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1. Introduction

Intriguing electronic, optical and photocatalytic
performance of BSe, M,CO, monolayers and
BSe-M,CO, (M = Ti, Zr, Hf) van der Waals
heterostructures

M. Munawar,® M. Idrees,? Iftikhar Ahmad,? H. U. Din® and B. Amin @ *2

Using density functional (DFT) theory calculations, we have investigated the electronic band structure,
optical and photocatalytic response of BSe, M,CO, (M = Ti, Zr, Hf) monolayers and their
corresponding BSe-M,CO, (M = Ti, Zr, Hf) van der Waals (vdW) heterostructures. Optimized lattice
constant, bond length, band structure and bandgap values, effective mass of electrons and holes,
work function and conduction and valence band edge potentials of BSe and M,CO, (M = Ti, Zr, Hf)
monolayers are in agreement with previously available data. Binding energies, interlayer distance and
= Ti, Zr, Hf)
vdW heterostructures are stable with specific stacking and demonstrate that these heterostructures
might be synthesized in the laboratory. The electronic band structure shows that all the studied vdW
heterostructures have indirect bandgap nature — with the CBM and VBM at the I'-K and I'-point of BZ
for BSe-Ti,CO,, respectively; while for BSe-Zr,CO, and BSe-Hf,CO, vdW heterostructures the CBM
and VBM lie at the K-point and I'-point of BZ, respectively. Type-Il band alignment in BSe-M,CO,
(M = Ti, Zr, Hf) vdW heterostructures prevent the recombination of electron—hole pairs, and hence are
crucial for light harvesting and detection. Absorption spectra are investigated to understand the
optical behavior of BSe-M,CO, (M = Ti, Zr, Hf) vdW heterostructures, where the lowest energy
transitions are dominated by excitons. Furthermore, BSe—-M,CO, (M = Ti, Zr, Hf) vdW heterostructures

Ab initio molecular dynamic simulations (AIMD) calculations show that BSe-M,CO, (

are found to be potential photocatalysts for water splitting at pH = 0, and exhibit enhanced optical
properties in the visible light zones.

etch “A” atoms between the M,,,1X,, layer."” All the MXenes are
metals, while appropriate surface termination (M,41X,Tx, Tx

After the successful synthesis of graphene,™ great attention has
been paid to other 2D materials, such as hexagonal boron
nitrides (h-BN),” blue and black phosphorene,® transition metal
dichalcogenides (TMDCs),” silicene,® germanene,” MXenes,"
and Janus transition metal dichalcogenides (JTMDCs)."* Among
these materials, MXenes (M,1X,), synthesized by eliminating
the A-layer from their bulk counterpart the MAX phase (M,,1-
AX,, M refers to early transition metals, “A” represents the
group of sp elements, “X” represents C or N atoms, and nis 1, 2,
3), has received wide research attention'” due to a wide range of
applications in Li-ion batteries,"® catalysis," electrochemical
capacitors'® and also in fuel cells.'* The M-X bond in the MAX
crystals is stronger than the M-A bond, making it possible to
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denotes surface terminations, ie. O, F, OH) makes them
semiconductors.*®

Tuning the properties of 2D materials has led to a new field
that assembles 2D materials (isolated) into hybrid hetero-
structures in a precisely controlled sequence of layer by layer
stacking, called vdW heterostructures.* It provides a versatile
platform for exploring new phenomena and designing novel
nanoelectronic devices.**** To date, a great deal of vdW heter-
ostructures have been studied theoretically**™” and perceived
experimentally.”®*3" These vdW heterostructures are also
utilized to create electronic and optoelectronic devices with
novel physical properties and applications.>*”

MXenes-based vdW heterostructures, such as MXenes—
MXenes,*® MXene and nitrogen-doped graphene,** MXenes—
TMDCs,** MXene-blue phosphorene,** MXenes and B-doped
graphene,*” have already been fabricated and investigated in
detail. BSe, another 2D material, has been proposed and
predicted to be thermally stable with indirect bandgap
nature.*>**

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table1 Lattice constant (ain A), bond length (B—Se, M—O and M-C in
A), band gap (Eq in eV), effective mass (m, and my,), work function (¢ in
eV) and conduction and valence band edge potentials (Ecg and Eyg in

eV) for BSe monolayer and M,CO, (M = Ti, Zr, Hf) MXenes

Monolayers BSe Ti,CO, Zr,CO, Hf,CO,
a 3.26 3.01 3.31 3.27
B-Se 2.10 —_ —_ —_
M-O — 1.970 2.119 2.091
M-C — 2.210 2.359 2.332
Eqpee 2.635 0.300 0.865 0.99
EynsEos 3.56 0.920 1.590 1.70
d1ra07569a-t3 0.42 0.87 0.69 0.61
d1ra07569a-t3 0.93 1.32 1.05 1.27

(] 3.953 5.536 4.835 4.450
Ecp —1.255 0.354 0.069 —0.005
Eygp 2.304 1.248 1.659 1.695

Motivated by the fascinating optoelectronic and photo-
catalytic performance of MXenes with other monolayers in the
form of vdW heterostructures, we have fabricated BSe-M,CO,
(M = Ti, Zr, Hf) vdW heterostructures. Indeed small lattice
mismatch and the same hexagonal symmetry of the BSe and
M,CO, (M = Ti, Zr, Hf) monolayer allow the creation of BSe—
M,CO, (M = Ti, Zr, Hf) vdW heterostructures. It is also
surprising that there is no previous work on the BSe-M,CO,
(M = Ti, Zr, Hf) vdW heterostructures. We have investigated
the structural and electronic properties, band alignments,
average and planar electrostatic potentials, Bader charge

@
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analysis, optical and photocatalytic response of BSe, M,CO,
(M = Ti, Zr and Hf) monolayers and their vdW hetero-
structure. Our results show that BSe-M,CO, (M = Ti, Zr)
vdW heterostructures are a promising novel material for
visible light photocatalysis, electronic and optoelectronic
devices.

