case studied above, but
using this time a second order perturbation theory for the

exciton vibrational coupling V̂
ðIÞ
KL. The resulting Redfield-type

rate constant reads

kM!N ¼
1

�h2

Z 1
�1

dteioMNttrvib U
y
vibðtÞV̂MNUvibðtÞV̂NMŴ

eq

vib

n o
;

(85)
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where

Ŵ
eq

vib ¼
e�Hvib=kBT

trvib e�Hvib=kBTf g (86)

describes thermally equilibrated vibrational degrees of freedom
of the electronic ground state of the complex. The shift in
equilibrium position of nuclei that may occur upon changing
the electronic state of the PPC is neglected. Later, we will
include this shift in modified Redfield theory. For the harmo-
nic oscillator Hamiltonian (eqn (6)), the trace over the vibra-
tional degrees of freedom in eqn (85) can be performed and the
rate constant

kM!N ¼ 2po2
MN

X
mnkl

cðMÞm cðNÞn c
ðMÞ
k c

ðNÞ
l

� Jmnkl oMNð Þð1þ n oMNð ÞÞ þ Jmnkl oNMð Þn oNMð Þf g
(87)

can be related to the spectral density Jmnkl(o), which enters the
rate constant at the transition frequency o = �oMN between the
two exciton levels. This spectral density contains different
contributions resulting from the fluctuations of site energies
(Jmmmm(o)), fluctuations of excitonic couplings (Jmnmn(o)) and
correlations among and between them.

4.3 Intermediate excitonic coupling

In the case of equal strengths of excitonic coupling and exciton-
vibrational coupling, in general, a non-perturbative approach is
needed. Recent normal mode calculations of the microscopic
coupling constants gx(m,n) of Hex-vib (eqn (4) and (55)) and a
subsequent transformation of these coupling constants to the
basis of delocalized states (eqn (81)) show that the diagonal
elements gx(M,M) are larger than the off-diagonal elements
gx(M,N) (M a N) (Fig. 5). Modified Redfield theory13–15 and
time-local Non-Markovian Density Matrix theory59 make use
of this inequality by providing an exact description of

the diagonal parts and using perturbation theory only for the
off-diagonal parts.

4.3.1. Modified Redfield theory. If the diagonal parts
gx(M,M) of the exciton-vibrational coupling dominate, it is
appropriate to assume that there is fast nuclear relaxation in
PES of exciton states, which are constructed by rewriting the
Hamiltonian in the exciton representation (eqn (6), (79) and
(80)) in the following way:

H ¼
X
M

UvibðMÞ þ Tnucl½ �jMihMj þ
XMaN

M;N

V̂MN jMihNj (88)

where the PES of exciton state |Mi reads

UvibðMÞ ¼ E0M þ
X
x

�hox

4
Qx þ 2gxðM;MÞð Þ2; (89)

with the PES minimum at position �2gx(M,M). The energy

E0M ¼ EM � ElðMÞ (90)

contains the reorganization energy of exciton state |Mi

ElðMÞ ¼
X
x

�hox gxðM;MÞð Þ2 (91)

The %VMN in eqn (88) comprise the off-diagonal elements of the
exciton-vibrational coupling (eqn (81)).

Along the same lines as used above in the derivation of the
rate constants for weak and strong excitonic couplings, a
second order perturbation theory in %VMN yields the following
expression for the rate constant kM-N

kM!N ¼
1

�h2

Z 1
�1

dt trvib U
y
MðtÞV̂MNUNðtÞV̂NMŴ

eq

MM

n o
; (92)

where

UK ðtÞ ¼ exp � i

�h
UvibðKÞt

� 	
(93)

describes the time evolution of vibrational degrees of freedom
in the PES of exciton state |Ki, and

Ŵ
eq

MM ¼
e�UvibðMÞ=kBT

trvib e�UvibðMÞ=kBTf g (94)

is the equilibrium statistical operator of nuclei in exciton state |Mi.
Comparison of eqn (92) with the Redfield rate constant

(eqn (85)) shows that now the mutual shifts of PES, neglected
before, are taken into account. A comparison with the Förster-
type rate constant (eqn (67)) shows that the coupling between
the PES now depends linearly on the vibrational coordinates Qx,
whereas it is coordinate-independent in eqn (67). Nevertheless,
for harmonic PES as considered here, the trace over vibrational
degrees of freedom can be performed giving15

kM!N ¼
Z 1
�1

dteioMNtefMN ðtÞ�fMN ð0Þ

� lMN

�h
þ GMNðtÞ


 �2

þFMNðtÞ
" #

;

