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Access to enhanced differences in Marcus–Hush and
Butler–Volmer electron transfer theories by systematic
analysis of higher order AC harmonics

Gareth P. Stevenson,a Ruth E. Baker,b Gareth F. Kennedy,c Alan M. Bond,*c

David J. Gavaghan*a and Kathryn Gillowd

The potential-dependences of the rate constants associated with heterogeneous electron transfer

predicted by the empirically based Butler–Volmer and fundamentally based Marcus–Hush formalisms

are well documented for dc cyclic voltammetry. However, differences are often subtle, so, presumably

on the basis of simplicity, the Butler–Volmer method is generally employed in theoretical–experimental

comparisons. In this study, the ability of Large Amplitude Fourier Transform AC Cyclic Voltammetry to

distinguish the difference in behaviour predicted by the two formalisms has been investigated. The

focus of this investigation is on the difference in the profiles of the first to sixth harmonics, which are

readily accessible when a large amplitude of the applied ac potential is employed. In particular, it is

demonstrated that systematic analysis of the higher order harmonic responses in suitable kinetic

regimes provides predicted deviations of Marcus–Hush from Butler–Volmer behaviour to be established

from a single experiment under conditions where the background charging current is minimal.

1 Introduction

In the 1950s and 1960s Marcus and Hush independently
developed a detailed theory for homogeneous electron transfer
reactions (see ref. 1–10), which, when applied to electrochemical
heterogeneous electron transfer scenarios, overcame the problem
that the Butler–Volmer formalism predicts rates of oxidation (and
reduction) that grow without bound as the applied potential is
increased. Chidsey restated the Marcus–Hush principles, using
ideas introduced by Levich for dc voltammetry associated with
heterogeneous electron transfer,11 and offered a formalism that
was fundamentally superior to the Butler–Volmer model.12

Compton et al.13–18 have reviewed progress in the electrochemical
use of Marcus–Hush theory and introduced further extensions they
term the asymmetric Marcus theory. This group, in their recent and
very comprehensive papers on the subject,13–18 have also provided
dc and square wave experimental data to support theoretical work

showing how distinctions in the Butler–Volmer and Marcus–
Hush models may emerge.

In a series of papers, we and others,19–23 have recently
expanded the use of Fourier or Hibbert or other forms of
transformed ac voltammetry relative to that introduced by
Smith et al. in their pioneering studies24–28 usually related to
polarography (voltammetry at a dropping electrode). To date
the Butler–Volmer description of electron transfer has been
exclusively employed, even though it may be inadequate
in some situations. Thus, we now introduce into the large
amplitude FT-ac voltammetric method the more fundamentally
based description of electron transfer kinetics that utilises
Marcus–Hush theory.1–10

The key difference in predictions derived from the use of the
Butler–Volmer and Marcus–Hush theories in their standard
forms is related to the dependence of the electron transfer rate
constants on potential. With Butler–Volmer theory, the rate
constants increase exponentially as a function of the applied
potential E relative to the reversible potential E0 or |E � E0|. In
contrast, the Marcus–Hush theory predicts that, at sufficiently
large values of |E � E0|, the rate constants become independent of
potential. This levelling-off effect is analogous to the ‘‘inversion
region’’ in homogeneous reactions.29–32

Since it has been extremely hard to demonstrate experimentally
the Marcus–Hush effect under dc voltammetric conditions, the
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mathematically simpler Butler–Volmer model is still almost
universally adopted in theory–experiment comparisons. Never-
theless, theoretical aspects of Marcus–Hush kinetics in electro-
chemistry remain of considerable current interest.13–18,33,34

Numerical solutions using this theory are now even included
in commercial simulation packages such as DigiSim and
DigiElch, so reasons not to employ the model on the basis of
mathematical complexity are now of a lesser concern. Arguably,
the immediate need is to introduce techniques that enhance
differences in the sensitivity of predictions of the Marcus–Hush
and Butler–Volmer models, relative to those known to be
available under transient or steady-state dc methods. Our aim
is to provide further methodology that should assist experi-
mentalists wishing to pursue the consequences of the Marcus–
Hush formalism.

2 The Marcus–Hush and Butler–Volmer
reaction mechanisms

In this paper two different classes of electrochemical systems
will be considered: one is that of surface-confined electron
transfer; the other is that of a species diffusing in solution with
electron transfer occurring at the solution–electrode interface.
Theory relevant to the surface to the surface-confined case will
be described in some detail below. For the diffusional case, the
reader is referred to models discussed in previous publica-
tions19–21 which can be adapted to the Marcus–Hush formalism
in an analogous manner. By surface-confined we mean that the
electroactive centres of interest are attached to the electrode or
adsorbed and are not free to diffuse. The mechanism consid-
ered is the one electron process represented as follows,

AaÐ
kox

kred
Ba þ e�; ð1Þ

where the electron transfer reaction of interest takes place on
the electrode surface. In eqn (1) the subscript a denotes that the
species is adsorbed onto the electrode and kox and kred (s�1) are
the oxidative and reductive potential-dependent charge transfer
rate constants which, according to the Marcus–Hush thory,
adapted to the electrochemical scenario by Chidsey,12 are
given by

kox

k0
¼
R1
�1

exp � x�l�eðE�E
0�RuItotÞ

kBT

� �2
kBT
4l

� �� �

1þexpðxÞ dx

R1
�1

exp � x� l
kBT

� �2
kBT
4l

� �� �
1þexpðxÞ dx

; ð2Þ

kred

k0
¼
R1
�1

exp � x�lþeðE�E
0�RuItotÞ

kBT

� �2
kBT
4l

� �� �

1þexpðxÞ dx

R1
�1

exp � x� l
kBT

� �2
kBT
4l

� �� �

1þexpðxÞ dx

: ð3Þ

Eqn (2) and (3) can be rearranged as follows (as derived by Y.-P.
Liu and used by Feldberg33),

kox

k0
¼

exp
eðE�E0Þ
2kBT

n oR1
�1

exp �kBTl xþeðE�E
0Þ

2kBT

h i2� �

coshðxÞ dx

R1
�1

exp �kBTl x2
� 	
coshðxÞ dx

; ð4Þ

kred

k0
¼

exp
�eðE�E0Þ

2kBT

n oR1
�1

exp �kBTl xþeðE�E
0Þ

2kBT

h i2� �

coshðxÞ dx

R1
�1

exp �kBTl x2
� 	
coshðxÞ dx

: ð5Þ

Eqn (4) and (5) when combined with theory presented below
make it easier to deduce that the Nernst equation is obeyed
when the process is reversible (k0 - N case).

In eqn (2)–(5): E(t) is the applied potential, which in ac
voltammetry consists of a sinusoidal voltage superimposed on
a linear ramp;19 E0 is the formal reversible potential; e is the
magnitude of the charge on one electron (C); kB is Boltzmann’s
constant (eV K�1); T is the temperature (K); l is the reorganisa-
tion energy (eV); k0 is the formal charge transfer rate constant
(s�1) at E0.

In contrast to the Marcus–Hush model, the Butler–Volmer
treatment,10 gives

kox

k0
¼ exp ð1� aÞnF

RT
½E � E0�


 �
; ð6Þ

kred

k0
¼ exp

�anF
RT
½E � E0�


 �
; ð7Þ

where F is Faraday’s constant (C mol�1), R is the universal
gas constant (J mol�1 K�1) and a is the charge transfer coeffi-
cient. If Ohmic drop is present, then this can be represented by
the product of the uncompensated resistance (Ru) and the
current (Itot). Introduction of the IRu drop into eqn (6) and
(7) gives

kox

k0
¼ exp ð1� aÞnF

RT
½E � E0 � RuItot�


 �
; ð8Þ

kred

k0
¼ exp

�anF
RT
½E � E0 � RuItot�


 �
: ð9Þ

Uncompensated resistance can be introduced into the Marcus–
Hush model in an analogous way to that in the Butler–Volmer
formalism. Since Itot is the total current, it represents the sum
of the Faradaic, If(t), and capacitive, Ic(t), currents. Thus,

ItotðtÞ ¼ IfðtÞ þ IcðtÞ;

¼ Fa
dGA

dt
þ d

dt
½CdlðEeffÞEeff �:

ð10Þ

Here, Cdl(Eeff) is the double layer capacitance, in F cm�2, given
as a function of the effective voltage (Eeff = E � E0 � ItotRu), a is
the area of the electrode in cm2 and GA(t) and GB(t) represent
the coverage of species A and B, respectively, on the electrode
surface (mol cm�2) at a given time t (s).
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By the conservation of mass it follows that

GA(t) + GB(t) = G*, (11)

where G* is a constant that represents the total coverage. The
use of eqn (11) and the assumption of a Langmuir isotherm, in
which interactions between adsorbed molecules are negligible
and all adsorption sites are equivalent, allows the chemistry
represented in eqn (1) to be expressed mathematically as

dGA

dt
¼ kredðG� � GAÞ � koxGA: ð12Þ

Provision of an initial condition for each of eqn (2), (3) and
(12) enables the voltammetric problem to be solved numerically.

2.1 Non-dimensional variables

In terms of achieving computational efficiency, it is useful to
translate the dimensional parameters into non-dimensional
variables. As has been discussed elsewhere,21,35 the problem
identified above can be re-cast in terms of non-dimensional
variables. Since the voltammetric problem being addressed
requires a linear relationship between time t and the dc
component of applied potential, EDC, then the dimensionless
parameter t can be defined by

t = F(Ei + vt)/RT = FEDC/RT, (13)

and used to replace both of these dimensional variables, where
Ei is the initial potential, v is the scan rate and R, T and F have
their usual meanings.

Similarly, in the non-dimensional format

e0 ¼ F

RT
E0: ð14Þ

The sine wave amplitude, DE, is non-dimensionalised to obtain

Dt ¼ FDE
RT

; ð15Þ

whilst the angular frequency, o, becomes

O ¼ RTo
Fv

: ð16Þ

This definition ensures that

Ot = ot + FEiO/RT.

Since O and Ei are experimental parameters, their values can
be selected. By choosing O to be any even multiple of p, and
values of Ei such that FEi/RT is an even integer, it follows that

sin jot = sin jOt, j = 0,1,2,3,. . . (17)

This allows a non-dimensional version of the applied
potential to be developed, using eqn (13)–(16), where e(t) is
the non-dimensional applied potential

e(t) = eDC(t) + eAC(t) = t + Dt sin(Ot). (18)

Following a similar pattern as above, non-dimensional ver-
sions of kox, kred and GA denoted by kox, kred and y, respectively,

can be generated as follows:

kox ¼
kox

k0
; ð19Þ

kred ¼
kred

k0
; ð20Þ

and y ¼ GA

G�
: ð21Þ

The following definitions for the non-dimensional uncom-
pensated resistance, R�u, total current, itot, overpotential, Z, and
reorganisation energy, l*, were also introduced

R�u ¼
F3aG�v
R2T2

Ru; itotðtÞ ¼
RT

F2aG�v
Itot; ð22Þ

Z ¼ eðE � E0Þ
kBT

and l� ¼ l
kBT

: ð23Þ

Using all the information above, and noting that the
integrals in the Chidsey formulation of the Marcus–Hush
theory and the Butler–Volmer relationship are already non-
dimensional, both models can be written entirely in non-
dimensional terms

dy
dt
¼ kredð1� yÞ � koxy; ð24Þ

with y prescribed at t = 0 and

itot ¼ n
dy
dt
þ d

dt
gdlðeeffÞeeff½ �; ð25Þ

where the non-dimensionalisation of Cdl(Eeff) will depend on its
specific functional form. Whilst all computations were under-
taken using non-dimensional variables, plots and figures are
frequently presented in terms of dimensioned parameters
readily recognized by electrochemists in order to simplify
understanding of data in terms of experiments relevant to
parameters values.

2.2 A numerical solution algorithm

The numerical solution algorithm used to solve the equations
above involves backward Euler discretisations of the time
derivative.36 When using the Marcus–Hush description of
electron transfer kinetics we require an accurate and compu-
tationally efficient method for evaluating integrals of the form
of eqn (19) and (20). These integrals can be written in the form

Z 1
�1

exp � x� b1ð Þ2 1
4l�
� �h i

1þ expðxÞ dx; ð26Þ

where l* is a positive constant and b1 depends on time but can
be treated as a constant as far as the integration is concerned,
by recomputing the integral for each value of b1. The important
features of the integrand are as follows: it is always positive; it
has a single maximum; it decays very quickly as |x| increases;
and the maximum translates along the x axis as b1 changes. In
order for many of the traditional methods of integration to be
computationally efficient, the position of the maximum of the
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integrand must be tracked and this, along with the fact that the
integral has to be evaluated many times (at least 218 times due to
the time resolution required), means that an efficient computa-
tional technique must be used in order to solve these problems
on practical timescales. These complexities, that are absent from
the Butler–Volmer formalism, are one of the main reasons for
Marcus–Hush theory currently being underused in electrochem-
istry. Clearly, an algorithm that can evaluate these rate constants
accurately and in a timely manner is of some importance.

The method we use to compute this integral is Gauss–
Hermite quadrature which states the following

Z 1
�1

e�x
2
f ðxÞdx �

Xk
i¼1

wif ðxiÞ; ð27Þ

where k is the number of sample points, xi are the k roots of the
Hermite polynomial, Hk(x), where

HkðxÞ ¼ ð�1Þkex
2 dk

dxk
e�x

2
� �

; ð28Þ

and

wi ¼
2k�1k!

ffiffiffi
p
p

k2½Hk�1ðxiÞ�2
; for i ¼ 1; . . . ; k; ð29Þ

all of which can be pre-computed. We found this method to be
stable and accurate across the whole range of parameter space
and our results compared well with other more traditional
methods such as the composite trapezium rule.

3 Prediction of differences based on
Marcus–Hush and Butler–Volmer models
when using dc voltammetry

In the theoretical comparison of the predictions of models
employing Marcus–Hush or Butler–Volmer theory, uncompensated
resistance and capacitance are ignored. The dc voltammetric case
has already been considered by a number of authors,33,37 so only a
brief review of this scenario is provided in this paper. In the dc
situation, when RTk0/Fv is large, it should be noted that the
voltammetry using either model adheres to the prediction of the
Nernst equation and it was verified that the simulations also
comply with this expectation. It is only when RTk0/Fv is much
smaller that large differences in predictions of dc voltammograms
based on the two models emerge.

Fig. 1 shows the dependence of kox (kox/k0) on oxidation (and
reduction) as a function of potential (parameters given in figure
caption). The top plot is generated using Butler–Volmer
kinetics. Since this is a semi-log plot and k0 is a constant (value
at E0), the straight line reveals that this model predicts that the
rate constant kox will increase exponentially as long as the
applied potential is increased.33,37 The other four plots in
Fig. 1 are generated using Marcus–Hush kinetics for four
different values of l and we can see clearly that limiting values
for kox/k0 and kred/k0 are predicted, where the limits depend on
reorganisation energy. These data also reveal that if l is
large, then the two models converge, assuming a = 0.5 in the

Butler–Volmer case. However, if a a 0.5, then there is no
simulation based on the Chidsey formulation of Marcus–Hush
theory that will become coincident with the Butler–Volmer
model. In this case, an asymmetric model of the Marcus theory
would have to form the basis of the comparison.13–18

Fig. 2 and 3 display predictions in the form of dc voltammo-
grams as a function of k0 when using Marcus–Hush kinetics for
surface-confined and diffusing species, respectively. Fig. 2(a) and
3(a) show the effect of decreasing k0, assuming Marcus–Hush

Fig. 1 Dependence of ln(kox/k0) (solid lines) and ln(kred/k0) (dashed lines) on
potential relative to E0 under conditions of dc voltammetry for a surface-confined
process with k0 = 1 s�1. Black lines indicate Butler–Volmer kinetics with a = 0.5.
Blue, green, red and pink lines indicate Marcus–Hush kinetics with l = 1, 0.75, 0.5,
0.25 eV, respectively. Other parameters: a = 1 cm2; v = 1 V s�1; E0 = 0 V; Cdl =
0 F cm�2; Ru = 0 O; k0 = 1 s�1; T = 273 K; and at t = 0 s, GA = 10 pico-mol cm�2 and
GB = 0 pico-mol cm�2.

Fig. 2 Predicted dc voltammograms for a surface-confined species based on (a)
Marcus–Hush with l = 0.85 eV and (b) Butler–Volmer kinetics with a = 0.5, as a
function of k0. Left to right k0 = 100, 10, 1, 0.1, 0.005 s�1. Other parameters:
a = 1 cm2; v = 1 V s�1; E0 = 0 V; Cdl = 0 F cm�2; Ru = 0 O; T = 273 K; and at t = 0 s,
GA = 10 pico-mol cm�2 and GB = 0 pico-mol cm�2.

Paper PCCP

Pu
bl

is
he

d 
on

 1
2 

N
ov

em
be

r 
20

12
. D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 7
/2

3/
20

25
 8

:4
0:

49
 A

M
. 

View Article Online

https://doi.org/10.1039/c2cp43193a


2214 Phys. Chem. Chem. Phys., 2013, 15, 2210--2221 This journal is c the Owner Societies 2013

kinetics apply: the peak current progressively decreases and the
voltammetric wave-shape broadens. In contrast with Butler–
Volmer kinetics in Fig. 2(b) and 3(b), the peak current drops
initially as k0 decreases, but then the peak current attains a
constant value and the wave-shape becomes independent of k0.38

4 Prediction of differences based on
Marcus–Hush and Butler–Volmer models
when using ac voltammetry

In Fourier-transformed (FT) ac voltammetry, the use of the FFT
algorithm to convert data in the time domain to the frequency
domain followed by band filtering and an application of the inverse
FFT algorithm, as described elsewhere,19–21,35 allows the dc and ac
harmonics to be resolved. Essentially, the higher harmonics are
more sensitive to k0 than the dc or first harmonic and ideally they
are also devoid of background capacitance. However, in order to
simplify the presentation of results, uncompensated resistance and
capacitance are again ignored in the simulations presented below.
Importantly, it should be noted that all ac harmonic components
are derived from a single experiment, whereas variation in the scan
rate parameter that is critical in dc voltammetry requires a series of
experiments to achieve the time dependence.

Fig. 4 shows peak current heights for the dc, first, third and
fifth harmonic components for Butler–Volmer (in red) and
Marcus–Hush (in black) kinetics across a range of x = k0/f values
for a given scan rate of 1 V s�1. The ac experiment has a dual time

scale represented by the dc scan rate and the ac frequency. In this
form of analysis, it is the ac frequency that is varied. Therefore the ac
timescale is related to the order of the harmonics: higher harmonics
refer to shorter timescales. In practice the upper frequency that is
accessible is restricted by the maximum allowable frequency of the
experimental instrumentation producing the ac signal. Neverthe-
less, Fig. 4 does convey regions where differences in the two models
are predicted. The peak heights displayed in Fig. 4 are derived from
the maximum value in each of the corresponding harmonics, and
are easy to identify when the data is plotted as in Fig. 5. As is
expected from consideration of the dc case described above, large x
values, which imply the process is reversible, produce constant peak
heights for each ac harmonic regardless of the formalism used.
Again, this trivial result serves as a partial check that the solutions to
the theory are sensible. The interesting divergence in the two
theories is introduced when x is decreased, making the system
quasi-reversible. In this regime Fig. 4, Butler–Volmer theory predicts
that the ac peak heights tend to constant values, whereas Marcus–
Hush theory predicts that the peak heights, across all harmonics,
tend to zero as the system becomes progressively more irreversible
(lower x values). Plots in Fig. 4 also indicate that the higher the
harmonic, the more rapidly the peak height approaches zero (when
decreasing x). Furthermore, and as expected, if the harmonic peak
heights are plotted against k0 = k0RT/FV with a constant value of f =
30 Hz, analogous behaviour is observed to Fig. 4. Varying f over wide
ranges is of course experimentally more tractable than varying v at
constant f, as noted above.

These peak height patterns of behaviour provide us with a
clear criterion for identifying Marcus–Hush behaviour. In ac
voltammetric experimental data, as x is decreased, only if a
levelling-off of the peak height occurs in each harmonic (more
easily detected in the higher harmonics), is Butler–Volmer
theory acceptable for describing the data.

Timmer and co-workers,37 and later Smith and McCord,39

also noted that when using the Butler–Volmer relationship in ac
polarography (voltammetry at a dropping mercury electrode), ac
currents do not decrease to zero as a process becomes less
reversible. However, it does seem reasonable that if the rate
constant approaches zero, then the ac current might be expected
to approach zero; a feature provided by the Marcus–Hush model.

The peak height dependence may be translated into outcomes
expected on the basis of full ac voltammetric analysis as a function of
potential. Fig. 5 shows the voltammetric response for the dc, as well
as first, third and fifth harmonic components with k0 = 1 s�1 and
other parameters given in the figure caption. In the dc voltammetric
component, predictions based on the three models (Butler–Volmer
with a = 0.5, Marcus–Hush with l = 1 eV, and Marcus–Hush with l =
0.25 eV) are difficult to distinguish, particularly when experimental
error is considered. However, examination of the higher harmonics
reveals that the differences in the predictions of the three models
become increasingly evident. Fig. 6 shows the dc and ac harmonic
components simulated using more irreversible kinetics (k0 =
0.1 s�1). Differences between Marcus–Hush and Butler–Volmer
theories are now clearer, even in the dc component.

It is useful to now use parameter-sets in Chidsey’s pioneering
paper12 for numerically simulating the voltammetry of a ferrocene

Fig. 3 Predicted dc voltammograms for a diffusing species based on (a) Marcus–
Hush kinetics with l = 0.85 eV and (b) Butler–Volmer kinetics with a = 0.5, as a
function k0. Left to right k0 = 1 � 106, 1 � 104, 4 � 103, 300, 1 cm s�1. Other
parameters: a = 1 cm2; v = 1 V s�1; E0 = 0 V; Cdl = 0 F cm�2; Ru = 0 O; T = 273 K; and
at t = 0 s, G* = 10�6 mol cm�3 and D = 2.3 � 10�5 cm2 s�1.
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group at a gold electrode using both Butler–Volmer and Marcus–
Hush kinetics. This shows the benefits of using FT-ac voltammetry
over dc voltammetry with experimentally relevant parameter values.
In Fig. 7, simulated dc voltammograms are plotted with one
parameter set used by Chidsey12 (provided in the figure caption).
As can be seen, differences in the Marcus–Hush and Butler–Volmer
models are small when a scan rate of 0.5 V s�1 is used, and they
would indeed be difficult to distinguish when experimental error
is taken into account. In contrast, when FT-ac voltammetry
is employed, as shown in Fig. 8, the two models are easily
distinguishable for this experimentally realistic parameter-set.

Comparison of the theoretically derived data derived in Fig. 7 and
8 clearly demonstrate that harmonic analysis available in large
amplitude ac voltammetry in principle provides a more sensitive
probe of the applicability of either Marcus–Hush or Butler–Volmer
theory to an experimental data set. A known limitation of the ac

method is the low current magnitude obtained in the higher
harmonics for the surface-confined model when the rate constant
is small. As can be seen in the fifth harmonic in Fig. 5 and 6, the
Marcus–Hush model gives a current magnitude of the order of
10�10 A, which is close to the experimental limit of measurement.
This problem can be addressed to some extent by increasing the
amplitude of the ac signal, DE, or by trying to increase the surface
coverage of the electroactive species on the electrode. However, this
measurability issue is clearly going to emerge at some higher
harmonic order where the current will be too small to observe above
experimental noise.

Fig. 9 compares the signal intensity of the fourth and fifth
harmonics for the diffusional model ((a) and (b)) and the surface-
confined model ((c) and (d)) for a set of parameters given in the
figure caption. Clearly, the issues outlined in the paragraph above
surrounding the signal intensities of higher harmonics are not as

Fig. 4 Log–log plots of the non-dimensional peak current versus the non-dimensional parameter grouping x = k0/f for the dc component, first harmonic, third
harmonic and fifth harmonic derived from FT-ac voltammetry. Black lines indicate Marcus–Hush theory with l = 0.25 eV. Red lines indicate Butler–Volmer theory
with a = 0.5. Other parameters: a = 1 cm2; E0 = 0 V; Cdl = 0 F cm�2; Ru = 0 O; T = 273 K; and at t = 0 s, GA = 10 pico-mol cm�2 and GB = 0 pico-mol cm�2; v = 1 V s�1;
DE = 0.05 V; and the potential was swept between �0.5 and 0.5 V.
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severe for the diffusional model. For example, in the fifth harmonic,
the current response is of the order of 10�5 A for the diffusional
model, compared with 10�10 A for the surface-confined model. This
difference implies the problem of Ohmic (IRu) drop will be more
severe in the diffusive case. In surface-confined systems the current
magnitude is usually of the order of hundreds of nano-amps,
therefore the IRu drop is unlikely to have a significant effect.
However, in solution phase systems, where the current response
is likely to be three or four orders of magnitude larger, IRu drop
often needs to be considered. Conversely, capacitance current can
dominate dc voltammetry of surface-confined systems, but is not an
issue in FT-ac voltammetry for the higher order harmonics.36,40

5 Implementation of Marcus–Hush model
using the large amplitude FT-ac method

Given that the mathematical complexity of the Marcus–Hush
model is no longer an issue, and because it utilises a more

fundamental set of physical parameters, this model should be
the natural choice to provide a description of electrode kinetics.
It is useful therefore to consider how the Marcus–Hush model
could be implemented when FT voltammetric ac data are
available. A range of parameters may need to be deduced by
simulation–experiment comparisons. However, ideally, as
many parameters as possible should be measured indepen-
dently so they can be classified as known. E0 is usually known,
but the determination of Ru and Cdl needs to be undertaken as
both terms can produce distortion of the faradaic voltammetric
characteristics. Assuming Ru and Cdl are accurately known and
are included in the model as are electrode area, temperature,
amplitude and frequency of the ac signal etc., then the challenge
is to provide unique values for k0 and l that fit the data over a
wide time (or frequency) domain. In the dc voltammetric
method, this requires undertaking a series of experiments over
a range of scan rates, where the higher the scan rate, the more
sensitive the response to k0 and l, but more problematic with
regard to Ru and Cdl (solution soluble case). In the large-amplitude

Fig. 5 Log–log plots of the non-dimensional peak current versus the non-dimensional parameter grouping k0 = RTk0/Fv for the dc component, first harmonic, third
harmonic and fifth harmonic derived from FT-ac voltammetry. Black lines indicate Marcus–Hush theory with l = 0.25 eV. Red lines indicate Butler–Volmer theory
with a = 0.5. Other parameters: a = 1 cm2; E0 = 0 V; Cdl = 0 F cm�2; Ru = 0 O; T = 273 K; and at t = 0 s, GA = 10 pico-mol cm�2 and GB = 0 pico-mol cm�2; f = 30 Hz;
DE = 0.05 V; and potential was swept between �0.5 and 0.5 V.
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FT-ac approach, a single experiment in which a series of harmo-
nics are available provides the analogous data set with the
highest harmonics being most sensitive to k0 and l. Ru is also
still important, but Cdl is ideally absent in the higher harmonics.

A more sophisticated approach available in FT-ac voltammetry
is to apply a number of sine waves encompassing a range of
frequencies rather than a single sine wave, so that even more data
are available for the fundamental or higher harmonics, again will
data obtained from a single experiment.40 Finally, with the ac
method, the scan rate also can be varied in a series of experiments.

Clearly, in the reversible limit, both theories converge to
predictions based on the Nernst relationship. In the near
reversible regime, the Butler–Volmer model is insensitive to a
and k0 and both are difficult to determine accurately; a similar
situation naturally prevails with respect to l and k0 in the use of
the Marcus–Hush model. Thus, a significant level of departure
from reversibility is needed to determine k0 and l (or k0 and a).

With FT-ac voltammetry, curve fitting providing excellent
simulation-experiment comparisons over a series of harmonics
and/or frequencies needs to be generated with a single combi-
nation of k0 and l (as well as other relevant experimental
parameters) as required to confirm compliance to the Marcus–
Hush model. Almost certainly, if just a single ac harmonic were
computed using the Marcus–Hush model, but analysed by the

Fig. 6 Dc, first, third and fifth harmonic components derived from FT-ac voltammetry when k0 = 1 s�1. Black lines indicate Butler–Volmer theory with a = 0.5. Red lines
indicate Marcus–Hush theory with l = 1 eV. Blue lines indicate Marcus–Hush theory with l = 0.25 eV. Other parameters: a = 1 cm2; E0 = 0 V; Cdl = 0 F cm�2; Ru = 0 O;
T = 273 K; and at t = 0 s, GA = 10 pico-mol cm�2 and GB = 0 pico-mol cm�2; f = 30 Hz; DE = 0.05 V; and v = 0.1 V s�1.

Fig. 7 Numerically simulated dc voltammograms using parameter-set taken
from.12 Black line indicates Butler–Volmer theory with a = 0.5 and k0 = 1.25 s�1.
Red line indicates Marcus–Hush theory with l = 0.85 eV and k0 = 1.295 s�1. Other
parameters: a = 0.7 cm2; E0 = 0 V; Cdl = 0 F cm�2; Ru = 0 O; T = 298 K; and at t = 0 s,
GA = 9.5 pico-mol cm�2 and GB = 0 pico-mol cm�2; and v = 0.5 V s�1.
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Butler–Volmer model, then a combination of k0 and a (= 0.5)
would also fit the experimental data. However, a key feature to
recognise is that these particular parameters would not lead to
good fit for all the other harmonics. The challenge is to have
experimentalists routinely fit data with the Marcus–Hush
model to assess whether a significant data base encompassing
many electrode processes can ultimately be established where
this model is preferable. As Oldham advises,34 the jury is still
out on the need, or otherwise, for routine implementation of
theoretical models based on Marcus–Hush theory as an alter-
native to the Butler–Volmer formalism. The critical question is
to establish how to ascertain which model provides the better
fit to experimental data.

6 Distinguishing the Butler–Volmer and
Marcus–Hush models

In order to partially address the question as to what conditions
are needed to allow the Butler–Volmer and Marcus–Hush

theories to be distinguished, FT-ac voltammetric data obtained
from simulations using the Butler–Volmer model were fitted to
the Marcus–Hush model and vice versa for a single electron
transfer reaction, eqn (1), under surface-confined conditions.
The protocol used in this exercise, is when fitting Butler–
Volmer model to Marcus–Hush simulation, the rate constant
k0 and a are varied to establish the level of fit available with the
‘‘wrong’’ model. Conversely, when fitting Marcus–Hush to
Butler–Volmer derived data, k0 and l are varied.

In these fitting exercises, two simulations are made for each
of the electron transfer theories; one where we expect the
alternative theory may be able to achieve a good fit and one
where we expect a good fit to be impossible. For the simulated
data generated with Butler–Volmer theory, k0 was fixed at 10 s�1

and a was given a value of 0.4 or 0.5. With the first a value, use
of the Chidsey formalism based on the Marcus–Hush theory is
not expected to be able to adequately fit the simulated data,13–15

while with a = 0.5, this may be possible. With a = 0.4, it is
anticipated that the asymmetric Marcus–Hush theory13–18

would have to be introduced to provide a satisfactory fit.

Fig. 8 Numerically simulated FT-ac harmonic data using parameter-set taken from.12 Black line indicates Butler–Volmer theory with a = 0.5 and k0 = 1.25 s�1. Red line
indicates Marcus–Hush theory with l = 0.85 eV and k0 = 1.295 s�1. Other parameters: a = 0.7 cm2; E0 = 0 V; Cdl = 0 F cm�2; Ru = 0 O; T = 298 K; and at t = 0 s, GA = 9.5
pico-mol cm�2 and GB = 0 pico-mol cm�2; f = 30 Hz; DE = 0.05 V; and v = 0.5 V s�1.
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For the simulated data generated with Marcus–Hush theory k0 =
10 s�1 is again used and the parameter l is either 0.1 eV or
1.0 eV. The expectation is that superior Butler–Volmer fits with
a = 0.5 are likely to be achieved with the larger l value.

The scenarios where Butler–Volmer and Marcus–Hush
theories of electron transfer are unlikely to be distinguished
are when Butler–Volmer has a = 0.5 and when Marcus–Hush
has l - N or the process is reversible, as can be seen by
inspection of data in Fig. 1.

For simplicity, all simulations in this exercise are again
conducted with Ru = 0 Ohm, Cdl = 0 Farad. Examples given
are based on a single sine wave with DE = 100 mV, f = 200 Hz
added to the dc ramp (scan rate = 1 V s�1). It should also be
noted that no account of double layer correction for electrode
kinetics10 is introduced into this analysis. This phenomenon
provides a potential dependent term and hence may apparently
mimic deviations from a = 0.5 that can be reported with the
Butler–Volmer model.

The quality of fit (say Marcus–Hush model simulated with
k0 = 5 s�1 and l = 1 eV) to a given data set (say Butler–Volmer
model generated with k0 = 10 s�1 and a = 0.5) may be judged
using the least-squares method. The range of searching for this
best fit is restricted to 0 r k0/s�1 r 20 and 0 r l/eV r 20 for
the Marcus–Hush model and 0 r k0/s�1 r 20 and 0 r a r 1
for the Butler–Volmer model. Irrespective of the model used,
for each pair of values a probability of that pair being correct
relative to all other pairs of values was constructed. The details
of this form of data analysis will be presented in an upcoming
paper. For our purposes it is sufficient to know that the
probability is inversely proportional to the least-squares value
determined by comparing the fit to the original data simulated
with the other electron transfer model. Note that this procedure
does not change the best fit values when comparing these
models, it is used as a convenient way of calculating error bars
for these best fit values. The error bars can then be determined
by summing up adjacent parameter pairs until the cumulative
probability reaches 68.3%, and therefore gives the 1s value.

The best fit parameter values and associated errors are
shown in Table 1 for all fits of Marcus–Hush to Butler–Volmer
(top) and Butler–Volmer to Marcus–Hush (bottom). As expected,

Fig. 9 (a) Fourth and (b) fifth FT-ac harmonic data for the diffusional model
with Marcus–Hush electron transfer kinetics and parameters: at t = 0 s, G* =
10�6 mol cm�3 and D = 2.310�5 cm2 s�1; k0 = 100 cm s�1. (c) Fourth and (d) fifth
FT-ac harmonic data for the surface-confined model given in this work with
Marcus–Hush electron transfer kinetics and parameters: at t = 0 s, GA = 9.5
pico-mol cm�2 and GB = 0 pico-mol cm�2; k0 = 1 s�1. Other parameters: a = 1 cm2;
E0 = 0 V; Cdl = 0 F cm�2; Ru = 0 O; T = 298 K; l = 0.25 eV f = 60 Hz; DE = 0.05 V; and
v = 0.5 V s�1.

Table 1 Best fits for each data set considering each dc and ac harmonic components independently. Best fits for each of the dc and ac harmonic components data
obtained from simulation using the Butler–Volmer model as fitted to by Marcus–Hush model and vice versa. High error bars and/or physically unlikely fits (such as
a = 0.0) indicate where the fit is very poor. Also note that where l Z 20 eV this indicates that the best fit for the Marcus–Hush model was limited by the restricted
range for l

MH fit to BV with a = 0.5 MH fit to BV with a = 0.4

Harmonic k0
fit (s�1) lfit (eV) Harmonic k0

fit (s�1) lfit (eV)

DC 10.2 � 1.4 Z 20.0 � 7.9 DC 18.5 � 7.9 0.5 � 9.3
1 10.2 � 1.6 Z 20.0 � 7.9 1 13.7 � 5.3 1.3 � 8.9
2 10.1 � 2.4 Z 20.0 � 7.8 2 13.2 � 5.2 3.7 � 7.7
3 0.1 � 3.0 Z 20.0 � 7.8 3 14.4 � 6.0 18.4 � 9.2
4 10.1 � 3.5 Z 20.0 � 7.7 4 15.3 � 6.7 20.0 � 9.2

BV fit to MH with l = 1.0 eV BV fit to MH with l = 0.1 eV

Harmonic k0
fit (s�1) afit Harmonic k0

fit (s�1) afit

DC 6.7 � 5.9 0.5 � 0.23 DC 0.2 � 9.2 0.21 � 0.35
1 7.2 � 5.5 0.5 � 0.22 1 2.1 � 7.7 0.00 � 0.43
2 7.9 � 6.1 0.5 � 0.23 2 0.1 � 7.9 0.13 � 0.29
3 0.7 � 11.1 0.16 � 0.31 3 0.2 � 7.5 0.00 � 0.31
4 0.5 � 10.3 0.11 � 0.30 4 0.1 � 8.0 0.00 � 0.31
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the data simulated with Butler–Volmer with a = 0.5 and k0 = 10 s�1

was best fitted using Marcus–Hush theory with k0 = 10.2 s�1 and
l-N (actually restricted to be l = 20 eV in this example). Also as
expected, simulations based on the Marcus–Hush model were
unable to properly fit the Butler–Volmer data with a = 0.4.

The Butler–Volmer fits to data generated by Marcus–Hush
theory also behave as expected. Data in Table 1 show that for
the dc and first two harmonics that Butler–Volmer model fits to
Marcus–Hush simulated data with l = 1 eV give the expected
answer, while those simulated with l = 0.1 eV give very poor fits
with very large error bars.

Of great interest are the best fits and their errors obtained
with different harmonics. This is particularly evident for the
Marcus–Hush fits to the Butler–Volmer simulated data with a =
0.5 compared to a = 0.4 where the error bars for k0 and l
encompasses the entire range (between 0 and 20). The sensi-
tivity of the higher harmonics is strongly seen in the Butler–
Volmer fits to the Marcus–Hush data, even when l = 1 eV.

In practice, the systematic approach recommended for fit-
ting to FT-ac voltammetric data is to show that the same
parameters predict the best fit for all ac harmonics. If the
‘‘wrong’’ model is used the apparently best fit is harmonic
dependent. The results given in Table 1 reveal that when
Marcus–Hush simulation data are fitted to the Butler–Volmer
generated data then the best fit is approximately harmonic
independent. In contrast, when Butler–Volmer model is
applied to the Marcus–Hush generated data, the best fit to
each harmonic gives quite different k0 and a values.

7 Conclusions

Simulations based on Marcus–Hush theory for electrode
kinetics have been introduced into FT-ac voltammetry as a
more fundamental alternative to Butler–Volmer theory
employed in earlier studies. Systematic analysis of the harmonic
component allows a distinction in the theoretical predictions to
be achieved, providing the process is not too close to reversible.
Thus, while predictions based on Marcus–Hush and Butler–
Volmer relationships are essentially indistinguishable under
many dc voltammetric conditions, the higher harmonics pro-
duced in large amplitude ac voltammetry may exhibit far greater
differences. In principle, varying the frequency, f, induces dif-
ferent behaviour when using the Marcus–Hush or Butler–Volmer
formalisms. If f is increased sufficiently, then the peak heights in
the ac harmonics tend to a constant value when the underlying
theory is based on Butler–Volmer kinetics, whereas they tend to
zero when using Marcus–Hush kinetics. This, and analysis of the
high order harmonics, should facilitate a better method for
distinguishing the appropriateness of either model, therefore
enabling predictions to be more readily made as to whether
Butler–Volmer or Marcus–Hush theory should be invoked.

Finally, it should be noted that there is no greater complexity
in the inverse problem in using symmetric Marcus–Hush
theory as opposed to Butler–Volmer theory, since only two
parameters are required for each formalism: Butler–Volmer
uses k0 and a; Marcus–Hush uses k0 and l. However, in cases

where use of a is not equal to 0.5 have been apparently
established from Butler–Volmer analysis, then no reasonable
fit will be available with the Chidsey formalism. In this case,
double layer electrode kinetic effects or introduction of an
asymmetric Marcus–Hush model13–18 will need to be consid-
ered. The FT-ac voltammetric method of analysis introduced in
this work, seeks, as is the case in the very recent papers by
Compton et al.,13–18 to optimise the ability to detect often subtle
distinctions available in the Butler–Volmer and Marcus Hush
theories. Further work is now required to ascertain whether
FT-ac, dc or square wave13–18 or other methods achieve the
maximum sensitivity with respect to addressing this issue.
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