Issue 11, 2021

Using phase boundary mapping to resolve discrepancies in the Mg2Si–Mg2Sn miscibility gap

Abstract

Mg2Si–Mg2Sn compositions within the Mg–Si–Sn materials system have potential as inexpensive, efficient thermoelectrics. These compositions lie specifically along the pseudobinary line with compositions of Mg2Si1−xSnx. The alloying and possible nanostructuring within the miscibility gap could further increase the thermoelectric figure of merit (zT) for these materials. However, the solubility limits of the miscibility gap differ greatly in the literature. Such a discrepancy could be a result of differing Mg-compositions due to excess magnesium added during sample annealing. To define these limits better and explain the change in proposed solubility limits based on magnesium content, the three-phase regions on either side of the pseudobinary phase region are phase boundary mapped and defect energy calculations are performed. This study presents a new understanding of the Mg–Si–Sn ternary phase diagram around the pseudobinary phase region. The solubility limits on either side of the pseudobinary should be essentially identical between the Mg-rich and Mg-poor three-phase regions unless the system temperature is brought above about 565 °C, at which eutectic liquid Mg0.9Sn0.1 forms. This creates a second Mg-rich three-phase region which intersects the pseudobinary with a lower Sn solubility. Thus, samples prepared along the pseudobinary line are not well-defined thermodynamically when excess magnesium is added. Excess Mg can push the system into a new three phase region with Mg2Si1−xSnx composition different from that of the true miscibility gap. This understanding presents new guidelines for evaluating the miscibility gap and assists strategies for microstructure engineering and thermoelectric material processing.

Graphical abstract: Using phase boundary mapping to resolve discrepancies in the Mg2Si–Mg2Sn miscibility gap

Article information

Article type
Paper
Submitted
06 Jan 2021
Accepted
18 Feb 2021
First published
18 Feb 2021

J. Mater. Chem. A, 2021,9, 7208-7215

Author version available

Using phase boundary mapping to resolve discrepancies in the Mg2Si–Mg2Sn miscibility gap

R. Orenstein, J. P. Male, M. Toriyama, S. Anand and G. J. Snyder, J. Mater. Chem. A, 2021, 9, 7208 DOI: 10.1039/D1TA00115A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements