Fluorescence sensing of adenosine deaminase based on adenosine induced self-assembly of aptamer structures
Abstract
A new approach is proposed for simple detection of adenosine deaminase (ADA) based on adenosine induced self-assembly of two pieces of single-stranded DNA (ssDNA). These ssDNA are two fragments of the aptamer that has a strong affinity for adenosine and are labeled with carboxyfluorescein and black hole quencher-1, respectively. The complementarities of the bases in the two pieces of ssDNA are insufficient to form a stable structure. In the presence of adenosine, however, the ssDNA can be assembled into the intact aptamer tertiary structure, which results in fluorescence quenching of the carboxyfluorescein-labeled aptamer fragment. As a result, the adenosine–ssDNA complex shows a low background signal, which is rather desired for achieving sensitive detection. Reaction of the complex with ADA causes a great fluorescence enhancement by converting adenosine into inosine that has no affinity for the aptamer. This behaviour leads to the development of a simple and sensitive fluorescent method for assaying ADA activity, with a detection limit of 0.05 U mL−1, which is more sensitive than most of the existing approaches. Furthermore, the applicability of the method has been demonstrated by detecting ADA in mouse serum samples.