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Antibody orientation on biosensor surfaces: a
minireview

Anke K. TriIIing,ab Jules Beekwilder? and Han Zuilhof*°*

Detection elements play a key role in analyte recognition in biosensors. Therefore, detection elements with
high analyte specificity and binding strength are required. While antibodies (Abs) have been increasingly
used as detection elements in biosensors, a key challenge remains — the immobilization on the biosensor
surface. This minireview highlights recent approaches to immobilize and study Abs on surfaces. We first
introduce Ab species used as detection elements, and discuss techniques recently used to elucidate Ab
orientation by determination of layer thickness or surface topology. Then, several immobilization
methods will be presented: non-covalent and covalent surface attachment, yielding oriented or random
coupled Abs. Finally, protein modification methods applicable for oriented Ab immobilization are
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1 Introduction

In the last decade, a wide variety of different biosensors
emerged. Sensor specificity relies strongly on the properties of
the immobilized detection element, which has stimulated the
use of antibodies (Abs) or fragments thereof. In 1971," Abs were
used for the first time in an enzyme-linked immunosorbent
assay (ELISA) to quantitatively detect analytes. Nowadays,
antigen-Ab interactions can be detected by a variety of tech-
niques, including quartz crystal microbalance (QCM), surface
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reviewed with an eye to future application.

plasmon resonance (SPR) and electrochemical impedance
spectroscopy (EIS).

Abs with better affinities and higher stabilities have been
selected to improve biosensor performance. Further sensor
optimization was directed towards surface preparation of
biosensors aiming to promote specific binding and suppress
non-specific binding. For this purpose site-specific coupling
and immobilization of proteins are of great interest.>™*

Here we review recently applied Ab immobilization strate-
gies. In the field of proteins, Abs represent a small class of
glycoproteins with a well-defined structure. Since Abs possess
only one binding site, it can be highly advantageous to orient
these molecules to improve biosensor performance, with
improvement factors as high as 200 being reported upon
orientation.® Similar, albeit smaller, effects have also been
reported by several other groups.®™ The first section of this
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minireview presents different types of Abs applied as detection
elements. Next, methods are reviewed that are used to elucidate
the orientation of immobilized Abs. Then, various recently
applied non-covalent and covalent methods for Ab immobili-
zation are summarized, including oriented and random
immobilization of both native and engineered Ab species.
Finally, we explore to what extent protein modification tech-
niques have already been implemented for Abs, and where new
opportunities open up to bring the advantages of protein
orientation closer to application in future biosensors.

2 Abs as detection elements

There are several types of Ab structures that are currently being
focused on in biosensing (Fig. 1). Immunoglobulin Gs (IgGs,
~150 kDa, 143 x 77 x 40 A®)" consist of two light and two
heavy chains, linked by disulfide bonds to form the character-
istic Y-shape. The chains are divided into constant (C) and
variable (V) regions. On the second heavy chain constant region
(Cu2), IgGs have carbohydrate moieties (Fig. 1).*® The variable
domain bears three hypervariable regions, known as comple-
mentarity-determining regions (CDRs), which are responsible
for the specific Ab-antigen interaction. The diversity in this area
allows the endless supply of Abs with different specificity and
binding strength (affinity).

Molecular engineering enabled the minimization of conven-
tional Abs into smaller and more stable Ab-derived fragments.
Examples include Fabs (antigen binding fragment), or the even
smaller single-chain variable fragments (scFv, ~27 kDa), both of
which still retain antigen-binding specificity. Further size
reduction into monomeric single domain Abs (sdAbs), the Vi or
Vi, resulted in loss of affinity towards the antigen,"” making
time-consuming selection and affinity maturation necessary.

Apart from IgGs, two other Ab classes are becoming impor-
tant. First, camelid Abs (found in dromedary, llama, alpaca and
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camel) (Fig. 1)."* These Abs lack the light chain and the first
constant domain of the heavy chain (Cy1), leaving one single
domain for effective antigen binding, known as Vyy or nano-
body. In Vuy, the C-terminus is situated at the opposite site of
the antigen binding region and represents an optimal target for
functionalization. Second, another novel immunoglobulin with
one variable domain (Vnar), called novel antigen receptor
(IgNAR), was discovered in cartilaginous fish, such as sharks.*

Vun, Vnar and sdAbs possess superior stability, and are
highly soluble, small (~15 kDa) monomeric binding domains
that are very useful as detection elements in biosensors. Their
value for biotechnological applications has been recently
reviewed.>*** Antigen-specific Ab fragments can be selected
from large libraries by a variety of methods, reviewed in the
literature.>***

3 Techniques to study antibody orientation

Providing information of Ab orientation on the surface is of
fundamental interest. Immobilized IgG can adopt four exem-
plary molecular orientations: side-on (one Fc and one Fab
attached to the surface), tail-on (Fc attached to the surface),
head-on (both Fabs attached to the surface) or flat-on (all three
fragments attached to the surface) (Fig. 1). For the highest
analyte binding, Abs should display free antigen-binding
regions after immobilization. Controlling the orientation will
therefore lead to better analyte binding resulting in improved
biosensor sensitivity.

Many techniques have been used to elucidate the presence
and binding function of immobilized Abs. Fourier transform
infrared reflection (FTIR) spectroscopy is used to characterize
the presence of specific chemical groups, and various fluores-
cence microscopies help to visualize efficient binding of analyte
to Ab-functionalized surfaces.”>*® In fact, spectroscopic tech-
niques are predominately used to roughly confirm an effective
Ab orientation, with only a relatively small set of studies that
investigate the orientation of Abs by comparing Abs immobi-
lized in different directions. For example, SPR can be used to
calculate the Ab coverage, and the relationship between the
adsorbed amount and molecular orientation on the surface has
been used earlier to distinguish between tail/head-on and side/
flat-on orientation.” But minimal direct information about Ab
orientation can be deduced with such approaches. Here we
present a selection of the techniques recently applied to char-
acterize Ab orientation in a more direct manner by measuring
the layer thickness or by scanning of the surface (Fig. 2). It
should be kept in mind that this list is not comprehensive, that
it focuses due to space considerations on a few representative
recent cases, and that each of these techniques still provides
only limited information; to get the full picture, several tech-
niques are ideally combined.

3.1 Atomic force microscopy (AFM)

In atomic force microscopy (AFM), surfaces are scanned by a
nano-scale tip, immobilized at the end of a cantilever, yielding
resolutions below a nanometer. 3-D structures of soft

This journal is © The Royal Society of Chemistry 2013
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Schematic depiction of natural Abs. (A) Immunoglobulin G (IgG) consists of 2 heavy chains (gray/blue) and 2 light chains (green). Antigens bind to the variable

regions V| and Vy. The C42 domain bears a carbohydrate moiety (orange hexagon); scFv = single-chain variable fragment composed of V, and Vy; Fab = antigen-
binding Ig fragment. (B) Camelid heavy-chain Ab contains only 2 heavy chains, which are composed of one variable (Viy; antigen-binding unit) and two constant (Cy2
and Cy3) domains. Abs can be immobilized in an oriented or random fashion (see example for 1gG).

biomaterials such as proteins can be visualized by AFM,
resulting in a topographical surface map.*® From this informa-
tion, local properties of the surface such as the degree of
coverage, the thickness of the layer, and the shape of the
proteins can be deduced (Fig. 2).

AFM is often used to deduce Ab orientation by determining
the dimensions of the Abs. Sarkar and co-workers* employed
noncontact mode AFM to measure the total thickness of a
surface coating before and after immobilization of IgG onto a
protein A-coated surface. The measured change of height after
IgG incubation corresponded roughly to the long axis of IgG,
suggesting tail-on position of IgG.** Chen et al.*” used AFM to
measure the height of the Ab layer immobilized on a calixarene
monolayer to distinguish between tail-on and side-on orienta-
tion. AFM has also been used to investigate Ab orientation by
scanning 5 nm Au nanoparticles on surfaces as size standard,**
and to measure the width of the IgG arms.*

Likewise, AFM can be used to elucidate the surface topology.
Kim et al.>* compared the surface roughness of Abs captured by
cysteine-functionalized protein G (Cys-protein G) to that of a
surface that captured Abs by native protein G. The more
uniform height image obtained for Cys-protein G-modified
surfaces was interpreted as more uniformly oriented Abs. AFM
was also used to study the time-dependent conformational
change of Fabs immobilized on gold in the absence and pres-
ence of stabilizing polyethylene glycol (PEG) layers.** Directly
immobilized Fab fragments showed a fast decrease in height
accompanied by a decrease of the antigen-binding ability. In

This journal is © The Royal Society of Chemistry 2013

contrast, Fabs stabilized by the PEG layer displayed a dimin-
ished height decrease and better antigen binding abilities,
suggesting a slowed down change of conformation or/and
orientation by the co-immobilized PEG-layer.

3.2 Time-of-flight secondary ion mass spectrometry (ToF-
SIMS)

High-resolution time-of-flight secondary ion mass spectrometry
(ToF-SIMS) emerged as a powerful method to obtain evidence
about the structure of the surface by providing biophysical
information about the molecular structure. This technique
combines a high chemical specificity with a good surface
sensitivity (sampling depth 1-3 nm) by ion bombardment of a
surface with a pulsed primary ion beam.*® The resulting posi-
tively or negatively charged ions are analyzed by a time-of-flight
mass analyzer, yielding a fingerprint of the proteins (Fig. 2). As
the sampling depth is very shallow, these data can be used to
interpret the orientation of immobilized proteins, and the more
recently developed milder bombardments with Ar clusters may
improve this further.

ToF-SIMS was used by Baio et al.” to show intensity differ-
ences of secondary ions originating from asymmetrically
located amino acids in the protein. Distinct orientations of a
variable fragment (HuLys Fv) were achieved on two different
substrates - each reacting with a specific, tailor-made moiety at
one of the termini. Comparison of the intensity ratios of specific
secondary ions suggested that HuLys Fv was indeed oriented in
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Fig. 2 Selection of techniques to study antibody orientation. For detailed
information see text.

different ways on the two different substrates, although it is
difficult to specify any of these orientations based on the data.
In another study® ToF-SIMS was used to characterize the
orientation of randomly biotinylated and site-specifically bio-
tinylated Abs (IgGs, F(ab"), and Fabs) on streptavidin surfaces.
ToF-SIMS results could not be linked to specific locations near
the analyte binding site of site-specific biotinylated Abs, but
unique peaks were observed in oriented Abs that were absent in
randomly immobilized controls. This indicated that site-
specific and randomly biotinylated Abs were assembled in
distinct orientations. The data analysis can be greatly facilitated
by principal component analysis (PCA), as shown in an analo-
gous study by the group of Lee.** They showed that random
biotinylated IgGs at high concentrations yield the same ToF-
SIMS spectra as site-specific biotinylated IgGs. This suggests
that with high concentrations orientation was achieved for both
biotinylated Abs. At the same time Liu et al.*” showed that head-
on orientation (by immobilizing protein A on the surface) can

1622 | Analyst, 2013, 138, 1619-1627
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be distinguished from tail-on orientation (by immobilizing the
antigen on the surface) of immobilized Abs by combining ToF-
SIMS with PCA. Amino acids characteristic of the Fab and Fc
fragments could be used to provide an image ‘map’ of Ab
orientations across the patterned surfaces.

3.3 Dual polarization interferometry (DPI)

Dual Polarization Interferometry (DPI), an optical wave-guide-
based analytical technique, can be used to obtain information
on molecular dimensions (layer thickness), packing (layer
refractive index, density) and stoichiometry (mass). The
measured layer thickness can provide information on the
arrangement of Abs on surfaces when combined with known
dimensions of the molecule.

Song et al.*® used dimensions of Abs as determined by X-ray
crystallography in correlation with layer thickness and surface
coverage (or mass) to distinguish between possible Ab orienta-
tions. The surface coverage of random immobilized Abs on a
monolayer and oriented Abs on protein G surfaces was deter-
mined by DPI and compared to the reference values of ‘theo-
retical’ saturated surface coverages for random and oriented
Abs. Tail-on orientation of IgG Abs on a protein G layer was
further suggested by determining the layer thickness by DPI,
which revealed a thickness of the Ab layer on protein G corre-
sponding to the long axis of the Y-shaped Ab.

3.4 Neutron reflectometry (NR)

Neutron reflectometry (NR) is a neutron diffraction technique to
determine the thickness and composition of molecular layers
on surfaces with a sensitivity of 2-3 A.** The technique involves
directing a beam of neutrons onto a flat surface, and
measurement of the intensity of the reflected radiation as a
function of angle or neutron wavelength. Comparison of layer
thickness with the molecular dimensions of Abs allows differ-
entiation between flat-on, side-on and head-on/tail-on orienta-
tions of the Abs (Fig. 2).

Using NR Zhao et al.*® determined the orientation of Abs
adsorbed on silicon wafers at low concentration. The observed
thickness of adsorbed Abs corresponded to the short axial
length of the Ab, suggesting a flat-on orientation. In contrast,
Abs immobilized via the Fc region onto an engineered protein
A-like (ZZctOmpA) surface adopt a tail-on orientation.'®

3.5 Spectroscopic ellipsometry (SE)

Spectroscopic ellipsometry (SE) analyses the state of polarized
light reflected from multilayer reflective samples. The layer
thickness can be deduced by a model-based analysis based on
how the light interacts with the surface (Fig. 2). This makes SE a
valuable tool to investigate optical parameters and deposition
kinetics of thin film structures.

Bae et al.** determined the thickness of protein layers con-
sisting of Abs bound to thiolated protein G oriented on gold.
The measured thickness suggested that Abs are immobilized in
such a manner that the Fc domain is bound to the protein G
layer, with the antigen binding domain facing away from the
surface.

This journal is © The Royal Society of Chemistry 2013
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4 Immobilization strategies

Strategies for immobilization may result in specific or random
orientation of the Abs. The orientation is dependent on the self-
organizing capacity of the antibodies, which may be steered by
specific reactive groups on the surface, on the antibody, or on
both. Specific orientation of immobilized Abs is not easily
achieved, since Abs usually carry several copies of reactive
groups.

It is essential to immobilize Abs on surfaces without
changing their binding activity and specificity. Therefore
immobilization strategies should be mild. These strategies can
usually be made compatible with the surfaces of various mate-
rials, by functionalizing the surface with specific groups.
Surfaces can be used either directly or functionalized with
(mono)layers, either as two-dimensional surfaces or as three-
dimensional matrices. Gold, glass, copper, silicon nitride and
silicon surfaces or magnetic beads represent only a small
selection of surfaces used for Ab immobilization.*****>-*> Below
we will review several strategies of Ab immobilization. They can
be distinguished by non-covalent or covalent coupling
chemistry.

4.1 Non-covalent immobilization

Immobilization of untreated Abs can be mediated by an inter-
mediate protein directly coupled to the surface, such as protein
A and protein G. These proteins display five and two binding
domains specific to the Fc portion of Abs, respectively. This
results predominantly in tail-on orientation. Improvement of
biosensor performance by orienting Abs with protein A or
protein G has been shown in several studies when compared to
their randomly immobilized counterparts.'®*®**¢ Further
improvements have been achieved by orientation of protein A or
G. Feng et al* optimized the approach by forming highly
organized aggregates of IgG and protein A. Immobilized IgG-
protein A aggregates yielded three-dimensional structures on
the surface with IgGs exposing their analyte binding sites.
Johnson and Mutharasan*® showed that the pH used for protein
G adsorption on gold surfaces influences the protein G orien-
tation and subsequent Ab binding. Often, exposed Cys residues
are used for oriented immobilization of protein A or G. Thio-
lated protein G was used for immobilization onto a copper
surface.” Lee et al.* prepared cysteine-functionalized protein G
multimers to improve Ab immobilization on magnetic silica
nanoparticles. Recombinant Cys-protein G trimers were engi-
neered by repeated linking of protein G monomers via a flexible
linker. The use of such Cys-protein G trimers improved Ab
immobilization and enhanced the biosensor sensitivity by 10-
fold compared to a Cys-protein G monomer setup. Brun et al.*®
fused protein A domains genetically to a Cys-exposing variant of
E. coli protein ompA, which was embedded in a PEG monolayer
on a gold surface, and allowed oriented binding and presenta-
tion of antibodies. Ko et al.* fused a gold-binding protein (GBP)
to protein A, resulting in GBP-ProtA. Compared to native
protein A, this fusion protein self-assembled at a higher density
on gold surfaces and bound more IgG. Tajima et al'

This journal is © The Royal Society of Chemistry 2013
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enzymatically conjugated protein A onto a substrate to achieve a
“super-oriented IgG” bound to oriented protein A. The strict
control of the IgG orientation resulted in an approximately 100-
fold higher affinity than the partially oriented IgG, when protein
A was physisorbed on the surface.

Classically, non-covalent binding of Abs on surfaces is ach-
ieved by physical adsorption, avoiding an intermediate protein.
Making use of ionic bonds, electrostatic and hydrophobic
interactions and van der Waals forces results in non-covalent
immobilization. Physical adsorption gives low control over the
orientation of the Abs, even though immobilization of Abs
using a pneumatic nebulizer is fast and reproducible.** Zhao
et al.>® studied how solution pH, salt concentration and surface
chemistry affect Ab adsorption onto silica surfaces. The salt
concentration and pH did influence the amount of adsorbed Ab
and analyte binding, but did not influence the orientation of
immobilized Abs. Abs predominantly adopted flat-on orienta-
tion on the investigated surfaces. Um et al.>® introduced tail-on
orientation in bound Abs by the electrochemical immobiliza-
tion onto poly-(2-cyano-ethylpyrrole)-coated gold electrodes.
Induction by cyclic voltammetry favored electrostatic interac-
tions between the cyano group on the surface and the hydroxyl
group of the Ab present in the Fc region. Electrochemically
immobilized Abs showed an improved analyte binding
compared to physisorbed Abs, which was attributed to orien-
tation effects. Abs adsorbed on hydroxyapatite nanoparticles
mainly orient themselves in the tail-on position due to steric
hindrance on the round surface.** Harmsen showed improved
orientation of adsorbed Vyys due to genetic fusion of peptide
tags to the C-terminus, situated opposite to the analyte binding
site. It was suggested that these tags trigger oriented binding on
polystyrene surfaces by hydrophobic interactions with the
surface. Nevertheless, physical interactions are generally weak
and sensitive to changes in condition such as pH, temperature
or salt concentration. Typically, biosensors using non-covalent
binding may therefore suffer from poor analytical performance
due to lower operational and storage stability. Specific direc-
tional interactions between the surface and part of the Ab
therefore provide a step forward, and are an intermediate
towards covalent and fully irreversible immobilization. As an
example, a more stable immobilization resulting in orientation
can be achieved when the thiol group is utilized for Ab immo-
bilization on surfaces such as gold. Disulfide bonds are a
common feature of intact Abs and thiol groups can be obtained
under mild reduction conditions (Fig. 3). Balevicius et al.*®
showed that oriented Ab fragments can bind 2.5 times more
analyte than the intact Ab immobilized in a random fashion
using amine groups. An elegant light-assisted approach for Ab
immobilization was shown by Ventura et al.*® Disulfide bonds
were broken upon absorption of UV light by nearby aromatic
amino acids, yielding reactive thiol groups that are effective for
oriented binding onto gold electrodes. Adsorption of thiol-
exposing Fab fragments onto gold was also used to show that
co-immobilization of densely packed polyethylene glycol layers
improved the time-dependent analyte binding ability of
immobilized Fab fragments.** Albeit being site-specific, this
method yields monovalent Abs, and too harsh reduction

Analyst, 2013, 138, 1619-1627 | 1623
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conditions might inactivate Ab fragments due to the uninten-
tional reduction of internal disulfide bonds. Another immobi-
lization method introducing orientation involves the fusion of a
polyhistidine (Hise) affinity-tag on the C- or N-terminus of the
recombinant protein. The Hisy tag shows a high affinity (K =
10" M™Y) to Ni**, Co®" and Cu®' surfaces. The tetradentate
ligand nitriloacetate (NTA) forms hexagonal complexes with
divalent metal ions, leaving two binding sites available for
chelation with a histidine residue. The Hiss tag on the C-
terminus of a variable fragment (HuLys Fv) was used to control
orientation onto a gold substrate.” When compared to HuLys Fv
immobilized onto maleimide-terminated monolayers via an
N-terminal cysteine, binding via the C-terminal His, tag to Ni-
loaded NTA-terminated monolayers showed a 10-fold higher
SPR signal upon analyte binding. However, because the binding
affinity of the Hise tag is for several approaches still not high
enough, these experiments might suffer from undesired protein
dissociation.

Stronger non-covalent protein immobilization can be ach-
ieved by the use of the streptavidin-biotin interaction, one of
the strongest non-covalent interactions known in biology.
Depending on the applied biotinylation method, Abs can be
immobilized in a random or oriented fashion. Abs randomly
biotinylated at the amine groups were compared to oriented
Abs, site-specifically biotinylated at the hinge region.** With
increased immobilization concentration both biotinylated Abs
adopted tail-on orientation, while site-specific biotinylated IgG
became oriented at a slightly faster rate. Cho et al.® compared

1624 | Analyst, 2013, 138, 1619-1627

the binding signal of random and site-specific biotinylated IgG
and Fab on distinct streptavidin-coated surfaces. In a sandwich-
type immunoassay, the group reported a 2 to 3 times higher
binding signal for site-specifically biotinylated Ab species.
Several other approaches to add a biotin moiety site-specifically
to Abs have been employed lately. Biotinylation specifically at
the C-terminus of the Ab was achieved using the enzyme
carboxypeptidase Y.”” Kang and co-workers®® achieved site-
specific biotinylation of Abs using a sugar moiety. Oxidation of
sugar chains yielded aldehydes reactive towards hydrazine-
biotin. Further, in vivo biotinylation of Vyy was successfully
explored by our group using the Avi-tag.® This tag is recognized
by the BirA enzyme, and biotinylation occurs at the lysine
position of the tag. This in vivo biotinylation is somewhat time-
consuming, but is also extremely effective as it improved the
analyte binding by more than a 200-fold.

4.2 Covalent immobilization

Covalent immobilization does, in principle, provide the best
entry point to combine longevity of the Ab-modified surface
with a high sensitivity due to a specific orientation. Therefore, a
lot of efforts are currently undertaken to investigate and
improve this area, including both by now well-known reactions
of naturally present moieties and the developments of tailor-
made, i.e. man-made, modifications thereof.

So far the chemistry deployed to immobilize Abs has been
limited to classical protein chemistries. Amine (NH,) groups

This journal is © The Royal Society of Chemistry 2013
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present in the lysine amino acid side-chain on the Ab surface
can be used for covalent immobilization in a random fashion
(Fig. 3). Widely used, e.g. for SPR studies, is the immobilization
of Abs onto carboxy-methylated dextran layers on gold
surfaces.>**>* Recently, it has been shown that this immobili-
zation is not completely random. Prior to covalent conjugation,
Abs need to undergo physisorption. Orientation during phys-
isorption depends on the surface pK,, isoelectric point of the Ab
and the pH of the used immobilization buffer, by optimizing
the conditions one orientation can be favored.>»* By attaching
antibodies via the amine group to protein-repellent zwitterionic
polymer brushes Nguyen et al.** prepared surfaces recognizing
the antigen while preventing nonspecific adsorption of other
proteins. Epoxide-functionalized polymer brushes allow
another possibility to immobilize Abs via the amine group.*
Similarly, immobilization via the amine group can be achieved
by the use of glutaraldehyde-functionalized surfaces."*>*

Another covalent approach to orientation makes use of a
unique carbohydrate moiety at the Fc part of Abs (Fig. 3).
Specific oxidation on the carbohydrate vicinal hydroxyl group
via the use of periodate sodium generates aldehydes. These
aldehydes are reactive towards aminated surfaces™ or hydra-
zine-functionalized dendrimers on surfaces,” resulting in
oriented covalent Ab coupling. Ho et al.®* used a boronic acid-
presenting surface to orient Abs via the carbohydrate moiety.
Boronic acids form cyclic boronate esters with 1,2- and 1,3-diols
present in carbohydrates of Abs, and thus provide an additional
anchoring point, with chemistry that is largely orthogonal to
other methods discussed in here.

Also the Fc region itself is used for oriented immobilization.
Batalla et al® used heterofunctionally activated agarose
matrices displaying metal chelate groups. These lead to
oriented non-covalent attachment of the Ab via the histidine-
rich Fc portion of the Ab. Then, reaction of exposed amine
groups with matrix-bound glyoxyl groups was promoted by a
change of pH. The formed reversible Schiff's base bonds can
then be mildly reduced by e.g. NaB(CN)H; to obtain irreversible
oriented and covalently attached Abs. Another possibility to
immobilize Abs via the Fc part makes use of intermediate
proteins described before. To circumvent stability problems of
the non-covalent interaction between protein A/protein G and
the Fc region, chemical crosslinking was successfully applied
using cyanamide,*” dimethyl pimelimidate (DMP)* or the
homobifunctional linker bis(sulfosuccinimidyl) suberate.*®
Analogously, thiol groups were explored for covalent oriented
coupling of Abs, via reduction of the disulfide group present in
the hinge region of Abs (Fig. 3), and subsequent coupling to a
maleimide-functionalized surface.®”

Another possibility to covalently immobilize Abs in an
oriented manner makes use of the conserved nucleotide
binding site (NBS) present in the conserved region of the vari-
able domain of all Ab isotypes. This region, which has not been
removed so far from the antigen-binding site, is rich in specific
aromatic amino acids, and displays an affinity for indole-3-
butyric acid. Exposure to 254 nm light allows irreversible photo-
attachment of Abs onto an indole-3-butyric acid-terminated
surface, while leaving the antigen binding site unaffected.®®

This journal is © The Royal Society of Chemistry 2013

View Article Online

These examples show the success of covalently attached Abs,
but also point to the potential of using and developing milder
(non-denaturing), bio-orthogonal reactions that allow control
over the Ab direction. Today, protein coupling can be achieved
by a range of highly reliable chemistries. However, most of these
have not been deployed for Abs since they rely on protein
engineering and recombinant production. Currently, bio-
orthogonal chemistries such as Diels-Alder reaction or Stau-
dinger ligation are widely applied for protein immobilization or
functionalization, but functional groups are often introduced
via the amine group of lysine side-chains or the thiol group of
cysteine, making such approaches unsuitable for the site-
specific immobilization of Abs. Here we will limit the discussion
to a selection of methods that would lead to site-specific
introduction of functional groups.

Stamos et al.** immobilized various proteins site specifically
via the Diels-Alder cycloaddition reaction” between an o-imino-
quinone group in the protein and an acryloyl linker on the
surface. To this end, site-specific genetic incorporation of the
3-NH,Tyr amino acid into proteins was performed.

The Staudinger ligation reported by Saxon and Bertozzi
involves the reaction between an azide and a phosphine-con-
taining ester or thioester yielding a covalent amide bond.”™
Introduction of a functional azide-group into the protein can be
achieved by the use of the methionine analogue azidohomoa-
lanine.” Unfortunately, this approach is only site-specific if no
more than one methionine is surface accessible. To guarantee
specificity, engineering of the protein is often required. Another
technology to truly site-specifically incorporate azides was
developed by the group of Schultz.”? Functionally unique
unnatural amino acids such as p-azido-.-phenylalanine can be
incorporated into proteins such as green fluorescent protein by
expressing orthogonal tRNAs and aminoacyl-tRNA synthe-
tases.” Using this approach azides can be incorporated into
antibodies in response to amber nonsense codons at the
preferred protein position. Another approach to introduce an
azide specifically at the N- or C-terminus uses expressed protein
ligation (EPL).” EPL generates recombinant protein thioesters
by thiolysis of intein fusion proteins reactive towards synthetic
peptides bearing an N-terminal cysteine, which yields a native
amide bond. EPL has been employed in combination with a
synthetic azide-containing reagent to produce azide-function-
alized RNase A (azido-RNase A).”® Azido-RNase A was then site-
specifically immobilized onto phosphine-terminated surfaces
by a Staudinger ligation.

Sulfonylazides react with terminal alkynes under the catal-
ysis of Cu(i) to form N-acylsulfonamides. This ‘click sulfon-
amide reaction’ (CSR)””® is related to the Cu(i)-catalyzed [3 + 2]
azide-alkyne cycloaddition (CuAAC). Both reactions displayed
specificity during protein immobilization using alkyne-modi-
fied mCerry-Ypt7 protein (at the C-terminus by ELP) on sulfo-
nylazide- and azide-functionalized surfaces, respectively.” A
potential disadvantage of CuAAC is the used copper(i) catalyst.
In contrast, the strain-promoted alkyne-azide cycloaddition
(SPAAC) with cyclooctynes requires no additional reagent, but
reacts spontaneously with azides. Different cyclooctyne variants
used for surface functionalization and/or bioconjugation have
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been reviewed.**® Taking advantage of these mild and bio-
orthogonal reactions will most likely open up new approaches
for the site-specific immobilization of Abs on surfaces. For
example, Witte et al.*® prepared anti-GFP Vyy with azide or
cyclooctyne moieties at the C-terminus using a combined
shortage-click strategy to prepare Vi dimers. Such function-
alized Vyys could also be covalently immobilized using SPAAC
onto cyclooctyne- or azide-functionalized surfaces, respectively.

5 Outlook

The approaches for Ab immobilization as presented in this
minireview show that a wide variety of immobilization methods
are available for various surfaces and different Ab species.
However, the variety of available methods also illustrates that a
universal method is not yet available.

The limited amount of studies in which oriented Ab immo-
bilization was quantitatively compared to random Ab immobi-
lization shows that orientation can significantly (up to two
orders of magnitude) improve the analyte binding signal.
Therefore, the ever increasing demands in sensitivity should
lead future efforts to oriented immobilization of Abs. The
currently most widely used method, adsorption onto protein-
coated surfaces, is effective, but also limited given the hetero-
geneous nature of such surfaces. Further improvements in
orientation and therefore likely in sensor sensitivity will require
involvement of tailor-made Ab modifications and/or novel bio-
orthogonal surface-bound or Ab-directed chemistries. Specifi-
cally the ongoing exploration in protein coupling techniques is
expected to hold significant promises for the field of Ab orien-
tation in the future.
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