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The principle of polymorph selection upon crystal nucleation is one of the fundamental problems in

crystallization. Recently we found that for hard spheres the crystal polymorph is already selected by

locally favoured packing symmetry in a metastable supercooled state. Here we study whether this

scenario is also valid for soft spheres. To do so, we investigate the homogeneous nucleation process of

the Gaussian core model (GCM) in supercooled states by means ofMonte Carlo computer simulations.

We use bond orientational order parameters, which characterize local packing symmetries, to follow

the formation of solid nuclei and to distinguish between different polymorphs. We concentrate on two

state points, at low and high pressure respectively, for which macroscopic thermodynamics dictates the

formation of the different polymorphs (fcc and bcc crystals respectively). We show that the nucleation

of the different crystalline structures does not follow Ostwald’s step rule of crystallization, and that,

despite the underlying phase diagram, the bcc phase is always favoured. In analogy to hard sphere

systems, we find a new criterion for polymorph selection: crystallization occurs in precursor regions of

high bond orientational order, and the crystal which first nucleates is the one that has the closest

symmetry to these ordered regions in the supercooled state.
1 Introduction

The freezing transition in particle systems is ultimately promoted

by the interparticle repulsion which acts when particles approach

each other. Indeed, the diverging repulsive interaction at close

separations between the particles, i.e., the resulting excluded

volume effect, is often a dominant factor driving crystallization.

It is known that the crystal structure into which a system freezes

depends on the steepness of the repulsion, with hard repulsions

favouring a face-centred cubic (fcc) lattice and soft ones a body-

centred cubic (bcc) lattice. However, the underlying mechanism

of the kinetic selection of such crystal polymorphs remains

elusive.

Nucleation is usually described within classical nucleation

theory (CNT) which assumes that, upon cooling, the formation

of the stable solid phase is initiated by the nucleation of solid

clusters. Such clusters continuously form and dissolve in the

supercooled melt, until a nuclei reaches the critical size for which

the free energy gain for volume growth overcomes the free energy

penalty for surface formation. The phase which is first nucleated

is not necessarily the most stable solid phase though. Different

criteria have been proposed to explain the complex nucleation

pathways which even simple liquids undergo upon crystalliza-

tion.1–3 The first and still most credited polymorph selection
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criterion is Ostwald’s step rule4 which states that the nucleus

formed from the melt is in the phase closest in free energy to the

metastable liquid phase. A different criteria was provided by

Alexander and McTague5 who noted that the Landau-Ginzburg

free energy indicated a particular crystalline form independently

of the details of the potential (but for monoatomic spherically

symmetric fluids only): in two dimensions the crystalline phase

would have a triangular or hexagonal structure, while in three

dimensions the preferred structure would be the bcc lattice.

Most studies have concentrated on model systems with hard

divergent repulsions at short distance. The simplest one is the

well known hard sphere (HS) model, where a fluid-to-crystal

transition was found more than 50 years ago in pioneering

computer simulations by Wood & Jacobson6 and Alder &

Wainwright,7 and experimentally by Pusey & Van Megen.8 At

odds with the Alexander and McTague prediction, different

studies have failed to detect any significant nucleation of the bcc

phase,9,10 while detecting random stacking of fcc and hcp, with

a clear preference for the former.9–16 Another popular model

system is the Lennard-Jones (LJ) fluid, where a precursor bcc

phase forms for small nuclei which then transforms into the most

favourable fcc phase.17–19

So far the crystallization process has been explained by using

a key order parameter, which is the density field r(r). For

example, the Alexander–McTague theory is based on the

expansion of the free energy in terms of density fluctuations.

Contrary to this one-order-parameter scenario, we recently

proposed that the scalar density field may not be enough to
This journal is ª The Royal Society of Chemistry 2012
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describe crystallization, and we need an additional order

parameter, a bond orientational order parameter, which plays

a crucial role in the selection of crystal polymorphs.16,20,21 This

scenario is closely linked to development of bond orientational

order, whose symmetry is consistent with the equilibrium crystal

symmetry, in a supercooled liquid state of glass-forming systems,

suggesting an intimate link between glass transition and crys-

tallization, both of which are governed by the same free

energy.21,22 We found that for hard spheres crystal polymorphs

are already selected by bond orientational order developed in

a metastable state.16 For the hard-sphere case, bond orienta-

tional order is a consequence of the excluded volume effect and

the resulting selection of local packing symmetry under the

constraint of dense packing. Thus, it is interesting to consider

how the softness of the interaction potential affects the selection

of local packing symmetry (i.e., the preferred type of bond

orientational order) in the metastable supercooled state and

eventually the selection of crystal polymorphs.

Soft materials are often characterized by weak effective

repulsions which can be tailored through the control of solvent

properties, and the existence of a thermodynamically stable solid

does not require a singular repulsion for vanishing interatomic

separations. An example is offered by the effective interaction

between self-avoiding polymers dispersed in an athermal solvent,

where the repulsion is finite even when the centers of mass of the

polymers overlap.23 Similar softening of the interaction potential

can be seen for many soft particles such as star polymers, poly-

electrolyte stars, microgels, hairy particles, and dendrimers.24–26

While hard divergent potentials favour the nucleation of

compact crystals (such as hcp and fcc), soft bounded potentials

allow the formation of open crystal structures (like the bcc or

simple cubic phases).24–26 This is because soft particles interacting

with the soft bounded potential can explore configurations that

are forbidden to hard-sphere systems due to their deformability

and interpenetrability.

In the present study we address the homogeneous nucleation in

the Gaussian core model (GCM), a soft bounded potential which

consists of the pairwise sum of additive Gaussian components,

first introduced by Stillinger.27 The GCM is a good model for the

effective interaction between the centers of mass of polymers

dispersed in a good solvent. The bounded repulsion originates

from a loss in configurational entropy due to steric hindrances of

the chains as they approach each other. Because the pair

potential between GCM particles is bounded, it cannot maintain

a crystalline order at high enough pressures, causing a reentrant

melting of the solid phase at high densities. As was demonstrated

by Stillinger,27 the GCM reduces to the HSmodel for low enough

temperatures and densities, where in fact crystallizes in the fcc

phase. At high densities, on the other hand, the model behaves

like a weakly correlated ‘‘mean field fluid’’, due to the large

number of neighbours a particle can interact with.23,28 The GCM

can thus be considered as a model which interpolates continu-

ously between the HS fluid, at low pressures and densities, and

a mean-field fluid, at high pressures and densities.

It is known that some systems of soft-repulsive potentials such

as the penetrable sphere model29 show freezing at any arbitrary

temperature to clustered crystals (multiple occupation of lattice

sites).24–26 Thus, the shape of the pair potential determines

whether the system exhibits the reentrant melting or cluster
This journal is ª The Royal Society of Chemistry 2012
crystallization behaviour. Likos et al. showed that the reentrant

melting should occur for bounded repulsive potential with

a positive definite Fourier transform.30 Since the bounded

potential of the GCMhas the positive definite Fourier transform,

there is only reentrant melting behaviour without clustering. This

provides us with an ideal opportunity to study the effect of the

softness on crystallization without further complications.

The homogeneous nucleation in the GCM has been recently

examined by Lechner et al.31,32 They showed that the description

of the transition is enhanced by taking into account the pre-

structured particles surrounding the crystalline nucleus. This

finding extends to soft potentials what was observed in previous

studies of the precursor regions of high bond orientational order

in the HS model.21 Recently, both experiments33–35 and simula-

tions21,31,36 have started to point out deviations from the classical

picture of crystallization, suggesting a possible two-step

scenario:21,36,37 crystal nuclei are not formed spontaneously in

one step from random fluctuations, but they appear inside pre-

ordered precursor regions.

Here we will take advantage of the GCM phase diagram to

study the effect of locally favoured packing symmetry on the

pathway for crystal nucleation. We will show that Ostwald’s step

rule cannot account for the observed nucleation pathway

observed in our simulations. We will then focus on the precursor

regions which trigger the liquid-to-solid transition and show that

the selection of the polymorph starts already in the metastable

liquid phase.

The organization of this paper is as follows. In Section 2 we

describe the simulation methods employed in our study, which

comprise free energy calculations and crystal identification

through spherical harmonics analysis. Results are presented in

Section 3. We discuss our results in Section 4 and we conclude in

Section 5.
2 Methods

The Gaussian core model (GCM) is defined by the following

pair-wise repulsive potential

vðrÞ ¼ 3 exp

�
� r2

s2

�
(1)

where r is the pair distance, and 3 and s define respectively the

energy and length scales. In the following we adopt natural units,

defined such that 3 ¼ 1 and s ¼ 1. We also set the Boltzmann

constant to unity, kB ¼ 1.

The phase diagram of the GCM, reproduced in Fig. 1, has

been accurately determined by numerical simulations,27,38–41

showing the following peculiar properties:

� Existence of a maximum melting temperature (Tmax
m ), above

which a fluid phase is stable at all densities.

� Reentrant melting, where the solid phase liquefies upon

compression.

�A stable bcc crystal, except at low temperatures and densities

where fcc becomes favourable.

The presence of a maximum melting temperature is one of the

striking features of systems of particles with a bounded repulsive

interaction.24–26 At high temperature and/or pressure the core is

unable to give rise to the excluded volume effects responsible for

crystallization, and thus the stable phase is the liquid.
Soft Matter, 2012, 8, 4206–4215 | 4207
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Fig. 1 Phase diagram of the GCM in the P–T plane, reproduced from

data in ref. 39. Two solid phases are thermodynamically stable: fcc at low

pressures and a reentrant bcc phase at higher pressures. The state points

examined in the present work are marked with crosses; in order of

increasing P: (P ¼ 0.01,T ¼ 0.00262) in the fcc stability region; and (P ¼
0.05,T ¼ 0.00520) and (P ¼ 1.00,T ¼ 0.00180) in the bcc stability region.
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Furthermore, the GCM shows a solid–solid phase transition

from the fcc to the bcc structure, where the fcc phase is stable at

low temperature and pressure. In fact, at such conditions the

repulsion is strong enough to avoid penetration and the fcc

structure is favoured, whereas at high pressure the core is more

easily penetrable and the bcc phase becomes the stable one.

Starting from a state point where the fcc phase is favoured, the

stability of the bcc can be increased by simply compressing the

system. We study different state points: (i) (P ¼ 0.01,T ¼
0.00262), (ii) (P¼ 0.05,T¼ 0.00520), (iii) (P¼ 1.00,T¼ 0.00180).

The first point is located in the region of stability of the fcc phase,

while the others in the region of stability of the bcc phase. In the

following we will indicate the different state points just by their

pressure. We follow the crystallization process in a system of

N ¼ 4000 particles by placing the particles randomly in the

simulation box and running NPT Monte Carlo simulations. At

state points P ¼ 0.01 and P ¼ 0.05 the liquid is metastable with

respect to crystallization, and typical simulation trajectories

attain a long metastable state before eventually the nucleation of

a crystal exceeding the critical size occurs. The cutoff in the

interaction range is set to rc ¼ 3.7 (as always here, in units of s),

and standard cutoff corrections are accounted for in the calcu-

lation of the interaction energy, pressure and chemical potential.

To identify crystal particles we use the local bond-order

analysis introduced by Steinhardt et al.,42 first applied to study

nucleation by Frenkel and co-workers.43 First a (2l + l) dimen-

sional complex vector (ql) is defined for each particle i as

qlmðiÞ ¼ 1

NbðiÞ
XNbðiÞ

j¼1
Ylmð r̂ijÞ. l is a free integer parameter, and m

is an integer that runs from m ¼ �l to m ¼ l. The functions Ylm

are the spherical harmonics and r̂ij is the vector from particle i to

particle j. The sum goes over all neighbouring particles Nb(i) of

particle i. Instead of defining the neighbours as all the particles

within a cutoff distance (as is usually done in the literature), we

instead fix Nb(i) ¼ 12 (the number of nearest neighbours in the

perfect hcp and fcc crystals), considering only the 12 closest

particles to particle i. The bcc crystal has instead only 8 particles
4208 | Soft Matter, 2012, 8, 4206–4215
in the first coordination shell, but we have checked that the

inclusion of additional 4 particles does not have any quantitative

effects on our results. Particle i is then defined as solid if it has at

least nc ¼ 9 connected neighbours (j ¼ 1.9), defined as all

neighbouring particles j for which q̂6(i)$q̂6(j) > 0.6, where

q̂l ¼ ql/|ql|, and jql j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

m¼�l
jqlmðiÞj2

q
. To assert the structural

identity of each crystal particle, we improve the averaged bond

order parameters introduced by Lechner and Dellago.44 We

define the quantities �ql(i)

q
^
lm ¼ 1

NbðiÞ
XNbðiÞ

k¼0

qlmðkÞ (2)

where, differently from the definition in ref. 44, the sum from

k¼ 0 to �Nb(i) runs over all neighbours of the same phase (liquid or

solid) of particle i plus the particle i itself. Avoiding the spatial

average over particles of different phases allows a more precise

study of the particles at the interface between solid and liquid,

without biasing the order parameter values of the liquid particles

due to the average over solid ones. This choice results in a better

separation along the Q6 axis of liquid and crystal particles

(already identified by their number of connected neighbours), as

we will show in Fig. 6.

Given the definition of eqn (2), one can construct the rota-

tionally invariant quantities

QlðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p=ð2l þ 1Þ

p ���q^lðiÞ
���

and

WlðiÞ ¼
Xl

m1 ;m2 ;m3¼0

�
l l l

m1 m2 m3

�
q
^

lm1
ðiÞq^lm2

ðiÞq^lm3
ðiÞ

jq^lðiÞj3

where the term in parentheses is the Wigner 3 � j symbol (which

is different from zero only when m1 + m2 + m3 ¼ 0).

To identify the crystal polymorphs, thus, we take advantage of

the different symmetries that the crystals have on theW6 andW4

axis. The bcc structure is in fact characterized by a positive W6

distribution while hcp and fcc both have negative W6 but differ

respectively for their positive and negative values of W4. We

adopt the following criterion for crystal classification: first crystal

particles are identified as by having at least nc ¼ 9 connected

neighbours. Then, we identify (i) bcc particles as all crystal

particles withW6 > 0; (ii) hcp particles as all crystal particles with

W6 < 0 and W4 > 0; (iii) fcc particles as all crystal particles with

W6 < 0 and W4 < 0.

We extract the information on the size of the critical nucleus,

the Zeldovich factor and the nucleation rate by means of the

mean first-passage time formalism.45 The average time it takes

the biggest nucleus to reach a given size n for the first time is given

by the following expression

sðnÞ ¼ 1

2JV

n
1þ erf

�
cðn� n�Þ�o (3)

where n* is the critical size of the nucleus, J is the nucleation rate,

V the volume and c is linked to the Zeldovich factor Z

(c ¼ Z
ffiffiffi
p

p
).

To compare the relative stability of the different phases we

have performed free-energy calculations for the crystal and liquid

phases at state points P ¼ 0.01 and P ¼ 0.05. The free energy of
This journal is ª The Royal Society of Chemistry 2012
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the liquid phase is calculated by thermodynamic integration

along a path from the ideal gas to the state point of interest. The

free energy of the different crystal phases is instead calculated

with the Einstein crystal method, which is based on thermody-

namic integration from an harmonic crystal (whose free energy

can be exactly calculated) to the crystal of interest. The values of

the elastic constants for the harmonic crystals were chosen so

that the mean square displacement of the Einstein solid

approximately matches the mean square displacement of a GCM

particle from its reference lattice site. The thermodynamic inte-

grations were conducted with 20 points Gauss–Legendre quad-

ratures. For the details of the calculations we refer to the original

literature46–48 and to ref. 39,40 for a complete account on how to

conduct free energy calculations for the Gaussian core model.
3 Results

We first present the results of the free energy calculations in

Table 1. In agreement with previous numerical simulations,40 we

confirm that for low pressures (P ¼ 0.01) the fcc crystal is the

phase with the lowest free energy, with the free energy of the hcp

phase being very close. At higher pressure (P ¼ 0.05), on the

other hand, the bcc crystal becomes the dominant phase, with fcc

and hcp having higher free energies. Note that the supersatura-

tion, i.e., the difference between the chemical potentials of the

fluid phase and the stable crystal phase (bDm ¼ bDf + bDP/r), is

approximately the same for both state points, bDm y 0.36.

According to these results, Ostwald’s step rule predicts

a different nucleation pathway for the two state points. In

particular we should expect the nucleation of the bcc phase in the

fcc stable region for P ¼ 0.01, and vice versa for P ¼ 0.05. In the

following we will show that this does not happen and that the two

state points show very similar nucleation pathways, with the

amount of bcc gradually increasing as the pressure is increased.

We note that the same ordering of the crystals with respect to

the free energy is obtained by looking at their equilibrium

densities. For P ¼ 0.01 we have rbcc ¼ 0.10654, rhcp ¼ 0.10664

and rfcc ¼ 0.10664. For P ¼ 0.05 we have rbcc ¼ 0.17138, rhcp ¼
0.17117 and rfcc ¼ 0.17119.

We start by generating many nucleating MC trajectories, as

described in the Methods section. The total number of trajecto-

ries generated was (i) 340 trajectories for P ¼ 0.01, of which 223

crystallized; (ii) 393 for P ¼ 0.05, of which 204 crystallized. A fit

of mean first-passage times to eqn (3) allows us to estimate the

size of the critical cluster size in a x 52 particles for both state

points. Since the degree of supersaturation, bDm, is approxi-

mately the same for both state points (Table 1), the equivalence

of the critical nucleus size implies also the equivalence of the free
Table 1 Excess Helmholtz free energy per particle (b ¼ 1/kBT), for the
bcc, fcc and hcp crystals and for the metastable fluid phase at the state
points considered in the text. The simulations of the Einstein crystal were
conducted in the NVT ensemble with N ¼ 1372 for the fcc and hcp
crystals, and with N ¼ 1458 for the bcc crystal. The error is less than the
last reported digit

r T bfexbcc bfexfcc bfexhcp bfexfluid

0.1050 0.00262 14.825 14.789 14.792 15.149
0.1704 0.00520 26.096 26.148 26.155 26.460

This journal is ª The Royal Society of Chemistry 2012
energy barrier, bDf*, between the fluid and the stable crystal at

the two state points. In fact, according to classical nucleation

theory, bDf* ¼ bDma1/3/2 y 9.4 (in units of kBT) for both state

points. From classical nucleation theory and the knowledge of

the critical nucleus size, a, and the thermodynamic driving force,

Dm, it is also possible to extract the value of the interfacial

tension, g¼ r|Dm|R/2, whereR is the critical nucleus radius and is

related to a as a ¼ r(4pR3/3). For the state points reported in

Table 1 we have gP ¼ 0.01 ¼ 2.4� 10�4 and gP ¼ 0.05 ¼ 6.7� 10�4.

Nucleation rates estimated from mean first-passage analysis are

JP ¼ 0.01 ¼ 2.7 � 10�11 and JP ¼ 0.05 ¼ 3.3 � 10�11. Since the

thermodynamic driving force is the same for both state points,

this difference must come from a difference in the dynamics at

the two temperatures, obviously slowing down at the lower

temperature.

In Fig. 2 we present the fraction of crystal particles as a func-

tion of time during a typical trajectory (at P ¼ 0.05, but the same

holds also for P ¼ 0.01). It shows that at the chosen state points

the system attains a steady-state metastable stage, in which many

subcritical nuclei form and dissolve, followed by a crystallization

stage, where eventually one of these nuclei reaches the critical

size, growing until the whole system crystallizes (we have checked

that, despite the low free energy barrier, the crystallization

process originates from one critical nucleus and not by many).

During the metastable stage the system is in a steady-state

condition, which is due to fluctuations around relative minima of

the free-energy surface, and where all thermodynamic control
Fig. 2 Fraction of crystal particles in a typical MC run for the state

point P ¼ 0.05. Trajectory is divided between a metastable stage and

a crystallization stage. The inset shows the self intermediate scattering

function for both P ¼ 0.05 (circles) and P ¼ 0.01 (squares) state points.

The lines are fits to a stretched exponential decay, used to obtain the

structural relaxation time in the metastable state. The two snapshots

show the evolution of the largest crystal nucleus along the crystallization

stage, for sizes just before (left) and after (right) the critical nucleus size.

In this example the nucleus is predominantly bcc (blue) and fcc (red),

while hcp (green) is almost absent.

Soft Matter, 2012, 8, 4206–4215 | 4209
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parameters (pressure and temperature) are at equilibrium. The

transition to the crystalline state occurs through thermal fluctu-

ations (nucleation events), which are rare enough to allow us to

access the metastable state in equilibrium.

To check that indeed the metastable state is in steady-state

equilibrium, the inset of Fig. 2 displays the self intermediate

scattering function for both state points

Fsðqmax; tÞ ¼
D 1

N

X
i

exp
�
� iq$

	
riðtÞ � rið0Þ


�E

where the sum runs over all N ¼ 4000 particles, q is the wave

vector, ri(t) is the position of particle i at time t, and qmax is the

modulus of the wave vector which corresponds to the first peak in

the structure factor. The lines in the inset of Fig. 2 show that the

decay of Fs(q
max,t) is well described by a stretched exponential

relation Fs(q
max,t) ¼ exp(�(t/s)b) with the following fitting

parameters: i) P ¼ 0.01: s ¼ 332, b ¼ 0.43; ii) P ¼ 0.05: s ¼ 544,

b ¼ 0.48. The parameter s (which corresponds to the structural

relaxation time) is thus, in both cases, several orders of magni-

tude shorter than the typical length of the metastable trajectories.

A typical nucleation and growth event is shown in Fig. 3 for

P¼ 0.01 (a,b) and P¼ 0.05 (c,d). Crystal particles are depicted as

big spheres, while small spheres denote liquid particles having

high bond orientational order (Q > 0.28). The figure shows the

development of medium-range bond orientational order in the

metastable fluid, and the birth of crystal nuclei occurring inside

regions of high Q6. Typically, within the growing cluster, the

different phases are grouped and grow separately. At high

pressure, the bcc phase occupies the core of the nucleus (Fig. 3c),

with fcc particles forming patches attached to this core (Fig. 3d).

At low pressure instead the core of the nucleus can be either fcc
Fig. 3 Snapshots of a nucleation and growth event for P ¼ 0.01 (a,b)

and P ¼ 0.05 (c,d). Particles are depicted with two different sizes: small

spheres are liquid particles with Q6 > 0.28, while big spheres are crys-

talline particles in the bcc (blue), hcp (green) or fcc (red) phases. Note that

in (a) the nucleation event starts from a fcc core, while in (c) it starts from

a bcc core.
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(Fig. 3a) or bcc. We speculate that, at pressures lower than the

ones considered in this work, the nuclei will predominantly have

an fcc core. To study this process in detail, we will now

concentrate on the crystallization stage and on the metastable

stage separately. From the crystallization stage we extract the

average composition of crystallizing nuclei, unveiling the nucle-

ation pathway. We will then try to explain these results based on

the liquid properties of the metastable melt. In other words we

try to establish a link between the liquid properties and the

subsequent nucleation of the solid phase. Such a link is possible

since we will show that nucleation most likely occurs in regions of

the liquid with high bond orientational order (high Q6).
3.1 Crystallization stage

Fig. 2 also shows snapshots of the growing critical nucleus for the

state point P ¼ 0.05, where it is already evident that nucleation

mostly occurs in either the fcc phase (red particles) or, predom-

inantly, in the bcc phase (blue particles). To study in detail the

crystallization process we apply the bond orientational analysis

described in the Methods section to all crystallizing trajectories.

This allows us to study the composition of each solid nucleus as

a function of its size. Fig. 4a displays the average number of

particles (�n) for the bcc, hcp and fcc polymorphs, as a function of

the total crystal size. For both state points the bcc phase is the

dominant phase, at odds with the predictions of Ostwald’s step

rule. Contrary to Ostawald’s step rule, even for small clusters the

fraction of bcc particles is higher at P¼ 0.05 than P¼ 0.01, while

the fraction of fcc and hcp particles is higher at P ¼ 0.01 than

P ¼ 0.05. Fig. 4b and 4c report the average fractional compo-

sition of nuclei as a function of the nucleus size for the P ¼ 0.01

and P ¼ 0.05 state points respectively. In both cases the fraction
Fig. 4 Relation between cluster size and polymorphs. (a) Average

number of particles (�n) for bcc (circles), hcp (diamonds) and fcc (squares)

polymorphs as a function of the total crystal size (n). The value of �n(n) is

obtained by averaging the number of particles for each polymorph in

a cluster of size n. Full symbols are from simulations at P ¼ 0.05, open

symbols from simulations at P ¼ 0.01. (b) Fraction of particles (�f ¼ �n/n)

in a given crystalline state as a function of the total crystal size (n) for P¼
0.01. (c) Same as (b) but for P¼ 0.05. In all panels the vertical dashed line

denotes the size of the critical nucleus obtained from the mean-passage

time analysis.

This journal is ª The Royal Society of Chemistry 2012
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Fig. 5 Probability distribution in the W6–Q6 plane with Q6 > 0.30 at (a)

P ¼ 0.01 and (b) P ¼ 1.00 during the metastable stage. Each panel

contains both the surface plot (top) and contour lines (bottom). The

liquid and crystal populations are clearly distinguishable at low and high

regions of Q6 respectively. As the pressure is increased, the crystal

distribution displays a more pronounced peak at positive values of W6

which indicates the predominant nucleation of the bcc polymorph.
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of bcc increases as the crystal nucleus gets bigger, but the increase

is faster for P ¼ 0.05, where indeed bcc is the thermodynamic

stable phase. Particles in the fcc phase account for �40% of the

solid particles in the small nuclei. But while for P ¼ 0.05 this

fraction decreases as the nuclei become bigger, for P ¼ 0.01 the

fraction remains constant. The hcp phase plays only a minor role

for both state points, accounting for �20% of solid particles in

small nuclei, with this fraction steadily decreasing as the nuclei

become bigger.

We also show that the composition of the nuclei changes

between the nucleation regime and the growth regime. The

vertical dashed line in Fig. 4 indicates the size of the critical

nucleus (nc) obtained from the mean-first passage time analysis

(see eqn (3)). For both pressures P ¼ 0.01 (panel b) and P ¼ 0.05

(panel c) the composition of the nucleus for n < nc is approxi-

mately constant, in other words, all polymorphs grow with

a constant growth rate. For n > nc instead the composition of the

nuclei depends on the size n. This is most easily seen for pressure

P ¼ 0.05 (Fig. 4c) where the fraction of the bcc polymorph

steadily increases, at the expenses of both the fcc and hcp phases.

This behaviour may partly be understood as follows. In the

nucleation regime, crystals repeatedly appear, grow and melt as

fluctuations in the multi-dimensional space of density and bond

orientational order parameters, and thus the fraction of poly-

morphs is a reflection of the distribution of the bond order

parameters. In particular we will show that the fractional

composition of subcritical nuclei can be predicted from the

knowledge of the liquid distribution at high Q6 (see Section 3.2

and Fig. 5, 8 and 9). In the growth regime, on the other hand, the

free energy difference between polymorphs and their interfacial

tension come into play, promoting the growth of the polymorph

most favoured from this respect. A deeper understanding of the

growth regime, would need simulations for a bigger number of

particles, which are necessary to avoid finite-size effects and

artifacts from the periodic boundary conditions.

Fig. 4 has shown that, despite bcc being the dominant phase,

the fraction of fcc particles increases with decreasing pressure,

possibly becoming the majority phase at low enough pressures.

fcc is also favoured over hcp, despite their very small free energy

difference (Table 1). We will try to explain these results by

examining the metastable trajectories, before the critical nucleus

appears.
3.2 Metastable stage

Fig. 5 compares the probability distribution in the W6–Q6 plane

for particles with high values ofQ6 (Q6 > 0.30) for the metastable

stage at P ¼ 0.01 and P ¼ 1.0 respectively. For both pressures

two distinct populations are distinguishable, which correspond

to liquid and crystal particles. The use of the order parameters

defined in Section 2 is thus very effective in the identification of

crystal particles. The main difference between the two pressures

is the development at high pressure of a pronounced peak at

positive values of W6 in the crystal population, where the bcc

phase is located. This is in agreement with the results obtained

during the crystallization stage (Fig. 4), that the tendency

towards bcc growth is enhanced at high pressures. It is also clear

that the distribution of liquid particles with Q6 > 0.30 at high

pressure (see Fig. 5b) is also shifted to positive values ofW6 with
This journal is ª The Royal Society of Chemistry 2012
respect to the corresponding liquid distribution at low pressure

(see Fig. 5a). In other words, liquid particles of high Q6 display

the same symmetry (positive W6) of the corresponding crystal

phase.

To better analyse the properties of both the liquid and crystal

particles, we study the projections of the full probability distri-

bution of the metastable stage onto different axes. Fig. 6 shows

the projection on the bond orientational order parameter Q6 for

both solid particles and fluid particles at P ¼ 0.01, P ¼ 0.05 and

P ¼ 1.0 in the metastable supercooled state before nucleation

takes place. The distributions at all state points display only

a minimal overlap, with solid particles having higher Q6 than

liquid particles. By monitoring the trajectories of liquid particles

transforming into solids, we see that these come from regions of

the liquid with high Q6. Q6 is thus a good order parameter to

follow the liquid-to-crystal transition.

By combining the identification of solid particles, described in

Methods, with Voronoi diagrams,49 we obtain the local density

distribution for each specie in the metastable state, as reported in

Fig. 7. The figure shows the density histogram for liquid (dashed

line) and solid particles (continuous line). The two distributions

have a large overlap, with the average density for the two species

differing by less than 0.1%. The extremely small density differ-

ence between the liquid and solid phases was already noted by

Stillinger,27 who predicted that the density difference goes to zero
Soft Matter, 2012, 8, 4206–4215 | 4211
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Fig. 6 Q6 probability distribution for particles at P¼ 0.01, P¼ 0.05 and

P ¼ 1.0 in the metastable supercooled state, with fluid and crystal

particles plotted separately. For all the chosen state points, Q6 is a good

order parameter to distinguish between fluid and crystal particles.

Fig. 7 Density probability distribution for particles in bothP¼ 0.01 and

P¼ 0.05 state points in the metastable supercooled state. The continuous

and dashed line are the density histogram for solid and liquid particles

respectively. The circles represent the density histogram for liquid

particles fulfilling the condition Q6 > 0.3, proving that liquid particles

with high Q6 have the same density distribution as solid particles. The

inset shows the average density of liquid (dashed line) and solid

(continuous line) as a function of the size of largest cluster in the system

during the nucleation stage. The local density of each particle is deter-

mined via Voronoi-diagrams, and the average over solid particles

includes the surface particles.

Fig. 8 W4 probability distribution at P¼ 0.01 for liquid particles having

W6 < 0 and Q6 higher than a fixed threshold Qthr
6 . The threshold values

plotted are Q6 > 0.25,0.27,0.29,0.30,0.31,0.32, and the order is given by

the arrow. The inset shows theW4 probability distribution at Qthr
6 ¼ 0.30

for pressures P ¼ 0.01, P ¼ 0.05 and P ¼ 1.0 (the order is given by the

arrow). The P ¼ 1.0 is affected by more noise due to having fewer runs

with respect to the low pressure simulations.
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at the maximum melting temperature, Tmax
m . By calculating the

average densities of the liquid and solid phase we see that

the small precritical nuclei form at the same density as that of the

bulk crystals. This is very different from the behaviour in HS

simulations,16 where nucleation is shown to occur at densities

much smaller than the bulk crystal densities. This is confirmed in

the inset of Fig. 7, which shows the average density of solid

particles (continuous line) as a function of the nucleus size. While

hard spheres show an increase of crystal density with increasing

size,16 in the GCM the density is constant at all crystal size and

equal to the bulk value.
4212 | Soft Matter, 2012, 8, 4206–4215
Circles in Fig. 7 display the density histogram for liquid

particles having a value of Q6 higher than 0.3, showing that it

coincides with the density histogram of the solid particles. High

Q6 regions are the regions in the fluid phase where crystallization

is more likely to occur, so we can conclude that the fluid-to-

crystal transition occurs microscopically without any density

change. The same conclusion was found to hold for a system of

hard spheres.16 As shown in the inset of Fig. 7, the average

density of the system exhibits a small jump at the fluid-to-solid

transition, but this is due to the fact that the liquid phase

comprises also regions of small Q6 which on average are less

dense. So according to the two-step process scenario of crystal

nucleation we can conclude that macroscopically the transition

appears to involve a density discontinuity, but microscopically

the density is a continuous parameter. The fluid-to-solid transi-

tion instead involves a finite jump of the bond orientational order

(Q6) which is a manifestation of the increase of the coherency

between neighbours in the solid phase (for a detailed discussion

on the behaviour of the density and bond orientational order

parameters in the liquid-to-solid transition we refer to ref. 16).

As discussed in the Methods section, we remind that the

different crystal environments can be characterized by their

different symmetries on the W4–W6 plane.
16 bcc is characterized

by having a positiveW6, while both fcc and hcp are characterized

by a negative value of W6 and, respectively, by negative and

positive values of W4. We exploit these symmetries in the meta-

stable liquid phase, by considering only particles which are

identified as liquid particles.

Fig. 8 displays the probability distribution for the order

parameter W4 for liquid particles having negative values of W6

for P ¼ 0.01 (an analogous result can be obtained for P ¼ 0.05).

In this way negative values of W4 correspond to an fcc-like

environment, and positive values of W4 to an hcp-like environ-

ment. The distributions are plotted for different regions in the
This journal is ª The Royal Society of Chemistry 2012
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liquid phase, each characterized by a value of Q6 higher than

a fixed threshold Qthr
6 . Fig. 8 then clearly shows that, while liquid

particles with a low value of Q6 are symmetrically distributed

(showing no preference between fcc and hcp-like environments),

as the value of Q6 increases the distribution becomes more and

more peaked towards negative values of W4. This indicates that

the regions of the liquid with a high bond orientational order

show a clear preference for the fcc-like symmetry over the hcp

one. We suggest that this is the reason why, when the solid

nucleates from the liquid, it does much more in the fcc crystal

than the hcp crystal, despite their very small free energy differ-

ence (Table 1). The inset of Fig. 8 shows the W4 probability

distributions at Qthr
6 ¼ 0.30 for pressures P ¼ 0.01, P ¼ 0.05 and

P ¼ 1.0. As the pressure increases the distribution becomes more

symmetrical, indicating an increase of the hcp over fcc fraction

for higher pressures. Since we did not follow nucleation events

for the highest pressure, P ¼ 1.0, it would be interesting verifying

this prediction.

By looking at histograms of the order parameter W6, a similar

argument can be used to explain the increase of bcc crystalliza-

tion as the pressure is increased. Fig. 9 shows the probability

histogram for the order parameter W6 for high Q6 regions (Q6 >

0.3) for the state points atP¼ 0.01, P¼ 0.05 andP¼ 1.00. As the

pressure is increased the distributions move towards more posi-

tive values of W6 which corresponds to the bcc-symmetry, thus

explaining the preference for this phase during the initial stages

of nucleation. For P ¼ 0.01 the peak of the distribution has

a negativeW6 value, and this is reflected in the fraction of fcc and

hcp particles in small nuclei being higher than particles in the bcc

phase, as reported in Fig. 4b. As we increase the pressure, the

peak goes towards positive values of W6 and consequently bcc

particles become the dominant phase for small nuclei (Fig. 4c and

Fig. 5b).
4 Discussion

Unlike rigid potentials which favour the nucleation of compact

phases, in the GCM the liquid phase can coexist with two
Fig. 9 W6 probability distribution for liquid particles having Q6 > 0.3.

Simulations at P ¼ 0.01, 0.05, 1.00 are represented as open squares,

circles and diamonds respectively. Lines are guide to the eye. The arrow

indicates the direction of increasing pressure.

This journal is ª The Royal Society of Chemistry 2012
different crystal structures, the fcc and bcc polymorphs,

depending on pressure. The GCM offers thus the possibility to

study the effect of the metastable crystal phases on the pathway

for crystal nucleation. The role of these metastable pathways was

first formulated by Ostwald in 1897, who stated that the crystal

phase that is nucleated from the melt is the closest in free energy

to the fluid phase.

In our case, if Ostwald’s step rule applied strictly we should

expect the following pathways based on the free energy calcu-

lations reported in Table 1,

P ¼ 0.01: bcc / hcp / fcc

P ¼ 0.05: hcp / fcc / bcc

But, as was shown in Fig. 4, this does not happen. The bcc

phase is always the most abundant, especially when we increase

the pressure in the system. On the other hand the fraction of fcc

particles increases with decreasing pressure. Both these behav-

iours are the opposite of what is expected from Ostwald’s step

rule. Furthermore we cannot invoke the bulk phase diagram to

explain the results of Fig. 4, as we should expect the fcc phase to

be dominant at P ¼ 0.01, where also the hcp phase should be

more stable than the bcc phase.

Instead we propose that polymorph selection starts already in

the metastable supercooled state. Within the melt, the regions of

high bond orientational order (Q6) display density fluctuations

indistinguishable from the solid particles (Fig. 7) while being

characterized by a lower bond orientational order (Fig. 6). These

regions of high bond orientational order are prestructured, dis-

playing a symmetry which favours the nucleation of the bcc

phase at high pressures (Fig. 9), and favours the formation of fcc

over hcp (Fig. 8) at low pressures. As we have shown in Section 3,

this mechanism accounts for the fractional composition for

nuclei smaller than the critical size.

This scenario based on bond orientational ordering in the

metastable supercooled liquid well explains the trend that bcc

becomes more and more dominant with an increase in pressure,

but cannot explain the slightly higher probability of bcc over fcc

at P ¼ 0.01 in a simple manner. The relative composition of the

nuclei during the growth stage should basically be determined

by the difference, with respect to the metastable fluid phase, of

both the thermodynamic driving force (chemical potential) and

the surface tension of the different polymorphs. From this

standpoint, here we consider, besides bond orientational

ordering, three other physical factors determining the nucle-

ation barrier: (i) the density difference between the liquid and

the crystal nuclei, (ii) the free energy difference between solid

and liquid in the nucleation stage, and (iii) the roles of density

fluctuations in the supercooled liquid state. On factor (i), we

note that in principle the liquid–crystal interface energy is

a function of the spatial gradient of not only the bond orien-

tational order but also the density field. The symmetry matching

between high Q6 regions in the supercooled liquid with crystal

nuclei certainly reduces the interfacial energy cost. However, we

need to consider the density difference across the interface as

well. It looks as if the slightly larger liquid–solid density

difference for fcc than bcc were responsible for the slight

dominance of bcc over fcc at P ¼ 0.01. However, we should
Soft Matter, 2012, 8, 4206–4215 | 4213
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note that the local density of liquid regions from which crystal

nuclei are formed is higher than the average liquid density. The

density of crystal nuclei can be also different from that of bulk

crystal. We indeed see that there is essentially little density

difference between crystal nuclei and the liquid around them.

This suggests that factor (i) may not explain the observed

behaviour. On factor (ii), we should note that the free energies

of crystal nuclei and liquid are not necessarily the same as those

of bulk crystal and liquid, respectively. Furthermore, it is also

difficult to distinguish between the interfacial region and the

bulk region for the critical crystal nucleus, whose size is so

small. Nevertheless, it is expected that the free energy difference

is larger for fcc and liquid than for bcc and liquid, and thus it is

unlikely that factor (ii) is relevant to the observed behaviour.

However, there still remains a possibility that the slightly larger

degree of supercooling for bcc than for fcc (see Fig. 1) may

increase the nucleation probability of bcc. On factor (iii), there

is a possibility that the mechanism proposed by Alexander and

McTague5 helps the higher probability of the formation of bcc

over fcc. This theory shows that the most probable type of

density fluctuations has bcc symmetry. For hard spheres, bcc

symmetry is not consistent with any of locally favoured packing

symmetry, which are fcc, hcp, and icosahedral (ico) structure.

Thus, this scenario does not work for HS.16 For the GCM, on

the other hand, bcc is one of the locally favoured packing

symmetry and thus this scenario may promote the nucleation of

bcc crystals. Although this is a possible scenario, we cannot

draw a definite conclusion partly because the differences in the

nucleation probability and also in the W6 between bcc and fcc

are rather subtle. This problem will be a subject for future

study.

Next we consider how the softness of the interaction potential

affects the selection of local packing symmetry, i.e., bond

orientational order. For hard spheres, the natural number of

nearest neighbours around a particle is 12 under the constraint of

dense packing. So the possible candidates of local packing

symmetries are fcc, hcp and icosahedral structure (ico). This is

the consequence of the characteristics of hard spheres that

particles strictly feel only its neighbours: the excluded volume

effect. With an increase in softness, particles can feel more distant

particles (not only its nearest neighbours, but also the second,

third,/ neighbours). For the Gaussian core model, for example,

the candidates are not limited to these three symmetries, but

include bcc, in which a particle has only 8 nearest neighbours.

For the Hertzian model, even more different local symmetries are

allowed.50 This is the fundamental difference between hard and

soft sphere systems. We stress that for hard spheres such local

bond orientational ordering is driven purely by entropy that is

associated with the degree of freedom of the centers of mass of

particles. The system tends to gain the correlational entropy and

lower the local free energy. The increase in the softness of the

potential weakens the geometrical constraint on the local

symmetry selection of the centers of mass configuration under

dense packing and increases the significance of elastic (or ener-

getic) contributions. As discussed above, there are three mecha-

nisms which select local configurational symmetry: one is the

selection due to the excluded volume effect, which is relevant for

HS, the second is the elastic energy, and the third is the selection

due to density fluctuations, which is known as the Alexander–
4214 | Soft Matter, 2012, 8, 4206–4215
McTague scenario. The relative importance of these three factors

may be changed by the softness of the interaction potentials.

Although we cannot make a definite statement, we have some

evidence that the fluctuations of the bond orientational order

parameters such as Q6,W6, andW4 are more suppressed with an

increase in pressure. This is a consequence of that elastic

contributions become more important and the excluded volume

effects become less significant with an increase in pressure. This

suppression of the fluctuations makes a supercooled liquid more

homogeneous and increases the barrier for crystal nucleation.

This is consistent with the enhancement of the mean-field nature

of a liquid for higher pressures.23,28 On the tendency that bcc is

more favoured than fcc at higher pressure, it is important to

recognize that the same free energy dominates crystal and liquid

and thus the same bond orientational orders should basically be

favoured between crystal and liquid.

Finally, we note that the role of the prestructured regions in the

liquid for the crystallization process in the GCM was first

proposed in ref. 31. There is a clear link between the prestructured

particles of ref. 31 and the high bond orientational order particles

of our study. This is already clear from the inspection of Fig. 3,

where crystal particles are embedded in regions of high bond

orientational order, exactly as prestructured particles wet the

crystal nuclei. In ref. 31 these particles are shown to play an

important role in determining the correct shape of the free energy

barrier for nucleation. In our study the role of these particles is

extended to explain the mechanism of polymorph selection.

Taken together, these results show that a complete description of

the nucleation process needs to take into account the prestruc-

tured particles (with high bond orientational order) surrounding

crystal nuclei. However, we observe that ref. 31 found that the

solid clusters consist of an hcp core, which was not found in our

study. The reason for this discrepancy comes from the different

protocol used between the two studies for the identification of the

crystal phase. In ref. 31, the identity of a crystal particle is assessed

by its position in theQ4–Q6map,while in our studywemakeuseof

theW4–W6 map (as described in theMethods section). We believe

theW4–W6 map to be more reliable for polymorph identification

since it shows far less overlap between the different crystal

structures than theQ4–Q6 map.We have checked our proposition

by visual inspection of the configurations, finding that theW4–W6

map gives consistently more accurate results than theQ4–Q6 map

for the identification of polymorphs.
5 Conclusions

To conclude we have shown that the homogeneous nucleation in

the GCM bears many similarities with hard sphere systems,16

where the role of prestructured regions in the melt has been

recently investigated. Unlike hard spheres, the GCM offers the

possibility to investigate in depth the nucleation pathway for

different target crystals. Another difference is that while nucle-

ation in hard spheres happens at conditions very far from the

bulk crystal, in the GCM the fluid immediately crystallizes in

a solid with the correct bulk density (even for the smallest

precritical nuclei). This might be a consequence of the fact that

the crystal density is almost identical to that of the liquid and

accordingly there is little interface tension associated with the

density gradient.
This journal is ª The Royal Society of Chemistry 2012
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Here we showed that the basic principle of crystal polymorph

selection is common to hard and soft spheres. This suggest the

universality of the principle, although further careful studies are

necessary to confirm it. Future studies will also concentrate on

the role of dynamic heterogeneity, which were shown to be highly

suppressed in the high density limit,28 but could still play an

important role at low pressures, possibly shedding light on the

interplay between crystallization and vitrification.51,52
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