(95)Fig. 5 Off-diagonal exciton-vibrational coupling constants gx(M, N) (M a N) are
compared with diagonal coupling constants gx(M,M) of exciton states for the first
6000 normal modes of the FMO protein.51 The black solid line shows the
corresponding vibrational frequencies o = ox.
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with the reorganization energy

lMN ¼
X
mnkl

cðMÞm cðMÞn c
ðMÞ
k c

ðNÞ
l þ cðNÞm cðNÞn c

ðMÞ
k c

ðNÞ
l

� �

�
Z

do�hoJmnklðoÞ
(96)

and the time-dependent functions

fMNðtÞ ¼
X
mnkl

cðMÞm cðMÞn c
ðMÞ
k c

ðMÞ
l þ cðNÞm cðNÞn c

ðNÞ
k c

ðNÞ
l

�

�2cðMÞm cðMÞn c
ðNÞ
k c

ðNÞ
l

�
fmnklð0; tÞ;

(97)

GMN(t) = (c(M)
m c(M)

n c(M)
k c(N)

l � c(N)
m c(N)

n c(M)
k c(N)

l )fmnkl(1,t)
(98)

FMN(t) = c(M)
m c(N)

n c(M)
k c(N)

l fmnkl(2,t) (99)

with

fmnklðj; tÞ ¼
Z 1
�1
ð1þ nðoÞÞoj JmnklðoÞ � Jmnklð�oÞð Þ; (100)

containing the spectral density Jmnkl(o) and the Bose–Einstein
distribution function n(o) (eqn (73)). Note that Jmnkl(o) = 0 for
o o 0 and n(o) = �(1 + n(�o)) holds.

In Fig. 6, the relaxation of excitons in the monomeric
subunit of the FMO protein, calculated by assuming a d-pulse
excitation at t = 0, is shown. The site energies were obtained
with the CDC method.48 The excitonic couplings were calcu-
lated by using a point-dipole approximation,48 verified before
by Poisson-TrEsp,118 which also revealed the effective transition
dipole strength to be used. The original spectral density Jmnkl(o)
was obtained directly from a combination of CDC and TrEsp
with NMA.51 The corrected spectral density reads Jc

mnkl(o) =
f(o)Jmnkl(o) and contains a frequency-dependent factor f(o) =
Jexp(o)/%J(o) with the average diagonal part of the NMA spectral

density �JðoÞ ¼ 1

7

P7
m¼1 JmmmmðoÞ and the experimental spectral

density Jexp(o) of the FMO protein (Fig. 4). f(o) is introduced to
correct for the limitations of the harmonic approximation. The
larger amplitude of the high-frequency part of the corrected
spectral density allows the protein to dissipate the excess
energy of excitons faster (Fig. 6 and eqn (87)). The relaxation
times obtained for the corrected spectral density are in agree-
ment with pump–probe experiments.133 For both spectral den-
sities, the relaxation obtained with modified Redfield theory is
somewhat faster than the Redfield relaxation. This effect is due
to the inclusion of multi-vibrational quanta transitions in
modified Redfield theory.14,134 In this way, the protein can
bridge the energy gaps between different exciton states by
multiple vibrational quanta and not only by single quanta as
in Redfield theory. Finally, we note that although the correla-
tion in site energy fluctuations in the spectral density has a
large amplitude, its influence on exciton relaxation was found
to be negligible.51 The inhomogeneous charge distribution of
the protein was found to be responsible for this effect.

4.3.2. Non-perturbative approaches and explicit treatment
of dynamic localization. A shortcoming of the perturbation theory
in the off-diagonal parts of the exciton-vibrational coupling, used in
the above modified Redfield theory, is the neglect of dynamic
localization effects of the exciton wavefunction. For example, if
two pigments are located at a large enough distance such that their
excitonic coupling is much smaller than the local reorganization
energy of the exciton-vibrational coupling, but they happen to have
the same site energy, their wavefunction will be delocalized for all
times, since the exciton coefficients resulting from the diagonaliza-
tion of Hex are time-independent. However, in reality, the slightest
fluctuation of the site energies would localize the wavefunction.
Since the only approximation used above in Modified Redfield
theory concerns the off-diagonal part of the exciton-vibrational
coupling, we have to conclude that a description of dynamic
localization requires a higher-order perturbation theory or an exact
theory of the latter. Recently, such non-perturbative approaches
became available through the development of the hierarchical
equation of motion (HEOM) approach,21–24 the density matrix
renormalization/polynomial transformation approach,25,26 and path
integral techniques.27,28 Although numerically very expensive, these
approaches will undoubtedly provide a deeper understanding of the
exciton-vibrational motion in PPCs. The explicit treatment of
dynamic localization effects will allow description of excitation
energy transfer in networks with intermediate and weak couplings
more realistically than with Generalized Förster theory. A second
important application is the inclusion of high-frequency pigment
vibrations in the description of exciton dynamics. Since the related
Frank–Condon factors of these high-frequency modes are very
small, the effective excitonic coupling involving these excited vibro-
nic transition are also small and the mixing with vibronic transi-
tions of neighboring pigments can easily be affected by dynamic
localization effects due to the coupling with protein vibrations.
Finally, a third interesting application is in the description of optical
properties of pigments at very close distance, where electron
exchange becomes possible. In this case the mixing of exciton states
with charge transfer states70,73 leads to very strong exciton-vibra-
tional coupling that can lead to dynamic localization effects.135

Fig. 6 Relaxation of excitons in the monomeric subunit of the FMO protein at
T = 77 K after excitation by a d-pulse at t = 0, calculated with modified Redfield
theory (solid lines) and Redfield theory (dashed lines) using either the spectral
density Jmnkl(o) obtained directly from the NMA or a corrected spectral density
Jc
mnkl(o) obtained as described in the text.
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5 Applications
5.1 The FMO protein

Although the structure of this protein has been known since
1975136 it took until the end of the 1990s to obtain a realistic set
of site energies and excitonic couplings. The key new assump-
tion of Aartsma and coworkers137 was a much smaller effective
dipole strength of the pigments for the calculation of the
excitonic couplings. In 2005, the first 2D spectra of the FMO
protein were reported60 and interpreted by using the Hamilto-
nian of Aartsma and coworkers, with a modification of one
excitonic coupling. This modification was later shown to be
incorrect.118 A calculation of excitonic couplings without adjus-
table parameters became possible with the Poisson-TrEsp
method118 and by the determination of the vacuum dipole
strength of bacteriochlorophyll a (and related pigments) by
Knox and Spring.115 The verification of Aartsma’s effective
dipole strength, the validity of the point-dipole approximation
used for the calculation of excitonic couplings and of the
inferred site energies by using also an improved lineshape
theory in 2006 lead to the prediction of the relative orientation
of the FMO protein with respect to the reaction center
complex.118 This prediction was confirmed experimentally
using chemical labeling and mass spectrometry by Blankenship
and coworkers in 2009.138 In 2007, a structure-based simulation
using PB/QC45 supported the fitted site energies. It was found
that the electric fields of two a-helix backbones contribute
significantly to the creation of an energy sink at a particular
pigment in the FMO protein. In 2007, 2D spectra showed long-
lived quantum beats61 and triggered a fundamental discussion
about the role of coherences and their possible protection by
the protein, e.g., by correlated site energy fluctuations for the
efficiency of light-harvesting. QM/MM approaches did not find
any correlation in site energy fluctuations, but it was argued36

that longer MD propagation times might be needed to resolve
them. Indeed, a recent NMA/CDC/TrEsp analysis found strong
correlations in site energy fluctuations at low frequencies.
However, these correlations were shown to have practically no
influence on the decay of coherences between different exciton
states and on exciton relaxation.51 The inhomogeneous charge
distribution of the FMO protein was found to be responsible for
this effect. In this way, it became clear that the same mecha-
nism, which creates an excitation energy funnel in this system,
leads to a fast dissipation of the excitons’s excess energy. In
2009, an eighth pigment was (re)discovered that is bound at the
periphery of each monomeric subunit of the FMO protein.139

Its location led Blankenship and coworkers to suggest that this
pigment is the linker to the baseplate connecting the FMO
protein with the outer antenna system. Indeed, CDC calcula-
tions showed that this pigment is the most blue-shifted
pigment in FMO and, thereby, completes the excitation energy
funnel created by the pigment–protein coupling in this
system.48 Located at the periphery of the FMO protein, the
eighth pigment is found to interact with charged amino acids,
where the large blue shift results from three deprotonated Asp
and one deprotonated Glu. These residues are situated in the

region of negative difference potential of this pigment, thereby
causing the blueshift. Since in vivo the surface of the FMO
protein is interacting with another protein rather than with
water, the influence of the lower dielectric polarization of the
former on the site energy of the eighth pigment has been
investigated as well. It was found that just one titratable group
in the environment of the eighth pigment changes its protona-
tion state and that this pigment remains the most blue shifted
pigment of all.48

5.2 The light-harvesting complex LHCII of higher plants

LHCII is the major light-harvesting complex in the thylakoid
membrane of higher plants and can be considered the most
abundant membrane protein on earth. In the native system, it
forms supercomplexes with minor homologous antenna
proteins and the photosystem II core complex.140,141 The latter
is the site of photosynthetic water oxidation.1,2 The task of the
antenna system surrounding the core complex is not only to
deliver excitation energy, but also to regulate the energy flow.
However, the precise role of LHCII in this regulation is still
elusive. Elucidation of the 3D-structure of isolated LHCII was a
major breakthrough in the field142 and showed that LHCII is a
trimeric complex, where each monomeric subunit binds eight
chlorophyll (Chl) a and six Chl b pigments as well as four
carotenoids of three different types and a structurally impor-
tant lipid molecule. Based on this structural information,
Novoderezhkin et al.143 developed an exciton Hamiltonian for
the Chl pigments in LHCII, using excitonic couplings
calculated with the point-dipole approximation and fitted site
energies, which is an important benchmark and allows for a
simulation of stationary and time-resolved optical spectra (see
also ref. 7 and 144). Application of the Poisson-TrEsp method
for the excitonic couplings and the PB/QC method for the site
energies largely confirmed this Hamiltonian, except for assign-
ing lower site energies to one Chl a and one Chl b, higher site
energies to two Chl b and a weaker excitonic coupling to one
Chl b pair, and thus permitted us to link the exciton Hamilto-
nian to the molecular structure on an electrostatic basis.101 To
achieve good agreement between simulated and measured
linear optical spectra, it was necessary to include high-
frequency vibrational pigment modes explicitly into the
Hamiltonian.110,145 The Chl system of LHCII is divided into
domains by virtue of a cut-off coupling Vc to simulate the
dynamic localization of exciton states in an implicit way. Thus,
for excitonic couplings of pigments m and n belonging to
different domains, it holds that Vmn o Vc, and exciton deloca-
lization is allowed for only within domains. Within this model,
it became possible to understand the slow energy transfer times
measured in the Chl a spectral region.145 A consequence of this
treatment is that also the excitonic couplings involving vibronic
states are smaller than the cut-off coupling, and these states
remain localized on the respective pigments. We note that in
the work of Novoderezhkin et al.,7,143,144 the high-frequency
modes are treated in a different way, as they are included in
the spectral density. A goal of current research is to better
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understand the implications of these different treatments of
modes for optical lineshapes and excitation energy transfer.

Concerning energy flow in LHCII, the main result of the
structure-based simulations is that the energy sink (i.e., the
terminal emitter domain) is located at Chl a610 at the periphery
of the LHCII trimer and at the stromal side of the thylakoid
membrane, probably involving also Chls a611 and a612 at
physiological temperatures. This assignment is in agreement
with earlier proposals146,147 based on the Novoderezhkin–
Hamiltonian and mutagenesis studies.148,149 The terminal
emitter domain is likely one of the sites in the photosystem II
antenna system, where excitation energy flow is regulated.
However, the simulations also revealed problems that
remain to be solved. Three of these problems are: (i) possible
temperature-dependent structural changes of LHCII that affect
exciton states in a yet unknown way,148 (ii) detergent-induced
structural changes that cause pigment orientations to be
altered in solubilized LHCII trimers compared to the crystal
structure,110 and (iii) a mismatch between simulated and
measured circular dichroism spectra in the Chl b region at
around 650 nm.101,110,144

5.3 Cyanobacterial photosystem I and photosystem II

The trimeric cyanobacterial photosystem I core complex
contains 96 Chl a pigments per monomer.150 This large size
represents a particular challenge for theory. Attempts have
been made to use the 96 site energies as parameters to be
determined from a fit of optical spectra.151,152 However, an
unambiguous determination of 96 site energies that is based on
a fit of a few linear optical spectra is rather unlikely. On the
other hand, these fits describe the spectra quantitatively,
whereas early structure-based calculations30,44 could only
describe the absorbance spectrum, but failed, e.g., for the linear
dichroism. A first structure-based explanation of linear absor-
bance and linear and circular dichroism spectra was obtained
by using Poisson-TrEsp for the excitonic couplings and the CDC
method, in combination with an evaluation of the protonation
pattern of titratable residues of the protein, for the site
energies.47 A detailed evaluation of the pigment–protein
coupling revealed the importance of long-range electrostatic
interactions. Most of the site energies are determined by
multiple interactions with a large number (>20) of amino acid
residues. Out of 78 titratable residues of the protein, 23 were
calculated to be in a non-standard protonation state at pH 6.5
and 300 K (where the standard is defined as the protonation
state observed at pH 7.0 in an aqueous environment). Never-
theless, the site energies obtained for the standard protonation
state are within 100 cm�1 of those obtained for the non-
standard pattern, except for Chl 51, where the site energy is
blue-shifted by 500 cm�1 in the non-standard protonation
pattern. Interestingly, the calculations reveal a higher concen-
tration of low-energy exciton states on the side of the A-branch
of the reaction center. This finding could provide an explana-
tion for the more frequent use of this branch in electron
transfer reactions. Another finding concerns the presence of
an excitation energy barrier formed by pigments that are

located between the reaction center pigments and the
low-energy pigments of the antennae. The latter are found at
an average distance of about 25 Å from the special pair of the
reaction center. Since electron exchange was not considered in
this work, the identity of a few long-wavelength absorbing Chls
was not obtained. A calculation scheme has been developed,73

which seems to be a promising tool, in combination with
spectroscopic data,71 to provide these identities in future work.

Concerning photosystem II (PSII), based on calculations of
optical spectra, various functional states of PSII reaction
centers were identified and the overall decay of excited states
by excitation energy transfer and trapping by the reaction
center was found to be transfer-to-the-trap limited. These
results have been explained in detail in earlier reviews.153–156

The site energies used in these calculations have been obtained
from a fit of optical spectra of the CP43, CP47 and D1D2cytb559
subunits of PSII as well as from optical difference spectra of
PSII core complexes. An important future goal is the direct
evaluation of the site energies by structure-based calculations.
Preliminary results,107 largely supporting the earlier fits,20 have
been obtained for the CP43 subunit based on the 2.9 Å resolu-
tion structure.157 Work is in progress to exploit the most recent
structural refinement at 1.9 Å resolution.158

6 Summary and outlook

In the present perspective, we have put together ingredients
necessary to bridge the gap between the structural data of
photosynthetic PPCs and their photophysical function. It is a
great advantage that the optical properties of these systems and
their building blocks are so well known, and a challenge for
theory. A major simplification arises from the fact that different
pigments do not exchange electrons but only excitons. There-
fore, a rather simple-looking PPC Hamiltonian can be used to
describe the dissipative exciton motion in these systems. Never-
theless, the motion of excitation energy resulting from such a
Hamiltonian can have many different characteristics, arising
from the relative strength of pigment–pigment (excitonic) and
pigment–protein (exciton-vibrational) coupling. Microscopic
theories provide the means to parametrize the PPC Hamilto-
nian, which can then be used to calculate the quantum dis-
sipative motion of excitons. The predictive power of these
methods and calculation schemes of parameters is steadily
increasing and allows us already to draw conclusions about
building principles of photosynthetic antennae that might be
useful also for the creation of artificial light-harvesting devices.
For example, in the FMO protein the inhomogeneous charge
distribution of the protein is responsible for creating an
excitation energy funnel that guides the excitons towards the
reaction center and for a fast dissipation of the excitons’ excess
energy. It is an important future goal of structure-based theory
to reach a similar understanding of photophysical properties
also for larger PPCs including their interplay in the photo-
synthetic membrane and their ability to switch from the
light-harvesting to a photoprotection mode.
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2 F. Müh, C. Glöckner, J. Hellmich and A. Zouni, Biochim.
Biophys. Acta, 2012, 1817, 44–65.

3 J. Neugebauer, ChemPhysChem, 2009, 10, 3148–3173.
4 C. König and J. Neugebauer, ChemPhysChem, 2012, 13,

386–425.
5 Biophysical Techniques in Photosynthesis, ed. T. J. Aartsma

and J. Matysik, Springer, Dordrecht, The Netherlands,
2008.

6 R. van Grondelle and V. I. Novoderezhkin, Phys. Chem.
Chem. Phys., 2006, 8, 793–807.

7 V. I. Novoderezhkin and R. van Grondelle, Phys. Chem.
Chem. Phys., 2010, 12, 7352–7365.

8 T. Renger, Photosynth. Res., 2009, 102, 471–485.
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