2. Computational details

We used DFT* with empirical dispersion correction of
Grimme*® and Perdew-Burke-Ernzerhof (PBE)* functional in
Vienna ab initio simulation package (VASP).*** In the first
Brillouin zone, a I'-point centered 6 x 6 x 1 Monkhorst-Pack
k-point grid and 500 eV cutoff energy were used. A vacuum
layer thickness of 25 A is established to avoid the interaction of
the adjacent layers of atoms. The geometric relaxations are
carried out until we achieve the convergence criterion of
10~* eV A~ (107° eV) for forces (energy). Commonly, the PBE
functional underestimates the band gap values of semi-
conductors, therefore, we have also performed a computa-
tionally expensive HSE06 (Heyd-Scuseria-Ernzerhof)™
functional for the precise calculation of the electronic struc-
ture and band gap values.

Ab initio molecular dynamic simulations (AIMD)** are used
to investigate the thermal stabilities of BSe-M,CO, (M = Ti, Zr)
vdW heterostructures. AIMD simulations are performed
through the Nose thermostat algorithm at a temperature of 300
K for a total of 6 ps with a time interval of 1 fs.
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Fig.1 Geometrical structure (top view), electronic band structure (PBE(blue), HSEO6(red)), and imaginary part of dielectric function (e»(w)), of BSe
((a), (e), (i) and (m)), Ti,CO, ((b), (f), (j) and (n)), Zr,CO5 ((c), (g), (k) and (0)), and Hf,CO, ((d), (h), () and (p)), and their photocatalytic response.
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Fig. 2 Possible stacking configurations of the BSe—-M,CO, (M = Ti, Zr, Hf) van der Waal heterostructures.

Furthermore, we have solved the Bethe-Salpeter equation
(BSE) in GW calculations using the Quantum-Espresso program
package,® to explore the optical spectra estimated by the
imaginary part of the dielectric function (ey(w)) of the BSe-
M,CO, (M = Ti, Zr, Hf) vdW heterostructures.>*>

3. Results and discussion

Optimized lattice constant, bond length, bandgap values,
effective mass of electrons and holes, work function and
conduction and valence band edge potentials (Ecg and Eyg) of
BSe and M,CO, (M = Ti, Zr, Hf) monolayers in Table 1, are in
agreement with ref. 56-58. Optimized geometry (top view) and
electronic band structure (using PBE and HSE06 functional)
are presented in Fig. 1, and show that both BSe and M,CO,

Table 2 Binding energies (E, in eV) and inter layer distance (d in A) of
the BSe—-M,CO, (M = Ti, Zr, Hf) vdW heterostructures in different
stacking configurations

Stacking BSe-Ti,CO, BSe-Zr,CO, BSe-Hf,CO,
Ey (a) —0.429 —0.395 —0.297
d 3.33 3.32 3.33
Ey, (b) —0.326 —0.316 —0.268
d 3.42 3.41 3.39
Ey () —0.331 —0.337 —0.284
d 3.39 3.38 3.35
Ey (d) —0.409 —0.305 —0.277
d 3.37 3.41 3.39
Ey (e) —0.398 —0.327 —0.281
d 3.46 3.39 3.36

44 | RSC Adv, 2022, 12, 42-52

(M = Ti, Zr, Hf) monolayers are indirect bandgap semi-
conductors with CBM(VBM) at the M(I')-point of BZ. The
calculated effective mass for both holes and electrons in Table
1, show that BSe and Hf,CO, monolayers would have high
carrier mobility.* Difference in the work functions in Table 1,
show that in the case of the interface of these materials,
electrons will spontaneously flow from M,CO, to the BSe
monolayer, which is further explained in detail later in the
vdW heterostructure of BSe and M,CO, (M = Ti, Zr, Hf)
monolayers.®® Furthermore, the imaginary part of the dielec-
tric function in Fig. 1, shows that the first excitonic peak at
3.851 for BSe, 0.286 for Ti,CO,, 1.79 for Zr,CO,, and 2.416 eV
for the Hf,CO, monolayer, lies in the visible range of the
spectrum, consistent with ref. 61-63. In the case of the pho-
tocatalytic response at pH = 0, BSe and Hf,CO, cross both the

Table 3 Lattice constant (in A), bandgap values (E4 in eV), effective
mass (m, and mj,), work function (¢ in eV), potential difference (AV)
conduction and valence band edges (Eyg and Ecg in eV) of BSe-M,CO,
(M =Ti, Zr, Hf) vdW heterostructures

Heterostructure BSe-Ti,CO, BSe-Zr,CO, BSe-Hf,CO,
a 3.15 3.29 3.27

Eqypp 0.107 0.837 0.970

Eq nsros 0.61 1.536 1.79

AV 4.280 2.300 2.050

] 6.537 5.764 5.808

n, 0.39 0.73 0.51

m; 0.76 1.08 0.97

Eygp 0.477 —0.0046 —0.0617
Ecp 1.0876 1.575 1.657

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Geometrical structure before heating (first row), with fluctuating energy (second row) and after heating (third row) of: (a) BSe-Ti,CO,, (b)
BSe-Zr,CO,, and (c) BSe—-Hf,CO, vdW heterostructures using AIMD simulation.

conduction and valence band edge potentials, while Ti,CO,
and Zr,CO, cross the valence band edge potential only and
fail to cross the conduction band edge, in agreement with ref.
56, 59 and 64, hence showing the potential of these systems in
electronic, optoelectronic and photocatalytic applications.
The above discussed consistencies for BSe and M,CO, (M =
Ti, Zr, Hf) monolayers, show the authenticity of the present
approach for the calculation of BSe-M,CO, (M = Ti, Zr, Hf)
vdW heterostructures.

Lattice mismatch of BSe, with Ti,CO, of 4.9%, with Zr,CO, of
1.2% and with Hf,CO, of 0.03%, are experimentally achievable®
and the same hexagonal symmetry realizes the fabrication of
BSe-M,CO, (M = Ti, Zr, Hf) vdW heterostructures. The elec-
tronic band structure is very sensitive to layer stacking,®®
therefore we have chosen five possible stacking configurations
of BSe-M,CO, (M = Ti, Zr, Hf) vdW heterostructures, see Fig. 2.
In stacking (a) the M(O) atom of M,CO, is placed on top of the
Se(B) atom of the BSe monolayer; in stacking (b) the M(C) atom
of M,CO, is placed on top of the B(Se) atom of the BSe mono-
layer; in stacking (c) the O(C) atom of M,CO, is placed on top of
the Se(B) atom of the BSe monolayer; in stacking (d) the O(M)
atom of M,CO, is placed on top of the Se(B) atom of the BSe
monolayer; and in stacking (e) the O(M) atom of M,CO, is
placed on top of the (B) atom of the BSe monolayer, while the C
is on a hexagonal site.

© 2022 The Author(s). Published by the Royal Society of Chemistry

Binding energy; E, = Epse-m,co, — Em,co, — Esse, Where
Egpse-m,co, is the total energy of the BSe-M,CO, (M = Ti, Zr, Hf)
vdW heterostructure, Ey,co, is the total energy of the isolated
M,CO, (M = Ti, Zr, Hf) MXene, and Egs, is the total energy of
the isolated BSe monolayer along with interlayer distance of
the stacking as presented in Table 2. Smaller interlayer
distance and binding energies represent the most stable
stacking configuration, therefore, stacking (a) of the BSe-
M,CO, (M = Ti, Zr, Hf) vdW heterostructures is the most
stable configuration. Obviously, negative binding energies
show that the formation of all heterostructures are
exothermic, see Table 2. These values are in the range of
binding energies for other vdW heterostructures,®”*® hence
suggest the possible experimental fabrication of BSe-M,CO,
vdW heterostructures. The calculated interlayer distance (see
Table 2) also confirms weak vdW interactions in the stacked
layers of these heterostructures. Optimized lattice constants
of the most stable stacking configurations are presented in
Table 3.

To further verify the thermal stability of the stacking of (a)
BSe-M,CO, (M = Ti, Zr, Hf) vdW heterostructures, we have
used the AIMD simulation. We have chosen a 3 x 3 supercell
with top view, see Fig. 3. It is clear from the figure that after
heating for 5 ps at 1 fs time steps at 300 K, the BSe-M,CO,
(M = Ti, Zr, Hf) vdW heterostructures show no broken bonds

RSC Adv, 2022,12, 42-52 | 45
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Fig. 4 PBE (blue) and HSEO06 (yellow) band structures (left column) and partial density of states (right column) of the BSe-Ti,CO, ((a) and (b)),
BSe-Zr,CO5 ((c) and (d)), BSe—Hf,CO5 ((e) and (f)) vdW heterostructures.

(remain stable), while the free energy oscillates slightly (see
Fig. 3, middle row), which confirms the thermal stability of
these systems at 300 K. Therefore, the stacking of the (a) BSe-
M,CO, (M = Ti, Zr, Hf) vdW heterostructures is the most
stable structure configuration and will be further examined in
detail.

Using both PBE and HSEO06 functionals, we have calculated
the electronic band structures of BSe-M,CO, (M = Ti, Zr, Hf)
vdW heterostructures, see Fig. 4, while the calculated
bandgap values are presented in Table 3. The electronic band
structure shows that all the studied vdW heterostructures
have an indirect band nature with the CBM and VBM at the I'-
K and I'-point of BZ for BSe-Ti,CO,, (see Fig. 4(a)), while both
BSe-Zr,CO, and BSe-Hf,CO, vdW heterostructures are indi-
rect bandgap semiconductors with CBM at the K-point and
VBM at the I'-point of the first BZ (see Fig. 4(b) and (c)). In the
case of the BSe-Ti,CO, vdW heterostructure direct

46 | RSC Adv, 2022, 12, 42-52

recombination of photogenerated electrons and holes hence
play a crucial rule in optoelectronic devices.®® In the case of
the BSe-Zr,CO, and BSe-Hf,CO, vdW heterostructures, the
recombination of photogenerated electrons and holes is slow
because firstly the CBM and VBM momenta align themselves
and then recombination occurs, which is useful for laser
applications.””> The variation in bandgap values (given in
Table 3) and the band structures of BSe-M,CO, (M = Ti, Zr,
Hf) vdW heterostructures from their parent monolayers,
reveals the bandgap engineering making the vdW hetero-
structures.” The contribution of the different atomic states to
the Fermi level is further explored by investigating the partial
density of states (PDOS), see Fig. 4 (b), (d) and (f). One can see
that the CBM is mainly due to the d state of Ti/Zr/Hf atoms of
the M,CO, layer, while the VBM is due to the p state of the Se
atom of BSe layer.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig.5 Weighted band structure (left column) and 3D isosurface 0.001 eV A =3 of the charge density difference (right column) of BSe—Ti,CO5 ((a)
and (d)), BSe-Zr,CO, ((b) and (e)) and BSe-Hf,CO, ((c) and (f)) vdW heterostructures. The cyan(yellow) color shows the charge electrons
depletion(accumulation).
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Fig. 7 Optical absorption of (a) BSe—Ti,CO,, (b) BSe-Zr,CO, and (c)
Bse—Hfz(:OZ.
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To verify the contribution of different atomic states in the
VBM and CBM, and nature of the band structure for type-I and
type-1I, we have calculated the weighted band structure of
BSe-M,CO, (M = Ti, Zr, Hf) vdW heterostructures, plotted in
Fig. 5. One can clearly see that in the case of BSe-Ti,CO, vdW
heterostructures (Fig. 5(a)) at the I'-point of BZ, the main
contribution in the CBM is due to the Ti-d,, atom of Ti,CO,
monolayers while the VBM is due to the Se-p,, state of BSe
monolayers, hence confirming type-II band alignment.”*”* In
the case of the BSe-Zr,CO, and BSe-Hf,CO, vdW hetero-
structures (see Fig. 5(b) and (c), respectively) the main
contribution in the CBM(VBM) is due to the Zr/Hf-d,, (Se-p.y)
states of the Zr,CO,, Hf,CO, (BSe) monolayers at the K(I')-
point of BZ, which also shows type-II band alignment. The
localization of the VBM and CBM from different layers are
obtained without any external electric field, as the intrinsic
electric field induces bond bending in making the vdwW

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Band alignment for the valence band (VB) and conduction band (CB) edge of BSe-Ti,CO,, BSe-Zr,CO, and BSe-Hf,CO,, at pH = 0. The
standard oxidation (—5.67 eV, O,/H,0) and reduction (—4.44 eV, H*/H?) potentials are also labeled.

heterostructures.”®”” This induced field drive photogenerated
electrons and holes in different directions. Type-II band
alignment is an effective tool to enhance electron-holes pairs
which reduce the recombination time, applicable for light
harvesting and detection.””® The spontaneous apprehension
about the charge transfer is obtained from the deportation
charge density (DCD) isosurface, presented in Fig. 5(d-f) for
BSe-M,CO, (M = Ti, Zr, Hf) vdW heterostructures. In Fig. 5(d-
f) the cyan(yellow) color shows the charge electrons deple-
tion(accumulation), hence confirming that charge is trans-
ferred from M,CO, (M = Ti, Zr, Hf) to BSe monolayers at the
interface of the BSe-M,CO, vdW heterostructures, which
leads to p-doping in Ti,CO,, Zr,CO, and Hf,CO, and n-
doping in the BSe monolayer. For further verification and
quantification of charge transfer we have investigated the
Bader charge analysis, which shows that the charge of about
0.17, 0.09 and 0.11 e/unitcell is transferred from the Ti,CO,,
Zr,CO, and Hf,CO, to the BSe monolayer, respectively.”® This
transfer of charge confirms that due to long range vdW forces,
the interlayer bonding of Ti,CO,, Zr,CO,, Hf,CO, and BSe
monolayers can be weak and diminishes with increasing bond
length.

Furthermore, we have verified the transfer of charge and
potential difference by calculating the average and planar
electrostatic potential difference along the z-axis, see Fig. 6. One
can easily see that the BSe monolayer has a deeper potential
then Ti,CO,, Zr,CO, and Hf,CO, monolayers in BSe-M,CO,
vdW heterostructures (see Fig. 6), confirming the transfer of
charge from Ti,CO,, Zr,CO, and Hf,CO, to the BSe layer. Also,
the potential drop (DV) across the vdW heterostructures, given
in Table 3, facilitates the separation of electrons and holes at
the interface. Making vdW heterostructures may effect the work
function, which leads to enhanced electronic properties of the
vdW heterostructures. Therefore, we have calculated the work
function of monolayers and their vdW heterostructures, as
presented in Table 1 and 3. One can easily see that the work
function of vdW heterostructures is almost the average of the
corresponding monolayers, efficient for charge transfer.

Furthermore, we have calculated the effective mass of elec-
trons and holes in the BSe-M,CO, vdW heterostructures.
Smaller effective mass leads to higher carrier mobility which is
useful for high performance nanoelectronic devices.” We used
parabolic fitting for the VBM and CBM and investigated the
effective mass of electrons and holes of the BSe-M,CO, vdW

© 2022 The Author(s). Published by the Royal Society of Chemistry

heterostructures. The value for effective mass of the holes and
electrons are given in Table 3. One can see that the effective
mass of vdW heterostructures (for holes and electrons) is
smaller than that of the corresponding monolayers in Table 1,
hence are suitable for application in high-performance nano-
electronic devices.

We have also calculated the optical performance in terms of
imaginary parts of the dielectric function (¢,(w)) of BSe-M,CO,
(M = Ti, Zr, Hf) vdW heterostructures as a function of photon
energy, given in Fig. 7. One can see that optical transitions are
dominated by excitons at 2.59 eV for Ti,CO,, at 2.27 eV for
Zr,CO, and at 2.43 eV for Hf,CO,. The calculated exciton
binding energies are 0.77, 0.048 and 0.143, respectively (see
Fig. 7). All these BSe-M,CO, (M = Ti, Zr, Hf) vdW hetero-
structures show substantial absorption in visible and UV
regions of the spectrum. This can be attributed to the fact that
the charge transfer and interlayer coupling, which can result in
the overlap of electronic states in the valence bands of the
heterostructure, and which enhances the optical absorption
(see Fig. 1 and 7).2*®

We have also investigated the photocatalytic properties
of BSe-M,CO, (M = Ti, Zr, Hf) vdW heterostructures using the
Mulliken electronegativity.?””*® Appropriate bandgap size,
valence and conduction band edges must straddle the redox
potentials of water, as reported in our previous work®® for use in
the water splitting reaction. The standard water redox potentials
are —4.50 eV for the reduction (H'/H,) and —5.73 €V for the
oxidation (H,0/0,).*° The calculated band edge potentials Eyp
and Ecpm of the heterostructures by the HSE06 functional are
summarized in Table 3 and presented in Fig. 8. Valence band
edge potential and conduction band edge potential, (Eygy and
Ecgm) for BSe-Hf,CO, and BSe-Zr,CO, vdW heterostructures
are higher than that of H'/H, and H,0/0,. These results signify
that, BSe-Hf,CO, and BSe-Zr,CO, vdW heterostructures can
oxidize H,0/0, and reduce H'/H,,* which is suitable for the
production of clean and renewable energy equipment applica-
tions.”* Although, the Zr,CO, monolayer fails to oxidize water
(see Fig. 1 and Table 1), the BSe-Zr,CO, vdW heterostructure
shows a good response to water redox potential, hence making
the vdW heterostructure suitable for the production of clean
and renewable energy device applications.®* Similar to the cor-
responding monolayer, in the case of BSe-Ti,CO,, the Eyg(Ecg)
cross(fail to cross) the reduction level. All these findings
demonstrate that the BSe-M,CO, heterostructures can be
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considered as potential photocatalysts for water splitting and
provide theoretical guidance for designing high-performance
nano-electronic and optoelectronic devices based on the BSe-
M,CO, heterostructures.®>*

4. Conclusion

In summery, using first principles DFT calculations, we have
investigated the electronic band structure, optical and photo-
catalytic response of BSe, M,CO, (M = Ti, Zr, Hf) monolayers
and their corresponding BSe-M,CO, (M = Ti, Zr, Hf) vdW het-
erostructures. The calculated lattice parameters, electronic
band structure, bandgap values and valence and conduction
band edge potentials of BSe and M,CO, (M = Ti, Zr, Hf)
monolayers are in good agreement with previous available data,
showing the authenticity of the present approach for the
calculations of BSe-M,CO, (M = Ti, Zr, Hf) vdW hetero-
structures. Based on the binding energy and interlayer distance
calculations, stacking (a) of the five different stacking of BSe-
M,CO, (M = Ti, Zr, Hf) vdW heterostructures is the most stable
stacking configuration. Furthermore, AIMD simulations also
show that stacking (a) for all studied systems, is thermally stable
at 300 K. Surprisingly, in contrast to the parent monolayers,
BSe-Ti,CO, (BSe-Zr,CO, and BSe-Hf,CO,) vdW hetero-
structures are direct (indirect) band gap semiconductor(s). All
studied vdW heterostructures have type-II band alignment,
hence play a major role in light harvesting and detection. Bader
charge analysis shows transfer of charge from M,CO, (M = Ti,
Zr, Hf) to the BSe layer, hence N(P)-type doping is achieved in
the M,CO,(BSe) monolayer at the interface of BSe-M,CO, vdW
heterostructures. The imaginary part of the dielectric function
is also investigated to understand the optical absorption of BSe-
M,CO, (M = Ti, Zr, Hf) vdW heterostructures, where the lowest
energy transitions are dominated by excitons. The calculated
photocatalytic response signifying that BSe-Zr,CO, and BSe-
Hf,CO, vdW heterostructures can oxidized H,0/O, and reduce
H'/H,, while the Zr,CO, monolayer fails to oxidize water, hence
making BSe-M,CO, vdW heterostructures viable for the
production of clean and renewable energy device applications.
Similar to the corresponding monolayer, in the case of BSe-
Ti,CO,, the Eyvpm(Ecem) cross(fail to cross) the reduction level.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Authors thank the Center for Computational Materials Science,
the University of Malakand Chakdara, Pakistan, for their
computing support.

References

1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
M. L katsnelson, I. V. Grigorieva, S. V. Dubonos and
A. A. Firsov, Nature, 2005, 438, 197.

50 | RSC Adv, 2022, 12, 42-52

View Article Online

Paper

2 A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183.

3 K. S. Novoselov, V. L. Faiko, L. Colombo, P. R. Gellert,
M. G. Schwab and K. Kim, Nature, 2012, 490, 192.

4 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004,
306, 666.

5 K. S. Novoselov, D. Jiang, F. Schedin, T. ]J. Booth,
V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl
Acad. Sci. U. S. A., 2005, 102, 10451.

6 Y. F. Li, Z. Zhou, S. B. Zhang and Z. F. Chen, J. Am. Chem.
Soc., 2008, 130, 16739.

7 J. N. Coleman, M. Lotya, A. O. Neill, S. D. Bergin, P. J. King,
U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets,
S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim,
G. S. Duesberg, T. Hallam, J. J. Boland, ]J. J. Wang,
J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov,
R. J. Nicholls, J. M. Perkins, E. M. Grieveson,
K. Theuwissen, D. W. McComb, P. D. Nellist and
V. Nicolosi, Science, 2011, 331, 568.

8 P. Vogt, P. D. Padova, C. Quaresima, J. Avila,
F. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet and
G. L. Lay, Phys. Rev. Lett., 2012, 108, 155501.

9 Z.Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu
and J. Lu, Nano Lett., 2012, 12, 113.

10 L. R. Shein and A. L. Ivanovskii, Micro Nano Lett., 2013, 8, 59.

11 J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen,
H. Guo, Z. Jin, V. B. Shenoy, L. Shi and J. Lou, ACS Nano,
2017, 11, 8192.

12 A. L. Ivanovskii and A. N. Enyashin, Russ. Chem. Rev., 2013,
82, 735.

13 O. Mashtalir, M. Naguib, V. N. Mochalin, Y. D. Agnese,
M. Heon, M. W. Barsoum and Y. Gogotsi, Nat. Commun.,
2013, 4, 1716.

14 X.Xie, S. Chen, W. Ding, Y. Nie and Z. Wei, Chem. Commun.,
2013, 49, 10112.

15 M. R. Lukatskaya, O. Mashtalir, C. E Ren, Y. D. Agnese,
P. Rozier, P. L. Taberna, M. Naguib, P. Simon,
M. W. Barsoum and Y. Gogotsi, Science, 2013, 341, 1502.

16 N. H. A. Junaidi, W. Y. Wong, K. S. Loh, S. Rahman and
W. R. W. Daud, Int. J. Energy Res., 2021, 45, 15760.

17 M. Naguib, V. N. Mochalin, M. W. Barsoum and Y. Gogotsi,
Adv. Mater., 2014, 26, 992.

18 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon,
L. Hultman, Y. Gogotsi and M. W. Barsoum, Adv. Mater.,
2011, 23, 4248.

19 L. A. Ponomarenko, A. K. Geim, A. A. Zhukov, R. Jalil,
S. V. Morozov, K. S. Novoselov, I. V. Grigorieva, E. H. Hill,
V. V. Cheianov, V. I. Fal’ko, K. Watanabe, T. Taniguchi and
R. V. Gorbachev, Nat. Phys., 2011, 7, 958.

20 A. K. Geim and I. V. Grigorieva, Nature, 2013, 499, 419.

21 Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang and
X. Duan, Nat. Rev. Mater., 2016, 1, 16042.

22 B. Amin, N. Singh and U. Schwingenschlgl, Phys. Rev. B:
Condens. Matter Mater. Phys., 2015, 92, 075439.

23 M. Sun, J.-P. Chou, J. Yu and W. Tang, Phys. Chem. Chem.
Phys., 2017, 19, 17324.

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra07569a

Open Access Article. Published on 21 December 2021. Downloaded on 11/4/2025 5:09:14 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

24 D. D. Vo, T. V. Vu, N. V. Hieu, N. N. Hieu, H. V. Phuc,
N. T. T. Binh, L. T. T. Phuong, M. Idrees, B. Amin and
C. V. Nguyen, Phys. Chem. Chem. Phys., 2019, 21, 25849.

25 K. D. Pham, L. G. Bach, B. Amin, M. Idrees, N. N. Hieu,
H. V. Phuc, H. D. Bui and C. V. Nguyen, J. Appl. Phys.,
2019, 125, 225304.

26 T. V. Vu, N. V. Hieu, H. V. Phuc, N. N. Hieu, H. D. Bui,
M. Idrees, B. Amin and C. V. Nguyen, Appl. Surf. Sci., 2020,
507, 145036.

27 H.T.T. Nguyen, M. M. Obeid, A. Bafekry, M. Idrees, T. V. Vu,
H. V. Phuc, N. N. Hieu, L. T. Hoa, B. Amin and C. V. Nguyen,
Phys. Rev. B, 2020, 102, 075414.

28 X. Liu and M. C. Hersam, Adv. Mater., 2018, 30, 1801586.

29 J. Wang, Z. Li, H. Chen, G. Deng and X. Niu, Nano-Micro Lett.,
2019, 11, 48.

30 D. Pashnev, V. V. Korotyeyev, J. Jorudas, T. Kaplas,
V. Janonis, A. Urbanowicz and 1. Kasalynasa, Appl. Phys.
Lett., 2020, 117, 162101.

31 ]. Yu, E. Han, M. A. Hossain, K. Watanabe, T. Taniguchi,
E. Ertekin, A. Zande and P. Y. Huang, Adv. Mater., 2021,
33, 2007269.

32 Z. Wu, Y. Zheng, S. H. Zheng, S. Wang, C. L. Sun, K. Parvez,
T. Ikeda, X. Bao, K. Miillen and X. Feng, Adv. Mater., 2016, 29,
1602960.

33 M. S. Long, E. F. Liu, P. Wang, A. Y. Gao, H. Xia, W. Luo,
B. G. Wang, J. W. Zeng, Y. J. Fu, K. Xu, W. Zhou, Y. Y. Ly,
S. H. Yao, M. H. Lu, Y. F. Chen, Z. H. Ni, Y. M. You,
X. A. Zhang, S. Q. Qin, Y. Shi, W. D. Hu, D. Y. Xing and
F. Miao, Nano Lett., 2016, 15, 2254.

34 D. Li, X. J. Wang, Q. C. Zhang, L. P. Zou, X. F. Xu and
Z. X. Zhang, Adv. Funct. Mater., 2015, 25, 7362.

35 X. H. Li, B. J. Wang, X. L. Cai, L. W. Zhang, G. D. Wang and
S. H. Ke, RSC Adv., 2017, 7, 28393.

36 X. H. Li, B. J. Wang, X. L. Cai, W. Y. Yu, L. W. Zhang,
G. D. Wang and S. H. Ke, RSC Adv., 2017, 7, 44394.

37 Q. Zhang, X. Xiao, R. Zhao, D. Lv, G. Xu, Z. Lu, L. Sun, S. Lin,
X. Gao, J. Zhou, C. Jin, F. Ding and L. Jiao, Angew. Chem., Int.
Ed., 2015, 54, 8957.

38 J. Cao, Z. Sun, J. Li, Y. Zhu, Z. Yuan, Y. Zhang, D. Li, L. Wang
and W. Han, ACS Nano, 2021, 15, 3423.

39 B. Shen, H. Huang, H. Liu, Q. Jiang and H. He, Int. J.
Hydrogen Energy, 2021, 46, 29984.

40 B. Zhu, F. Zhang, J. Qiu, X. Chen, K. Zheng, H. Guo, G. Yu
and ]. Bao, Mater. Sci. Semicond. Process., 2021, 133, 105947.

41 Z. Guo, N. Miao, J. Zhou, B. Sa and Z. Sun, J. Mater. Chem. C,
2017, 5, 978.

42 P. Zhao, X. Qin, H. Li, K. Qu and R. Li, J. Solid State Chem.,
2021, 302, 122418.

43 S. Demirci, N. Avazli, E. Durgun and S. Cahangirov, Phys.
Rev. B, 2017, 95, 115409.

44 B. Mortazavi and T. Rabczuk, Energies, 2018, 11, 1573.

45 W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133.

46 S. Grimme, J. Comput. Chem., 2006, 27, 1787.

47 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1996, 77, 3865.

48 G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater.
Phys., 1993, 47, 558.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

49 P. E. Blochl, Phys. Rev. B: Condens. Matter Mater. Phys., 1994,
50, 17953.

50 J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys.,
2006, 124, 219906.

51 R. Yuan, J. A. Napoli, C. Yan, O. Marsalek, T. E. Markland
and M. D. Fayer, ACS Cent. Sci., 2019, 5, 1269.

52 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
I. Dabo, A. D. Corso, S. D. Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
M. Lazzeri, L. M. Samos, N. Marzari, F. Mauri,
R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen,
A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys.:
Condens. Matter, 2009, 21, 395502.

53 M. Shishkin and G. Kresse, Phys. Rev. B: Condens. Matter
Mater. Phys., 2006, 74, 035101.

54 M. Rohlfing and S. G. Louie, Phys. Rev. Lett., 1998, 81, 2312.

55 E. Mosconi, P. Umari and F. D. Angelis, Phys. Chem. Chem.
Phys., 2016, 8, 27158-27164.

56 S. A. Khan, B. Amin, Li-Y. Gan and I. Ahmad, Phys. Chem.
Chem. Phys., 2017, 19, 14738.

57 P. Mishra, D. Singh, Y. Sonvane and R. Ahuja, Sustainable
Energy Fuels, 2020, 4, 2363.

58 Y. Zhang, R. Xiong, B. Sa, J. Zhou and Z. Sun, Sustainable
Energy Fuels, 2021, 5, 135.

59 Z. Guo, J. Zhou, L. Zhu and Z. Sun, J. Mater. Chem. A, 2016, 4,
11446.

60 C.V.Nguyen, M. Idrees, H. V. Phuc, N. N. Hieu, N. T. T. Binh,
B. Amin and T. V. Vu, Phys. Rev. B, 2020, 101, 235419.

61 S. S. Li, X.-H. Li, R.-Z. Zhang and H.-L. Cui, Int. J. Quantum
Chem., 2020, 120, €26365.

62 A. Mostafaei, E. Faizabadi and E. Semiromi, Phys. E, 2019,
114, 113559.

63 K. Pham, N. Hieu, L. Bui, I. Ershov, N. Hieu, H. Phuc, B. Hoi,
L. Phuong, L. Duc, M. Idrees, B. Amin and C. Nguyen, Mater.
Res. Express, 2019, 6, 065910.

64 X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu and Z. Zhou, J.
Mater. Chem. A, 2017, 5, 12899.

65 M. Liao, P. Nicolini, L. Du, ]J. Yuan, S. Wang, H. Yu, J. Tang,
P. Cheng, K. Watanabe, T. Taniguchi, L. Gu, V. Claerbout,
A. Silva, D. Kramer, T. Polcar, R. Yang, D. Shi and
G. Zhang, Nat. Mater., 2021, DOI: 10.1038/s41563-021-
01058-4.

66 N. Kharche, Y. Zhou, K. P. OBrien, S. Kar and S. K. Nayak,
ACS Nano, 2011, 5, 6096.

67 H. U. Din, M. Idrees, A. Albar, M. Shafigq, I. Ahmad,
C. V. Nguyen and B. Amin, Phys. Rev. B, 2019, 100, 165425.

68 M. Idrees, H. U. Din, R. Ali, G. Rehman, T. Hussain, C. V
Nguyen, I. Ahmad and B. Amin, Phys. Chem. Chem. Phys.,
2019, 21, 18612.

69 H. Terrones, F. Lopez-Urias and M. Terrones, Sci. Rep., 2013,
3, 1549.

70 V. D. Ganesan, J. Linghu, C. Zhang, Y. P. Feng and L. Shen,
Appl. Phys. Lett., 2016, 108, 122105.

RSC Adv, 2022,12, 42-52 | 51


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra07569a

Open Access Article. Published on 21 December 2021. Downloaded on 11/4/2025 5:09:14 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

71 M. Tangi, P. Mishra, M.-Y. Li, M. K. Shakfa, D. H. Anjum,
M. N. Hedhili, T. K. Ng, L.-J. Li and B. S. Ooi, Appl. Phys.
Lett., 2017, 111, 092104.

72 M. Z. Bellus, M. Li, S. D. Lane, F. Ceballos, Q. Cui,
X. C. Zengand and H. Zhao, Nanoscale Horiz., 2017, 2, 31.

73 B. J. Wang, X.-H. Li, R. Zhao, X. Cai, W.-Y. Yu, W.-B. Li,
Z.-S. Liu, L-W. Zhanga and S.-H. Ke, J. Mater. Chem. A,
2018, 6, 8923.

74 J. Kang, S. Tongay, J. Zhou, J. Li and J. Wu, Appl. Phys. Lett.,
2013, 102, 012111.

75 X. L. Wei, H. Zhang, G. C. Guo, X. B. Li, W. M. Lau and
L. M. Liu, J. Mater. Chem. A, 2014, 2, 2101.

76 T. P. Kaloni, G. Schreckenbach and M. S. Freund, J. Phys.
Chem. C, 2014, 118, 23361.

77 T. P. Kaloni, G. Schreckenbach and M. S. Freund, J. Phys.
Chem. C, 2015, 119, 3979.

78 Y. Q. Cai, G. Zhang and Y. W. Zhang, J. Phys. Chem. C, 2008,
119, 13929.

79 Y. Liu, X. Duan, Y. Huang and X. Duan, Chem. Soc. Rev.,
2018, 47, 6388.

80 X.H. Niu, Y. H. Li, H. B. Shu, X. J. Yao and ]J. L. Wang, J. Phys.
Chem. C, 2017, 121, 3648.

81 J. M. Liao, B. S. Sa, J. Zhou, R. Ahuja and Z. M. Sun, J. Phys.
Chem. C, 2014, 118, 17594.

82 F. Wu, Y. Liu, G. Yu, D. Shen, Y. Wang and E. Kan, J. Phys.
Chem. Lett., 2012, 3, 3330.

52 | RSC Adv, 2022, 12, 42-52

View Article Online

Paper

83 Y. H. Chiu, T. H. Lai, M. Y. Kuo, P. Y. Hsieh and Y. J. Hsu, APL
Mater., 2019, 7(8), 080901.

84 Y. H. Chiu, T. F. M. Chang, C. Y. Chen, M. Sone and J. Hsu,
Catalysts, 2019, 9(5), 430.

85 P. Y. Hsieh, J. Y. Wu, T. F. Chang, C. Y. Chen, M. Sone and
Y. J. Hsu, Arabian J. Chem., 2020, 13(11), 8372-8387.

86 M. J. Fang, C. W. Tsao and Y. J. Hsu, J. Phys. D: Appl. Phys.,
2020, 53[14), 143001.

87 J.J. Liu, X. L. Fu, S. F. Chen and Y. F. Zhu, Appl. Phys. Lett.,
2011, 99, 191903.

88 H. L. Zhuang and R. G. Hennig, Phys. Rev. B: Condens. Matter
Mater. Phys., 2013, 88, 115314.

89 M. Idrees, C. Nguyen, H. Bui, I. Ahmad and B. Amin, Phys.
Chem. Chem. Phys., 2020, 22, 20704.

90 X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay,
J. Wu, Y. Zhang and F. Wang, Nat. Nanotechnol., 2014, 9, 682.

91 P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu,
G. Aivazian, P. Klement, N. J. Ghimire, ]. Yan,
D. G. Mandrus, W. Yao and X. Xu, Nat. Commun., 2015, 6,
6242.

92 Y. A. Chen, Y. T. Wang, H. S. Moon, K. Yong and J. Hsu, RSC
Adv., 2021, 11(20), 12288-12305.

93 H. Lai, K. I. Katsumata and Y. J. Hsu, Nanophotonics, 2021,
10(2), 777-795.

94 C. W. Tsao, M. J. Fang and J. Hsu, Coord. Chem. Rev., 2021,
438, 213876.

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra07569a

	Intriguing electronic, optical and photocatalytic performance of BSe, M2CO2 monolayers and BSetnqh_x2013M2CO2 (Mnbsptnqh_x003D Ti, Zr, Hf) van der Waals heterostructures
	Intriguing electronic, optical and photocatalytic performance of BSe, M2CO2 monolayers and BSetnqh_x2013M2CO2 (Mnbsptnqh_x003D Ti, Zr, Hf) van der Waals heterostructures
	Intriguing electronic, optical and photocatalytic performance of BSe, M2CO2 monolayers and BSetnqh_x2013M2CO2 (Mnbsptnqh_x003D Ti, Zr, Hf) van der Waals heterostructures
	Intriguing electronic, optical and photocatalytic performance of BSe, M2CO2 monolayers and BSetnqh_x2013M2CO2 (Mnbsptnqh_x003D Ti, Zr, Hf) van der Waals heterostructures
	Intriguing electronic, optical and photocatalytic performance of BSe, M2CO2 monolayers and BSetnqh_x2013M2CO2 (Mnbsptnqh_x003D Ti, Zr, Hf) van der Waals heterostructures
	Intriguing electronic, optical and photocatalytic performance of BSe, M2CO2 monolayers and BSetnqh_x2013M2CO2 (Mnbsptnqh_x003D Ti, Zr, Hf) van der Waals heterostructures
	Intriguing electronic, optical and photocatalytic performance of BSe, M2CO2 monolayers and BSetnqh_x2013M2CO2 (Mnbsptnqh_x003D Ti, Zr, Hf) van der Waals heterostructures




