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Unmixing the NMR spectra of similar
species – vive la différence†

Adam A. Colbourne,a Sebastian Meier,b Gareth A. Morrisa and Mathias Nilsson*ac

Diffusion-ordered spectroscopy (DOSY) is one of the most powerful

methods for intact mixture analysis by NMR. However, the separation

of overlapped spectra by current DOSY methods typically requires a

minimum of 30% difference in diffusion coefficient. Here we present a

new algorithm (OUTSCORE) that can improve the situation by almost

an order of magnitude, allowing the unmixing of severely overlapped

species of similar size, by combining least squares fitting with cross-

talk minimisation, maximising spectral difference.

Diffusion-ordered spectroscopy (DOSY)1–3 is a widespread tool for
mixture analysis, combining pulsed field gradient (PFG) NMR
experiments with a variety of different post-processing techniques
in order to extract the spectra of different mixture components. The
experimental data needed are acquired in a series of PFG-NMR
experiments run with different gradient strengths, causing signal
attenuation that depends upon the diffusion coefficients D of the
different species. The attenuation for a given signal is typically
described by an exponential decay of the form of the Stejskal–
Tanner (S–T) equation.4,5 By fitting the signal decays in the PFG-
NMR dataset to the S–T equation, values for D can be extracted for
individual peaks, spectral regions, or the whole dataset. Depending
on the post-processing method used, component spectra are
usually obtained either from cross-sections or selective projections
of a DOSY spectrum, or as a series of 1D spectra and associated
diffusion decay shapes obtained by fitting the entire dataset.

The simplest, and often most useful, post-processing approach
is high-resolution (HR) DOSY,6 in which the decays of individual
spectral peaks are fitted to the S–T equation and the resultant
diffusion coefficients and error estimates are used to construct a
2D DOSY spectrum. Unfortunately, where peaks from different

components overlap HRDOSY fails, usually7 returning a value
of D intermediate between those of the species concerned (see
e.g. Fig. 1a) and obscuring chemical information about the analytes.
With univariate methods (independent fitting of each spectral peak/
frequency), an obvious next step is to model each peak decay using
two – or more – exponentials,8 a continuous distribution,9–11 or
iterative thresholding.12 However, even biexponential fitting is only
feasible with very high quality experimental data and for species that
are well-separated in diffusion coefficient.

Fig. 1 (a) Part of the HRDOSY spectrum of progesterone and estradiol, showing both
overlapped peaks that have compromise D values (e.g. around 1.2–1.3 ppm), and well-
resolved peaks (e.g. around 0.6 ppm). (b) SCORE fit of the same data, showing extensive
cross-talk due to the similarity in D between the two components. (c) OUTSCORE result,
with the output spectra showing only minor cross-talk, due to experimental instability,
between the estradiol (upper) and progesterone (lower) spectra. D values from
OUTSCORE agree well with those found for the non-overlapped peaks in the
HR-DOSY spectrum. Spectra of the pure components are given in the ESI.†
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Instead of attempting to accommodate the effects of spectral
overlap, one may try to avoid them. Experimental techniques
such as pure shift NMR,13,14 3D DOSY15,16 and heteronuclear
methods17–19 can all greatly improve resolution. Unfortunately
the costs in sensitivity and experiment time can be high, and
even then freedom from signal overlap is not guaranteed.

One alternative to univariate processing is to fit the whole
dataset simultaneously, in a multivariate decomposition:

X = S # C + E (1)

where X is a two-dimensional data matrix describing the experi-
mental signal strength as a function of chemical shift and gradient
amplitude; the matrix S is (ideally) a set of 1D component spectra;
the matrix C contains the associated set of diffusional decay
shapes as a function of gradient amplitude; and the matrix E is
the residual, the data not explained by the model (ideally only noise).
The symbol # represents the Kronecker product.

The major advantage of multivariate processing is that the whole
dataset is used, which allows information from non-overlapped
peaks to guide the separation of peaks that are overlapped. As
a result, algorithms such as CORE/SCORE and DECRA20–22 are
particularly useful for dealing with heavily overlapped mixture
spectra. The CORE method uses prior knowledge – the expected
form of the diffusional attenuation – to allow C and S to be
found by iterative least squares fitting; SCORE differs from
CORE in using a linear rather than a nonlinear inner fitting loop,
improving performance usefully. Multivariate methods are limited
in the number of component spectra that can successfully be
separated, with a typical practical limit for experimental data being
2–4 components. Piecemeal multivariate processing can circumvent
this numerical limitation, as only a subset of the species in a
mixture is typically present in any spectral region.23–25

Typically, a multivariate method aims to choose S and C so
that E is minimized (eqn (1)). A set of component spectra S and
decays C is sought that, when combined and compared to the
original, leaves as little signal unexplained as possible. There are
some practical difficulties with this approach however: firstly,
systematic errors in the experimental data such as spatially non-
uniform PFGs can distort the shape of the diffusion decay, and
secondly, spectrometer instability with respect to temperature,
field-frequency lock or PFG-induced field disturbances can cause
variations in peak shape and position. Fortunately, we can
account for the effect of non-uniform PFGs by measuring the
non-uniformity and applying a suitable correction to the S–T
equation,26 and most errors in peak shapes and positions (but
typically not all of those caused by temperature and pH changes)
can be corrected using reference deconvolution.27 Even with such
corrections applied to the very best quality experimental data,
multivariate methods, whilst coping with overlap much more
effectively than their univariate counterparts, will struggle where
mixture components have similar diffusion coefficients. This is
because similar values of D correspond to similar decay shapes in
the diffusion dimension: at o30% difference in D, a residual-
based minimization can no longer distinguish between two
components in experimental data with practical signal-to-noise
ratios (S/Ns). In such cases, algorithms typically produce a set
of diffusion coefficients that do not accurately match those of

the species in the sample, and a set of component spectra that
show cross-talk (signals leaking across from one component
spectrum to another), as seen in Fig. 1b (SCORE).

One interesting strategy for dealing with this limit has recently
been suggested, called GRECORD.28 An extension of RECORD,
GRECORD attempts to explain the experimental data better by
repeating CORE analyses using values of D limited to those from a
consensus set chosen from initial RECORD processing. Crucially,
the method requires that the diffusion coefficient of each species
in a mixture be correctly identified in at least one of the regions
processed.

Here we propose a different approach. The OUTSCORE
method (Optimized Unmixing of True Spectra for COmponent
REsolution) again exploits signals that are at least partly resolved,
but in a rather different way. The new method replaces the least
squares optimization criterion of the outer loop of SCORE by a
requirement to minimize the degree of similarity between trial
component spectra – i.e. to minimize spectral cross-talk, and
maximise spectral difference. The fast and accurate inner loop of
SCORE, which uses linear least squares optimization, is retained so
that the solution converged on minimizes both the residual and the
cross-talk between component spectra. Biasing the search in this
way towards component spectra that differ, at least in detail,
improves the ability to separate component spectra by almost an
order of magnitude. Fig. 1a–c compare the results of HRDOSY,
SCORE and OUTSCORE analysis of a diffusion-weighted NMR
dataset measured for a mixture of progesterone and estradiol.
OUTSCORE shows much cleaner resolution of the spectra of the
two components, despite their differing in diffusion coefficient
by only 17%. The residual cross-talk between the components
in Fig. 1 and 2 is due to deviations from the bilinear model,

Fig. 2 HRDOSY (a) and two-component OUTSCORE spectra (b) of ribose in D2O. The
latter contains four species, with different D values and concentrations: b-pyranose &
b-furanose (diffusing at nearly the same rate), a-furanose, and a-pyranose. The
OUTSCORE spectra show the b-pyranose/b-furanose (top) and a-pyranose (bottom),
successfully separated with just a 4.6% difference in D. The a-furanose signals are of
low intensity, and with B2% difference in D from the other two components, are
unresolvable with OUTSCORE and are shared between the two spectra (in proportions
that depend on the relative differences in D).
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e.g. changes in signal frequency, shape, phase etc. caused by
spectrometer instability. The effects of such experimental errors
cannot easily be eliminated by any linear model. Temperature-
dependent peak shifts cause apparent dispersion-mode signals
in the OUTSCORE spectra (e.g. for the strong methyl signals at
B0.6/0.75 ppm in Fig. 1). Such error signals can be reduced by
using short experiment times, to reduce temperature drift.

The criterion of cross-talk minimisation is related to, but distinct
from, the model-free blind source separation technique,29–32 which
has recently been applied to DOSY.32 Whilst this model-free
method has great potential, a model-based approach such as
OUTSCORE that incorporates prior knowledge (here in the
form of the known S–T decay shape) should always perform
better if the model is correct.

Whilst OUTSCORE can allow the resolution of spectral compo-
nents that show very similar diffusional decays, even this method
will break down with increasing number of mixture components
and/or similarity between diffusional decays. As a general rule, with
high S/N data (B>10 000 : 1) and mixture components of similar
concentration, multi-exponential fitting and SCORE perform reliably
when the difference in D between components is >30%. In contrast,
with OUTSCORE two components differing in D by as little as 3–5%
can be resolved, though it remains difficult to extract more than 4
components per fit, or more than 2–3 components where the
difference in D is very small. OUTSCORE is much less demanding
of S/N ratio than SCORE; for example the spectra of Fig. 1 remain
separable down to 100 : 1 S/N (see ESI†).

As shown in Fig. 2, OUTSCORE can permit the spectral
separation of isomers in homogenous solution, resolving isomers
that interconvert slowly on the NMR timescale and are hard or
impossible to separate physically. In this example the mixture
components all have the same molecular mass and the differ-
ences in D arise purely from their different shapes in solution.
In all cases where we have compared OUTSCORE and SCORE,
the former has outperformed the latter in resolving power,
speed, or both. OUTSCORE should be applicable to the vast
majority of mixtures, but will inevitably fail in the limit case of
perfectly overlapped spectra (e.g. of a polydisperse polymer);
without spectral difference there is nothing to minimize and
the analysis is in reality univariate.

Whilst allowing greatly improved resolution of mixture compo-
nent spectra with respect to D, OUTSCORE is still limited in the
number of components per analysis, as noted above. As a result,
using the OUTSCORE cross-talk minimization criterion in the
multiple, smaller, decompositions of a RECORD–LOCODOSY
processing scheme could be very useful. Unfortunately, because
the automated method used in LOCODOSY for rank determina-
tion relies on the SCORE algorithm failing characteristically, this
particular approach cannot be used with OUTSCORE. A number
of possible methods can be envisaged for fully automatic decom-
position of data, including a RECORD-style incremental approach. For
the most complex mixture analysis problems, manual segmentation
of a spectrum using prior knowledge, gained from e.g. HRDOSY
processing, will offer the most powerful approach.

Mixture analysis is a complex and demanding task. DOSY is
one non-destructive and relatively swift technique in the ana-
lyst’s repertoire that has consistently gained in interest and applica-
tion as it has developed. The method encompasses a variety of
processing approaches, and is most powerful when the results of
different methods are compared. In the all too common case where
the NMR spectra of similar mixture components overlap, OUTSCORE
can utilise the information available from non-overlapped signals to
much better effect than earlier methods. All of the processing above
used the DOSYToolbox,33 which is free to download.
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Sciences Research Council (Grants EP/E05899X/1 and EP/H024336/1).
A.A.C. thanks the EPSRC for a DTA studentship.
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