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omy-like machine learning
enables an anticipated surface plasmon resonance
of Au/Ag nanoparticles assembled on ZnO
nanorods†

Yu-Kai Liao,a Yi-Sheng Lai,ab Fei Pan ‡*c and Yen-Hsun Su*a

Sustainable energy strategies, particularly alternatives to fossil fuels, e.g., solar-to-hydrogen production, are

highly desired due to the energy crisis. Therefore, materials leading to hydrogen production by utilizing

water and sunlight are extensively investigated, such as nanomaterials modified by gold nanoparticles

(AuNPs) of different structures, which enable photoelectrochemical water splitting through light-to-

plasmon resonance. However, light-to-plasmon resonance depends on the gold nanoparticles'

properties. Therefore, an accurate projection model, which correlates the fabrication parameters and

light-to-plasmon resonance, can facilitate the selection and the subsequent application of AuNPs. In this

regard, we established a hybrid-biotaxonomy-like machine learning (ML) model based on genetic

algorithm neural networks (GANN) to investigate the light-to-plasmon properties of a six-layer coating

of noble metal nanoparticles (NMNPs) on ZnO nanorods. Meanwhile, we understood the plasmonic peak

shift of every NMNP coating layer by exploiting the multivariate normal distribution method and the

concept of phylogenetic nomenclature from evolutionary developmental biology.
Introduction

The worldwide reliance on fossil fuels and the consequent
supply shortage have caused a severe energy crisis, leading to an
urgent need for sustainable energy strategies and alternatives to
fossil fuels. Therefore, numerous efforts have been dedicated to
nano-energy materials, particularly for solar-to-hydrogen
production.1–7 Nano-energy materials have unique reactivity to
light, which can polarize electrons on their surfaces and facili-
tate electron excitation to the conduction band.8–15 Hence,
nano-energy materials, particularly nano-metal oxides, mani-
fest unique properties, e.g., light-to-plasmon resonance, which
can be further applied to improve the performance of solar
cells, optical sensors, and gas sensors.16–20 Among these nano-
metal oxides, ZnO, a typical material for photocatalysts and
sensors, displays promising application potential due to its
high photosensitivity, low cost, and stability.6,7,9,10,21
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Furthermore, vertically aligned ZnO nanorods (ZnONRs),
thanks to the high length/diameter ratio, high surface area, and
short electron–hole pair separation distance, are the optimum
morphology to improve the light absorption ability, leading to
enhanced efficiency of light-driven photoelectrochemical (PEC)
water splitting.11,12,22–24 However, most PEC materials for water
splitting can only utilize a limited amount of solar light (roughly
4%) due to their wide band gap (3.4 eV) and the consequent
performance happening only in the ultraviolet light region.25

Numerous efforts have been made to improve the photo-
response, hydrogen evolution rate, and photocatalyst activity by
coating noble metal nanoparticles (NMNPs)13,14 onto metal
oxide semiconductors, e.g., ZnO.26–31 But in most studies AuNPs
of a single structure were coated onto metal oxides, slightly
improving light utilization at a small absorption band located
within a narrow range of visible light.32–35 To expand the light
utilization to a wider visible light region and even the NIR
region, a multilayer coating of NMNPs on metal oxides has
demonstrated its feasibility.36

Nevertheless, a delicate multilayer coating design and
parameter selection for fabrication are crucial to developing
a material of anticipated light utilization. Therefore, it is
benecial to establish a prediction model coordinating the
fabrication parameters and the yielded functions of the mate-
rial. However, conventional modeling can hardly discover such
coordination as the complex fabrications lead to a non-linear
relation between the fabrication input and output beyond
J. Mater. Chem. A, 2023, 11, 11187–11201 | 11187
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description by physical laws. Such challenges can be eradicated
by applying a machine learning (ML) model based on genetic
algorithm neural networks (GANN), which is a powerful tool to
optimize the fabrication process and predict outcomes, while
avoiding unnecessary costly experiments.37–40 Nowadays, many
studies based on GANN have been conducted to study the uid
dynamics and plasmon resonances of NPs.40–45 To employ
GANN for process optimization and outcome prediction,
a careful parameter setting is necessary to construct the model
accurately. In this regard, we propose a unique concept, hybrid
biotaxonomy inspired by recombinant DNA technology, to
select parameters for the multilayer coating of NMNPs in order
to train the GANN model.

Articial neural networks (ANN), a computational intelli-
gence system simulating the behavior of the human brain and
neurons, are composed of basic elements called articial
neurons, which are highly interconnected in layers. The layers
contain an input layer, an output layer, and numerous hidden
layers, providing the adjustment in weight for every datapoint in
the receiving and ltering process, thereby enabling us to
construct a non-linear relationship model. Additionally,
a genetic algorithm (GA), inspired by the biological evolution
process, is developed to assist the ANN system during the
training of neural networks. Briey, the basic elements of the
GA are chromosomes, tness selection, and bio-inspired oper-
ators. In chromosomes, two possible alleles (variant forms of
genes), 0 and 1, are on each locus (specic position on the
chromosome). The chromosomes are considered as points in
the solution space, further utilizing the genetic operator
through iterative reproduction and population replacement.
Subsequently, all the chromosomes are assigned a value by the
tness function. Additionally, the operators have three steps to
reproduce the next generation, i.e., selection, crossover, and
mutation. The selection retains the optimum genes determined
by the tness values of the chromosomes, thus enabling the
reproduction of the promising population in the solution space.
In the crossover operator, two or more random chromosomes
are selected to mate, leading to the exchange of the genes and
generating the potential offspring. The mutation operator
diversies the original population, as some loci on chromo-
somes will be ipped or randomly alternated.

The hybrid biotaxonomy aspect plays a crucial role in
biotechnology, agriculture, clinical diagnosis, veterinary medi-
cine, etc. Taxonomy is applied in different systems, e.g.,
mammalian systems, insect expression systems, bacterial
systems, lament fungi, yeasts, and unicellular cells.15,46–57

Escherichia coli is therefore extensively used thanks to the fast
growth kinetics and low production costs,58,59 consequently
leading to substantial application in protein taxonomy through
various plasmid expressions.59,60 Nowadays, biologists are
increasingly applying evolutionary developmental biology to
address environmental challenges, food crises, and health care,
in which tree-shaped diagrams, namely phylogenetic trees, are
oen utilized to understand the evolutionary relationships
between the species and populations, and to solve the respective
challenges. For example, researchers in medical science have
used phylogenetic trees to gure out the origin of a virus and
11188 | J. Mater. Chem. A, 2023, 11, 11187–11201
subsequently to develop suitable treatments.61,62 In ecological
studies, researchers have employed phylogenetic trees to clas-
sify the species and the related probability of occurrence based
on environmental factors, like the pH value of water, insolation
duration, and temperature of the growing plant, to investigate
the diversity in a phylogeny.63,64 In addition, research concern-
ing evolutionary biology has mainly investigated the similarities
of the outcomes by comparing evolutionary trees through
different methods to uncover the far-reaching implications and
present the diversity of the evolved species.65

However, the concept of evolutionary developmental biology
is rarely used to study a phenomenon or a property in the
engineering eld. We herein propose the utilization of phylo-
genetic trees to describe the property evolution of plasmonic
nanoparticles (NPs), which were evaluated according to the
dielectric environment, coupling effect, sizes, NP shapes, and
effect of reactants. We subsequently established an evolutionary
tree for plasmonic NPs by considering the branches of inde-
pendent pathways, which can help to organize the results, trace
the origin of NPs, and consequently create a library of NP
characteristics impacted by the tunable parameters. We
furthermore considered the multilayer coating of NMNPs as
a sequence of protein taxonomy, namely the synergistic plas-
monic bands yielded by the six-layer coating of NMNPs.
Meanwhile, tuning the experimental parameters for the multi-
layer coating, i.e., reactant amounts, coating method, and time,
is analogous to engineering plasmids, which leads to the
protein taxonomy. The multilayer coating of NMNPs on
ZnONRs was herein realized through the layer-by-layer coating
method, which thus extended the overall light absorption
ability and enabled their application in the visible light and the
NIR region due to the localized surface plasmon resonance
(LSPR) effect of NMNPs. Furthermore, we tuned several
parameters inspired by the hybrid protein taxonomy to fabricate
the spherical (S)–Ag/S–Au–Ag/S–Au–Ag (575)/urchin-like Au
(ULA)/AuNRs/S–Au/ZnONRs samples, whose optical absorbance
was subsequently investigated to determine the plasmonic
peaks generated by the NMNPs of each layer. In this work, we
successfully demonstrated a machine learning (ML) model with
low data training established by utilizing the genetic algorithm-
based articial neural networks (GANN) and phylogenetic trees
of plasmonic peak evolution of NPs caused by the coupling
effect. This model enables prediction of plasmonic properties of
the anticipated coating of AuNPs, which can be potentially
applied to select optimal parameters to develop materials of
desired light-to-plasmon resonance, particularly for designing
photocatalysts, solar-to-hydrogen production, and gas sensors.

Results & discussion
Structural characterization

Localized surface plasmon resonance (LSPR) is a cumulative
resonant oscillation of the conduction electrons induced by the
interaction between plasmonic NPs and an electromagnetic
eld with specic light irradiation. Therefore, most plasmonic
NPs cause strong absorption bands in UV-vis spectra and strong
electromagnetic near-eld enhancements.66–69 It is well known
This journal is © The Royal Society of Chemistry 2023
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that the plasmonic peaks' position strongly depends on the
shape, size, and surface charge. With increasing NP size or the
growth of pods on NPs, LSPR can increase sharply and cause
a shi of the plasmonic absorption band toward a longer
wavelength, consequently exhibiting a wide light absorption
band compared to spherical NPs of similar sizes.70 In our study,
the UV-vis absorption spectra and the morphology of multiple
species of NMNPs were consistent with other research. Noble
metal nanoparticles of multiple shapes and sizes were synthe-
sized and investigated by TEM (Fig. 1a–f & S2†). The spherical
Au nanoparticles processed with photoreduction for 10 min
were mostly deposited at the tip and on the side of ZnONRs,
Fig. 1 TEM images of (a) spherical Au/ZnONRs, (b) Au nanorods, (c) u
spherical Au–Ag (molar ratio of Au/Ag = 1/3), and (f) spherical Ag.

This journal is © The Royal Society of Chemistry 2023
where the diameter of S–Au NPs was about 10–20 nm (Fig. 1a).
The morphology of AuNRs synthesized by a seed-mediated
method is displayed in Fig. 1b, revealing that the aspect ratio
of AuNRs was around 3.12 (length/width= 39.14 nm/12.53 nm).
The urchin-like Au nanoparticles with diameter in the 70–80 nm
range were synthesized by a seed-mediated method (Fig. 1c).
Two kinds of spherical Au–Ag nanoparticles of molar ratios 3
and 1/3 were respectively prepared as in Fig. 1d and e. Their
diameters were respectively in the 80–90 nm and 120–130 nm
ranges. Additionally, the spherical Ag nanoparticles in Fig. 1f
had a diameter in the 10–20 nm range.
rchin-like Au, (d) spherical Au–AgNPs (molar ratio of Au/Ag = 3), (e)

J. Mater. Chem. A, 2023, 11, 11187–11201 | 11189
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Fig. 2 SEM top view images of (a) S–Au/ZnONRs, (b) S–Au/ZnONRs, (c) ULA/S–Au/ZnONRs, (d) S–Au–Ag (575)/ULA/S–Au/ZnONRs, (e) S–Au–
Ag (448)/S–Au–Ag (575)/ULA/S–Au/ZnONRs, and (f) S–Ag/S–Au–Ag (448)/S–Au–Ag (575)/ULA/S–Au/ZnONRs.
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The morphology and structure of 1–6 layers of NMNPs
decorated on ZnONRs were characterized by SEM in Fig. 2 & S3.†
The average length and diameter of ZnONRs are 1.5 mm and
100 nm. The attachment of S–Au NPs mainly happened at the
top and on the side of ZnONRs in Fig. 2a, conrming the
structure of S–Au/ZnONRs. Then, the deposition of AuNRs,
urchin-like Au, two S–Au–Ag NPs, and S–Ag through the layer-
by-layer coating method can be observed on the previously
deposited NPs and ZnONRs in Fig. 2b–f, conrming the struc-
ture of S–Ag/S–Au–Ag (448)/S–Au–Ag (575)/ULA/S–Au/ZnONRs.
Fig. 3 UV-vis absorbance of (a) Au nanorods suspended in water, (b) urc
suspended in water, (d) S–Au–Ag (molar ratio of Au/Ag= 1/3) suspended
(448)/S–Au–Ag (575)/ULA/AuNRs/S–Au/ZnONRs in air.

11190 | J. Mater. Chem. A, 2023, 11, 11187–11201
Furthermore, the surface coverage of the NPs on ZnONRs
increased up to 60.58% in Fig. 2f, indicating a large attachment
of every NP. We further performed energy-dispersive X-ray (EDX)
spectroscopic analysis to ensure the anticipated coating in
Fig. S1.†
Surface plasmon resonance and design of ML methods

To enable light absorption in the visible light and the NIR
region for the heterostructure, NMNPs of different plasmonic
hin-like Au suspended in water, (c) S–Au–Ag (molar ratio of Au/Ag = 3)
in water, (e) S–Ag suspended in ethylene glycol, and (f) S–Ag/S–Au–Ag

This journal is © The Royal Society of Chemistry 2023
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resonances were synthesized. The UV-vis absorbances of the
plasmonic NPs used for the deposition on ZnONRs are illus-
trated in Fig. 3a–e. In Fig. 3a, AuNRs suspended in water (2nd
layer) displayed two bands, respectively at 590 nm (transverse
electron oscillation) and 736 nm (longitudinal electron oscilla-
tion) as their unique morphologies induced the special surface
plasmon resonance effect. However, the solution of ULA (3rd
layer), S–Au–Ag (4th layer), S–Au–Ag (5th layer), and S–Ag (6th
layer) all showed a single band respectively at 620 nm, 575 nm,
Fig. 4 (a) Schematic representation of the analysis procedure for the UV
chart of the model training by GANN for the plasmon resonance predic

This journal is © The Royal Society of Chemistry 2023
448 nm and 402 nm illustrated in Fig. 4b–e. UV-vis spectroscopy
was used to investigate the light absorption properties of
multilayer NMNPs decorated ZnONRs in Fig. 3f. With the
deposition of S–AuNPs, the result manifested plasmonic reso-
nance happening at 522 nm, and the light absorption band
located in the 400–800 nm range, ascribed to the surface plas-
mon resonance of S–AuNPs. But the plasmonic peaks shied
from 522 nm to 544 nm due to the coupling effect of AuNRs and
S–AuNPs, and the plasmonic resonance contributed by the
-vis absorption spectrum of six-layer NMNPs on ZnONRs, and (b) flow
tion of the heterostructure.

J. Mater. Chem. A, 2023, 11, 11187–11201 | 11191
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deposited AuNRs in the red line of Fig. 3f. Meanwhile, the
resonance peak appeared at 808 nm caused by the slight
aggregation of AuNRs suspended in ethylene glycol, which has
a longitudinal surface plasmonic resonance shi from 736 nm
to 808 nm. With the deposition of ULA NPs and S–Au–Ag (NPs)
by the electrophoretic deposition (EPD) method, the peak at
537 nm further showed a red shi to 560 nm, which was
attributed to the NPs of a plasmonic resonance at a longer
wavelength. Moreover, the deposition of S–Au–Ag (448) and S–
AgNPs by a self-assembly method led to plasmonic resonances
at the wavelengths respectively of 452 nm and 420 nm for 5-layer
and 6-layer NMNPs. The plasmonic resonance exhibited a blue
shi due to the plasmonic resonance of S–AgNPs suspended in
ethylene glycol at 402 nm. In summary, with the multilayer
coating of NMNPs of different plasmonic resonances deposited
layer by layer on ZnONRs, the overall light absorption ability can
be highly enhanced and extended to a wider region including
the visible light and the NIR region thanks to the surface plas-
mon resonance effect.

The entire analysis of the six-layer NMNPs on ZnONRs is
shown in Fig. 4a. Aer a successful coating of NMNPs on
ZnONRs, the samples' absorption spectra were measured step-
by-step from 1-layer to 6-layer to overview the synergistic plas-
monic resonances. The absorption spectra of every NMNP layer
fabricated by tuning parameters served as the database for
investigating the respective multivariate normal distributions of
Fig. 5 Evolutionary tree of plasmonic resonance shift of S–AuNPs, Au
coupling effect by multiple species of plasmonic NPs on every layer.

Table 1 Experimental parameters of samples for machine learning

X1
(UV treatment time)

X2
(amount of 10−3 M HAuCl4)

X3

(EPD time)
X
(

10 min 5 mL 0.5 h
30 min 7 mL 1 h 1

11192 | J. Mater. Chem. A, 2023, 11, 11187–11201
the wavelength scheme, leading to a seven-dimensional graph.
To gain insight into the plasmonic resonance of every NMNP
layer, the projection of multivariate normal distribution was
applied to obtain a univariate normal distribution. The pro-
jected planes can herein derive selected univariate parameters–
wavelength graphs to facilitate recognition of surface plasmon
resonance for the selected fabrication parameters. This concept
is further elaborated in Fig. 5. The established database was
further employed to achieve a machine learning model by
applying GANN, leading to a successful prediction and optimi-
zation to develop the multilayer NMNPs coated on ZnONRs. The
developedmodel canmoreover provide an understanding of the
interaction between plasmonic resonances and coating
parameters for every layer (Fig. 4b). The coating variables for
every layer were primarily organized through the selection
concept of protein taxonomy as in Table 1. The optical proper-
ties of every coated layer, analogous to the protein taxonomy
caused by protein folding, were measured by the UV-vis
absorption spectra and analyzed by multivariate normal distri-
bution to understand the impact of every individual coating
layer. Therefore, we considered the photoreduction time (X1),
amount of 10−2 M HAuCl4 (X2), EPD time for depositing ULA
NPs (X3), EPD time for depositing S–Au–Ag NPs (X4), amount of
10−3 M AgNO3 (X5), and concentration of AgNO3 (X6) as inputs,
and plasmonic resonance of every layer as outputs, to train the
GANN models.
NRs, ULANPs, S–Au–AgNPs (575), and S–Au–AgNPs, induced by the

4

EPD time)
X5
(amount of 10−3 M AgNO3)

X6
(concentration of AgNO3)

0.5 h 3 mL 0.1 M
h 6 mL 0.01 M

This journal is © The Royal Society of Chemistry 2023

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ta00324h


Paper Journal of Materials Chemistry A

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 9

/1
7/

20
24

 1
:2

2:
16

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Analysis of plasmonic coupling effects

The plasmonic coupling effect is a signicant factor in
impacting the plasmonic resonance of the various NPs due to
their multilayer coating. Such a plasmonic coupling effect
happens when the plasmonic NPs are close to each other at
a distance much smaller than their size.71,72 Namely, the near
eld of one particle interacts with that of the adjacent particles.
Therefore, the surface plasmon resonance of two or more NPs
can strongly hybridize, strengthening the electromagnetic eld
near the surface and that of the interface. Surface plasmon
resonance is additionally very sensitive to the medium of the
surroundings. The surface plasmon resonance of each single
layer is different from that in the layer-by-layer assembled
surroundings, which can further cause the generation of
multilayer conditions to predict surface plasmon resonance. To
further demonstrate the plasmonic resonance shi of NPs
induced by the coupling effect, the evolutionary tree of S–AuNPs
(1st), AuNRs (2nd), ULANPs (3rd), S–Au–AgNPs (575) (4th),
S–Au–Ag (5th) hybridizing with other NPs is schematically
illustrated in Fig. 5. Surface plasmon resonance can be affected
by the surrounding dielectric medium and geometry. The shi
of plasmonic resonance is based on the surrounding dielectric
medium and geometry non-linearly. Thus, the evolutionary tree
system embraces many kinds of information related to evolu-
tionary change, cladogenesis, and anagenesis. The tree
branches reect the relative relationships, which reveal the
common ancestor of the NPs. However, evolution can cause
species to become extinct or extant, corresponding to the plas-
mon resonance shi. The coupling effect in Fig. 5 between S-
AuNPs and AuNRs induced the plasmonic resonance shi of
S–AuNPs when AuNRs were coated on the S–AuNPs outer layer,
namely, one evolutionary process for the S–AuNPs. The plas-
monic resonance shi of the NPs was divided into blue and red
shis compared to the plasmonic resonance of the previous NP
layer. And the data processing of absorption spectra converting
the multivariate normal distribution to the univariate normal
distribution can derive the overall curve of the univariate
normal distribution composed of multiple curves, revealing
every individual univariate normal distribution. These indi-
vidual univariate normal distributions revealed the plasmonic
resonance in their own curves, indicating that the plasmonic
resonances were also affected by the post-depositional NPs.
Hence, when the AuNRs (2nd) were coated on S–AuNPs (1st),
simultaneously, some plasmonic resonance shied to a longer
wavelength (red shi), and some shied to a shorter wavelength
(blue shi), manifesting an evolution process. Similarly, when
the ULANPs (3rd) were coated on S–AuNPs and AuNRs, the
evolution for both NPs repeated, namely the plasmonic reso-
nance shis. Therefore, aer completing the six-layer coating of
NMNPs, the plasmonic resonances of S–AuNPs evolved ve
times and split into 32 species. As for AuNRs, ULANPs, S–Au–
AgNPs (575), S–Au–AgNPs, and S–AgNPs, their plasmonic reso-
nance would split into 16, 8, 4, 2, and 1 species, respectively, in
the evolutionary process. However, applying the plane projec-
tion (the plane can be selected) to evaluate the relationship
between the multivariate normal distribution of plasmonic
This journal is © The Royal Society of Chemistry 2023
resonance and experimental parameters can only differentiate
blue shi from red shi by comparison with the original peaks
of S–AuNPs on ZnONRs. Nevertheless, the main plasmonic
resonance of NMNPs tended to red shi in the evolutionary
process, implying that the red shi of the plasmonic resonance
was the main characteristic of the surviving species, and the
blue shi was that of the most extinct species.

The plasmonic resonance investigated from one specic
layer can be impacted by the other layers due to the coupling
effect. The prediction of plasmon resonances through the well-
trained GANN model is displayed in Fig. 6 and 7. Such a model
can further be exploited to reveal the plasmon resonance
information for the variables in the given region. We further
illustrated the predicted data by 2D contour plotting to visualize
the correlation between the fabrication parameters and the
plasmonic properties of the coating layer. The shi of plas-
monic resonance of S–Au (1st layer), AuNRs (2nd layer), and
ULA (3rd layer) impacted by the variable parameters for coating
the NP layers was evaluated in Fig. 6. We focused on examining
the integrated impact on the plasmonic resonance and its
respective shi caused by the contacting layers, matched by the
model training through the GANN ML method. We measured
the plasmonic resonance shis of S–AuNPs (1st layer) aer
coating AuNRs and ULANPs through tuning X1, X2, and X3, as
shown in Fig. 6a and b. The plasmonic resonance of the S–Au on
ZnONRs manifested a red shi from 512 nm to 522 nm when
the photoreduction time (X1) was increased (Fig. 3f). Moreover,
the coating of AuNRs on S–Au led to a red shi of the plasmonic
resonance from 530 nm to 540 nm. Meanwhile, a higher length/
width ratio of AuNRs coated on S–Au/ZnONRs can be yielded
with an increasing amount of 10−2 M HAuCl4 (X2), causing
a shi of plasmonic resonance to a longer wavelength due to the
coupling effect. Therefore, a longer wavelength where plas-
monic resonance happened due to the increase in X1 and X2 was
roughly 536 nm, revealed by Fig. 6a. The plasmonic resonance
of S–AuNPs as evaluated in Fig. 6b was regulated by the amount
of HAuCl4 (X2) especially when the ULANPs were coated on the
AuNRs/S–Au/ZnONRs, indicating that the EPD time (X3) for
depositing ULA NPs was less inuential in this respect. This was
impacted by the shielding of the AuNRs coated on the surface of
S–AuNPs. Hence most of the coated ULANPs tended not to
interact with S–AuNPs. The impact of X1, X2, X3, and X4 on the
shi of plasmonic resonance of AuNRs (2nd layer) was exam-
ined in Fig. 6c–e. The plasmonic resonance of the AuNRs coated
on S–AuNPs was mainly inuenced by the amount of HAuCl4
(X2) instead of photoreduction time (X1), as displayed in Fig. 6c.
The increasing amount of HAuCl4 caused a big length-to-width
ratio of AuNRs, exhibiting a strong red shi of longitudinal
plasmonic resonance from 736 nm to 844 nm in Fig. 3a. This
observation indicated a strong aggregation of AuNRs on S–Au/
ZnO coated through the self-assembly method. However, the
coating of ULANPs on AuNRs slightly inuenced the plasmonic
resonance, as revealed in Fig. 6d, which might be attributed to
the high aggregation of AuNRs, causing a nonsignicant
coupling effect. Moreover, the shi of plasmonic resonance
aer the S–Au/ZnONRs were coated by the AuNRs (2nd layer)
was examined at two EPD times (X3 and X4) as investigated in
J. Mater. Chem. A, 2023, 11, 11187–11201 | 11193
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Fig. 6 Plasmonic peaks prediction of S–AuNPs on ZnONRs with tuning (a) X1 and X2, and (b) X2 and X3. Peaks prediction of AuNRs on ZnONRs
with tuning (c) X1 and X2, (d) X2 and X3, and (e) X3 and X4. Peaks prediction of urchin-like Au on ZnONRswith tuning (f) X1 and X2, (g) X2 and X3, (h) X3
and X4, and (i) X4 and X5 using the GANN method.
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Fig. 7 Plasmonic peaks prediction of S–Au–Ag (575) on ZnONRs with tuning (a) X2 and X3, (b) X3 and X4, (c) X4 and X5, and (d) X5 and X6. Peak
prediction of S–Au–Ag (448) on ZnONRs with tuning (e) X3 and X4, (f) X4 and X5, and (g) X5 and X6. Peaks prediction of S–Ag on ZnONRs with
tuning (h) X4 and X5 and (i) X5 and X6 using the GANN method.
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Fig. 6e, revealing that X3 and X4 were less inuential in the shi
of the plasmonic resonance than the high aggregation of
AuNRs. We further studied the impacts of X2, X3, X4, and X5 on
the shi of the plasmonic resonance aer a coating of ULANPs
(3rd layer) on AuNRs/S–Au/ZnONRs (Fig. 6f–i). The plasmonic
resonance in Fig. 6f manifested nearly no shi when X1 and X2

varied. But the small amount of HAuCl4 (X2) and the increasing
EPD time (X3) led to a prominent red shi (Fig. 6g). We noticed
that the plasmonic resonance of ULANPs was mainly controlled
by the EPD time (X3) but was only slightly inuenced by the
coating of Au–Ag (575) NPs. Additionally, we found the shi of
the plasmonic resonance of the ULANPs was regulated by EPD
time (X4) and the amount of 10−3 M AgNO3 (X5) (Fig. 6i). We,
therefore, found the coating of S–Au–Ag (575) (4th layer) instead
of S–Au–Ag (5th layer) played a crucial role in the shi of the
plasmonic resonance of ULANPs. Furthermore, X3 was pivotal
in shiing the plasmonic resonance of ULANPs (3rd layer)
(Fig. 6f–i), indicating that increasing the EPD time and
increasing the amount of ULANPs coated on ZnONRs have
a signicant impact on the self-induced coupling effect.

The inuence of the adjusted fabrication parameters on the
shi of the plasmonic resonance of S–Au–Ag (575) (4th layer), S–
Au–Ag (5th layer), and S–Ag (6th layer) is illustrated in Fig. 7.
The plasmonic resonance of S–Au–Ag (575) was mainly affected
by EPD time (X4) for depositing S–Au–Ag NPs (Fig. 7a–d).
Increasing parameter X4 up to 1 hour led to the plasmonic
resonance of S–Au–Ag (575) on ULA/AuNRs/S–Au/ZnO shiing
to a longer wavelength up to 583 nm. X5 and X6, as revealed in
Fig. 7d, had less inuence than X4, caused by the same
phenomenon as ULANPs. The adjustment of the fabrication
parameters of X3, X4, X5, and X6 caused the plasmonic resonance
shi of S–Au–Ag (5th layer) (Fig. 7e–g). EPD time X3 and EPD
time X4 had little effect on the plasmonic resonance of S–Au–Ag
(5th layer) (Fig. 7e). The similar results in Fig. 7f–g suggested
that the amount of 10−3 M AgNO3 (X5) was the key to the plas-
monic resonance of S–Au–AgNPs (5th layer), while the EPD time
(X4) and concentration of AgNO3 (X6) displayed an implicit
impact. Hence the coating procedure had signicant modula-
tion of the yielded plasmonic resonance of S–Au–AgNPs (5th),
consequently generating an unremarkable coupling effect
between the S–Au–AgNPs and the NMNPs of other layers. The
plasmonic resonance evolution of S–AgNPs (6th layer) on top of
the previous ve layers was investigated by adjusting the fabri-
cation parameters of X4, X5, and X6 (Fig. 7h and i). But we found
that the plasmonic resonance of S–AgNPs (6th layer) manifested
an unregular shi when the amount of 10−3 M AgNO3 (X5) and
EPD time (X4) increased (Fig. 7h). Nevertheless, X6 had a crucial
impact on modulating the plasmonic resonance of S–AgNPs
(6th layer) (Fig. 7i). The increased concentration of AgNO3 (X6)
led to a higher level of S–AgNPs (6th layer) aggregation, conse-
quently causing a red shi of the plasmonic resonance aer
a successful coating.

Conclusion

Multilayer NMNPs coated ZnONRs, the S–Ag/S–Au–Ag (448)/S–
Au–Ag (575)/ULA/AuNRs/S–Au/ZnONRs heterostructure, were
11196 | J. Mater. Chem. A, 2023, 11, 11187–11201
successfully synthesized by the layer-by-layer method.
Numerous plasmonic bands and enhancement of light
absorption ability of the heterostructures contributed by the
expression of six-layer NMNPs can be observed in optical
absorbance as the NMNP coating layers of various shapes and
sizes contained specic plasmonic bands in the visible light and
NIR regions due to the LSPR effect and coupling effect. To
investigate the relationship between the plasmonic resonances
and each NP coating layer by utilizing the concept of biological
evolution, we synergized the multivariate normal distribution
method and GANN to construct a prediction model, which was
trained with a low data set by considering the yielded plasmonic
resonance of every coating layer as protein taxonomy and the
respective experimental parameters, i.e., photoreduction time
(X1), amount of 10−2 M HAuCl4 (X2), EPD time X3, EPD time X4,
amount of 10−3 M AgNO3 (X5), and the concentration of AgNO3

(X6). We found the plasmonic resonance of every layer can be
affected by the NPs in the respective proximity. Therefore, we
achieved an optimization model through the GANN method to
accurately predict the plasmonic resonance. Furthermore, the
ML model using GANN to explore the light-to-plasmon prop-
erties of a six-layer coating of NMNPs on ZnO nanorods enables
an essential optimization in the design of the solar-to-hydrogen
water-splitting solar cell. Moreover, ML facilitated by GANN can
be extensively applied to analyze and predict more complicated
heterostructures ensuring a fast and anticipated design of
materials for hydrogen production.
Materials and methods
Materials

Polyvinylpyrrolidone (PVP, 55 000 g mol−1), hydroquinone
(C6H6O2, 99%), zinc acetate dihydrate (Zn(CH3COO)2$2H2O,
99%), sodium borohydride (NaBH4, 98%), and L-ascorbic acid
(C6H8O6, 99.7–100.5%) were all obtained from Sigma-Aldrich.
Silver nitrate (AgNO3, 99%) was purchased from Honeywell
Fluka. 1,6-Hexanedithiol (HS(CH2)6SH, 97%), hexamethylene-
tetramine (HMTA, 99%), and (1-hexadecyl)trimethylammonium
bromide (CTAB, 98%) were purchased from Alfa Aesar. 1-Hex-
anethiol (CH3(CH2)5SH, 96%) and hydrogen tetra-
chloroaurate(III) trihydrate (HAuCl4, 99.99%) were purchased
from Acros Organics. Hexane (C6H14, 98.5%) was obtained from
Fisher Chemical.
Preparation of ZnONRs and S–Au/ZnONRs heterostructure

20 mL of 0.025 M Zn(CH3COO)2 containing equimolar HMTA
solution was prepared to obtain the ZnO seed solution, and
a droplet of the seed solution was added to clean indium-tin-
oxide (ITO). Then, the sample was heated to 350 °C for
10 min to obtain the seed layer. The ZnO seed layer was
immersed vertically in 100 mL of 0.02 M Zn(CH3COO)2 and
HMTA solution, followed by chemical bath deposition at 95 °C
for 3 h. Aerward, the sample was heated to 350 °C for 30min to
obtain ZnONRs. A spherical Au/ZnONRs heterostructure was
prepared by the photoreduction method. The ZnONRs were
immersed in an aqueous solution of 50 mL 10−4 HAuCl4,
This journal is © The Royal Society of Chemistry 2023
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followed by irradiation with UV light for 10–30 min to grow Au
nanoparticles on ZnONRs. Then, the sample was rinsed and
dried with N2. The photoreduction time was the variable of the
rst layer for machine learning, labeled as X1.

Preparation of Au nanorods/S–Au/ZnONRs heterostructure

The Au nanorods (AuNRs) were synthesized by a seed-mediated
method, and the experimental process is described in the ESI†
in detail. The plasmonic peaks of AuNRs were tuned by the
amount of 10−2 M HAuCl4, 5–7 mL, used for machine learning.
The coating of AuNRs on S–Au/ZnONRs was prepared by the
self-assembly method. The S–Au/ZnONRs were immersed in
0.5% 1,6-hexanedithiol and 0.5% 1-hexanethiol in hexane at
room temperature for one day to form the sulydryl group on
the S–Au NPs and ZnONRs, and then rinsed with alcohol.
Subsequently, the thiol and dithiol-mediated S–Au/ZnONRs
were immersed again in the 2 mL AuNRs solution suspended
in ethylene glycol for one day, then rinsed with alcohol and
dried with N2. The amount of 10−2 M HAuCl4 was the variable of
the second layer for machine learning, labeled as X2.

Preparation of urchin-like Au (ULA)/AuNRs/S–Au/ZnONRs and
S–Au–Ag (575)/ULA/AuNRs/S–Au/ZnONRs heterostructures

The synthesis process of urchin-like Au (ULA) NPs and spherical
Au–Ag (575) (S–Au–Ag (575)) NPs is described in the ESI† in
detail. The coating of ULA and S–Au–Ag was performed by the
electrophoretic deposition (EPD) method. The experimental
setup comprised AuNRs/S–Au/ZnONRs as a working electrode
and silver wire as a reference and a counter electrode. The two
electrodes, AuNRs/S–Au/ZnONRs and silver wire, were both
immersed in ULA solution and then S–Au–Ag solution before
and aer by applying +2 V on the sample for 0.5 h to 1 h. The
sample was subsequently rinsed with deionized water and dried
with N2. Aer nishing the process, ULA/AuNRs/S–Au/ZnONRs
and S–Au–Ag (575)/ULA/AuNRs/S–Au/ZnONRs were obtained.
The EPD time of 0.5–1 h was the variable of the third and fourth
layers for machine learning, labeled as X3 and X4.

Preparation of S–Au–Ag (448)/S–Au–Ag (575)/ULA/AuNRs/S–
Au/ZnONRs and S–Ag/S–Au–Ag (448)/Au–Ag (575)/ULA/AuNRs/
S–Au/ZnONRs heterostructures

The synthesis of S–Au–Ag (448) NPs, S–Au–Ag (500), S–Ag (402),
and S–Ag (405) NPs is described in the ESI† in detail. Both the
coatings of S–Au–Ag (448) NPs and S–Ag NPs were prepared by
self-assembly, the same process as the coating of AuNRs. S–Au–
Ag (448)/S–Au–Ag (575)/ULA/AuNRs/S–Au/ZnONRs were
immersed in 0.5% 1,6-hexanedithiol and 0.5% 1-hexanethiol in
hexane at room temperature for one day, followed by rinsing the
sample with alcohol. Subsequently, the thiol and dithiol-
mediated S–Au–Ag (448)/S–Au–Ag (575)/ULA/AuNRs/S–Au/
ZnONRs were immersed again in 2 mL S–Au–Ag (448) solution
to obtain the S–Au–Ag (448)/S–Au–Ag (575)/ULA/AuNRs/S–Au/
ZnONRs. The S–Ag/S–Au–Ag (448)/Au–Ag (575)/ULA/AuNRs/S–
Au/ZnONRs were obtained by repeating the above process but
using the S–Ag solution instead of the S–Au–Ag (448) solution.
Here, the amount of AgNO3 (3–6 mL) and the concentration of
This journal is © The Royal Society of Chemistry 2023
AgNO3 (0.025–0.05 M) were the variables of the h layer and
sixth layer, respectively, utilized for machine learning, labeled
as X5 and X6.
Determination of plasmonic resonances through the
multivariate normal distribution method

The multivariate normal distribution is a generalization of
a one-dimensional normal distribution to a multi-dimensional
distribution (Gaussian distribution). The Gaussian distribution
in one dimension can be dened as

f ðxÞ ¼
exp

�
� 1

2s2

�
ðx� uÞ2

��
ffiffiffiffiffiffiffiffiffiffið2pÞp

s
(1)

where x represents the plasmonic peaks in one dimension, u is
the mean value of the wavelength for the plasmonic resonance,
and s is the standard deviation. Then, the generalization of the
one-dimensional normal distribution to multiple dimensions
can be written as

fxðx1;.; xkÞ ¼
exp

�
� 1

2
ðx� uÞTS�1ðx� uÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞkjSj

q (2)

where x is a real k-dimensional column vector, u is the mean
vector in k-dimensions,

P
is the symmetric covariance matrix

and
P−1 is the inverse matrix dened as

X = [x1, x2,/, x3]
T,

E(x) = [u1, u2,/, u3]
T,
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2
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3
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;
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2
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0 /
1
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2
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X1 (photoreduction time), X2 (the amount of 10−2 MHAuCl4),
X3 (EPD time for depositing ULA NPs), X4 (EPD time for
depositing S–Au–Ag NPs), X5 (the amount of AgNO3), X6 (the
concentration of AgNO3), and X7 (the corresponding wavelength
for the plasmonic resonance of the NPs coated on the ZnO and
the previously coated NPs revealed by the UV-vis absorption
spectra) are inserted into eqn (2). The complex multivariate
J. Mater. Chem. A, 2023, 11, 11187–11201 | 11197
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normal distribution diagram can be obtained by constructing
the 7-axis graph, which is composed of multiple parameters
versus X7. Then, the projection plane method was used for the
diagram by selecting the specic planes for projection, and the
Xn (only one parameter)–wavelength (X7) dependent diagram
(one-dimensional normal distribution) was drawn in a plane.
Therefore, the determination of the main peaks of integrated
peaks can be visualized to provide the input data for machine
learning.

Integration of the articial neural network (ANN) and genetic
algorithm (GA)

The predictive model was established by hybridization of GANN
by using Super PCNeuron 5.0 as previously reported.39,40,73 The
variables of heterostructures by tuning photoreduction time
(X1), amount of HAuCl4 (X2), EPD time X3, EPD time X4, the
amount of 10−3 M AgNO3 (X5), and the concentration of AgNO3

(X6) were input to neural network soware for training and
testing steps, which further inuenced the weight xi for every
datapoint to learn the interaction between variables and plas-
monic resonance (the 6 outputs) by ANN. Furthermore, a GA
was employed to optimize the computational model by the
evolutionary process, i.e., repeatedly selective, mutation, and
crossover, which provided the selection of optimal parameters
from the whole population. In the training mode, double
hidden layers of 6 neurons were used in the GANN training as
the best performance, and the lowest root mean square error
(RMSE) (0.022) was achieved. The training and testing sets used
in the ML model training consist of 2160 and 1080 datapoints,
respectively. Moreover, the setting of the models contained 1 ×

106 learning cycles, the lowest root mean square error (RMSE) of
0.022, a crossover rate of 0.7, and a mutation rate of 0.07.

Characterization

The morphology of six different noble metal NPs on ZnONR
arrays was evaluated using a eld emission scanning electron
microscope (ZEISS AURIGA AFE-SEM). The optical properties
were measured using a UV-vis spectrophotometer (PerkinElmer
LAMBDA 950 UV/VIS/IR). Transmission electron microscopy
(TEM)74,75 was conducted using a JEOL JEM-3010 Analytical
Scanning Transmission Electron Microscope.76–78
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