Issue 24, 2020

Dysprosium-based complexes with a flat pentadentate donor: a magnetic and ab initio study

Abstract

The reactivity of the well-known pentadentate N3O2 Schiff base H2L (2,6-bis(2-hydroxyphenyliminomethyl)pyridine) towards a lanthanoid metal, in this case DyIII, has been investigated for the first time. This reactivity markedly depends on the pH of the medium and, accordingly, two different complexes, [Dy(HL)(NO3)2]·H2O (1·H2O) and [Dy(L)(NO3)(EtOH)(H2O)]·2H2O (2·2H2O), could be isolated from dysprosium(III) nitrate and H2L. In addition, reaction of H2L with dysprosium(III) chloride in methanol yields [Dy(HL′)2][Dy(L)(Cl2)] (3), where H2L′ ((6-(2-hydroxyphenyliminomethyl)-2-methoxyhydroxymethyl)pyridine) is an N2O2 hemiacetal donor derived from the partial hydrolysis of the H2L ligand, and subsequent addition of the methanol solvent to the carbonyl group. This latter reaction has been firstly observed for a lanthanoid metal. Single crystal X-ray diffraction studies of 1·1.15Py·0.3CH3C6H5, 2·2H2O and 3 show that the Schiff base is acting as a nearly flat pentadentate donor in all the cases, this behaviour being independent of the deprotonation degree of the phenolic oxygen atoms, both mono- or bisdeprotonated. Complexes 1·1.15Py·0.3CH3C6H5 and 2·2H2O show DyN3O6 cores, with distorted geometries closer to spherical tricapped trigonal prism or spherical capped square antiprism for 1·1.15Py·0.3CH3C6H5 and 2·2H2O, respectively. In the case of 3, the [Dy(HL′)2]+ cation shows a dysprosium ion in an N4O4 triangular dodecahedron environment, while the [Dy(L)(Cl2)] anion displays a DyN3O2Cl2 core with distorted pentagonal bipyramidal geometry. Moreover, attempts to dilute 1·H2O with yttrium yielded single crystals of (Et3NH)[Dy0.09Y0.91(L)(NO3)2] (4), where the Schiff base shows a similar pentadentate coordination mode. Dynamic magnetic studies of 1·H2O, 2·2H2O and 3 show that 2·2H2O and 3 present field-induced slow relaxation of the magnetisation, with Ueff barriers of 46.1(9) and 31.0(7) K for 2·2H2O and 3, respectively, while 1·H2O does not exhibit frequency-dependent peaks of the out of phase susceptibility, even in the presence of an external dc magnetic field. By contrast, the dilute sample 4 behaves as a SIM at zero dc field, with an energy barrier of ca. 49 K. Ab initio calculations using CASSCF methods including spin–orbit effects qualitatively support the obtained magnetic results, indicating that axiality is not the only factor that should be taken into account in order to increase effective energy barriers.

Graphical abstract: Dysprosium-based complexes with a flat pentadentate donor: a magnetic and ab initio study

Supplementary files

Article information

Article type
Paper
Submitted
08 Apr 2020
Accepted
05 Jun 2020
First published
05 Jun 2020

Dalton Trans., 2020,49, 8389-8401

Dysprosium-based complexes with a flat pentadentate donor: a magnetic and ab initio study

M. Fondo, J. Corredoira-Vázquez, A. M. García-Deibe, S. Gómez-Coca, E. Ruiz and J. Sanmartín-Matalobos, Dalton Trans., 2020, 49, 8389 DOI: 10.1039/D0DT01293A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements