Synergistic adsorption–photocatalysis in α-Fe2O3/PDINH Z-scheme heterojunction for efficient azo dye wastewater treatment

Abstract

The integration of adsorption and photocatalysis in heterojunction composites offers a promising strategy for efficient azo dye degradation. Here, a novel α-Fe2O3/perylene-3,4,9,10-tetracarboxylic diimide (PDINH) Z-scheme heterojunction was synthesized via a facile solvent method, showcasing synergistic adsorption–photocatalysis for wastewater treatment. Zeta potential analysis (α-Fe2O3: +14.7 mV; PDINH: −24.3 mV at pH 5.0) and density functional theory (DFT) calculations (binding energy: −3.10 eV) revealed strong electrostatic interactions between α-Fe2O3 and PDINH, enabling uniform nanoparticle dispersion and forming a heterostructure with enhanced specific surface area. Electrochemical measurements confirmed that the Z-scheme heterojunction significantly accelerated charge carrier migration and suppressed electron–hole recombination, facilitated by an internal electric field from well-matched band alignment. Under visible light, the α-Fe2O3-15/PDINH composite achieved 93.4% removal of methyl orange (MO), outperforming PDINH alone (63.1%) due to its positive surface charge (+8.7 mV at pH 5.0) that enhanced selective adsorption of anionic dyes. Quenching experiments identified h+, ·O2, and ·OH as the primary reactive species, with the Z-scheme pathway retaining strong redox capabilities for efficient degradation. Notably, the composite exhibited an operational cost of $2.41 per ton, significantly lower than other reported processes, and maintained high efficiency (81.8% MO removal) over multiple cycles. This work demonstrates that the α-Fe2O3/PDINH composite integrates adsorption and photocatalysis synergistically, providing a low-cost, scalable solution for azo dye wastewater treatment with potential for industrial application.

Graphical abstract: Synergistic adsorption–photocatalysis in α-Fe2O3/PDINH Z-scheme heterojunction for efficient azo dye wastewater treatment

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Aug 2025
Accepted
22 Nov 2025
First published
28 Nov 2025

Catal. Sci. Technol., 2026, Advance Article

Synergistic adsorption–photocatalysis in α-Fe2O3/PDINH Z-scheme heterojunction for efficient azo dye wastewater treatment

Y. Hu, R. Yan, H. Pan, R. Cai, Z. Zeng, J. Jiang, M. Wang, M. Shan, S. Liu and H. Tang, Catal. Sci. Technol., 2026, Advance Article , DOI: 10.1039/D5CY00948K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements