Issue 24, 2021

Baicalin inhibits APEC-induced lung injury by regulating gut microbiota and SCFA production

Abstract

Baicalin is a plant-derived flavonoid from Scutellaria baicalensis Georgi with multiple bioactivities and has a protective effect against avian pathogenic Escherichia coli (APEC) infection. However, the underlying mechanism of baicalin against APEC infection is still unknown. Therefore, we aimed to explore whether the protective effects and mechanisms of baicalin on APEC-induced lung inflammation were related to the regulation of gut microbiota. The results showed that baicalin significantly reduced APEC colonization and pro-inflammatory cytokines production, and additionally recovered air–blood barrier integrity in the lungs after APEC challenge. However, depletion of gut microbiota significantly weakened the protective effects of baicalin against APEC infection as mentioned above. Furthermore, baicalin markedly restored the dysbiosis of gut microbiota induced by APEC as well as increased the abundance of short chain fatty acid (SCFA)-producing bacteria and the production of SCFAs including acetic acid, propionic acid and butyric acid, especially acetic acid. In addition, the concentrations of acetic acid and its receptor free fatty acid receptor 2 (FFAR2) were significantly upregulated in the lung tissues after baicalin treatment. In conclusion, gut microbiota played a key role in the pharmacological action of baicalin against APEC-induced lung inflammation. Baicalin remodeled the dysbiosis of gut microbiota caused by APEC and increased the production of SCFAs, especially acetic acid in the gut, and then the increased acetate may circulate to the lungs to activate FFAR2 to defend APEC infection. Together, our study suggested that baicalin inhibited APEC infection through remodeling the gut microbiota dysbiosis and increasing the SCFA production. Furthermore, baicalin may serve as an alternative antibiotic and a novel therapeutic drug to prevent or treat APEC infection.

Graphical abstract: Baicalin inhibits APEC-induced lung injury by regulating gut microbiota and SCFA production

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2021
Accepted
26 Oct 2021
First published
01 Nov 2021

Food Funct., 2021,12, 12621-12633

Baicalin inhibits APEC-induced lung injury by regulating gut microbiota and SCFA production

L. Peng, H. Shi, Y. Tan, S. Shen, P. Yi, H. Shen and B. Fu, Food Funct., 2021, 12, 12621 DOI: 10.1039/D1FO02407H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements