Issue 8, 2023

Organometallic anti-tumor agents: targeting from biomolecules to dynamic bioprocesses

Abstract

The great clinical success of cisplatin and its derivatives has convinced people that metal complexes could play a more significant role in human cancer therapy. However, targeting and drug resistance are still two dominant problems that need to be urgently solved for metallodrugs’ efficacy and clinical translation. As an important component of metal complexes, organometallics have been experiencing rapid development in recent years. Compared with platinum drugs, emerging anti-tumor organometallics targeting dynamic bioprocesses provide an effective strategy to overcome conventional problems. This review focuses on burgeoning anti-tumor strategies and provides up-to-date advances in anti-tumor organometallics development based on their action mechanisms. Specifically, important tumor-overexpressed proteins and nucleic acids as organometallics’ anti-tumor targets are systematically presented, followed by organometallics that exert their anti-tumor activity by perturbing tumor intracellular energy/redox/metal/immune homeostasis. Finally, nine cell death pathways including apoptosis, paraptosis, autophagy, oncosis, necrosis, necroptosis, ferroptosis, pyroptosis, and immunogenic cell death (ICD) that can be induced by organometallics are reviewed, and their morphological and biochemical features are summarised. This review at the interface of chemistry, biology, and medicine aims to enlighten the rational development of organometallic anti-tumor agents.

Graphical abstract: Organometallic anti-tumor agents: targeting from biomolecules to dynamic bioprocesses

Article information

Article type
Review Article
Submitted
14 Dec 2022
First published
04 Apr 2023

Chem. Soc. Rev., 2023,52, 2790-2832

Organometallic anti-tumor agents: targeting from biomolecules to dynamic bioprocesses

K. Peng, Y. Zheng, W. Xia and Z. Mao, Chem. Soc. Rev., 2023, 52, 2790 DOI: 10.1039/D2CS00757F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements