Open Access Article. Published on 21 September 2012. Downloaded on 1/9/2026 3:40:34 AM.

Integrative Biology

Cite this: Integr. Biol,, 2012,4,1415-1427

www.rsc.org/ibiology

View Article Online / Journal Homepage / Table of Contentsfor thisissue

Dynamic Article Links °

PAPER

SAMNet: a network-based approach to integrate multi-dimensional high

throughput datasetst

Sara J. C. Gosline,” Sarah J. Spencer,” Oana Ursu‘ and Ernest Fraenkel*“

Received 28th March 2012, Accepted 26th August 2012
DOI: 10.1039/¢2ib20072d

The rapid development of high throughput biotechnologies has led to an onslaught of data
describing genetic perturbations and changes in mRNA and protein levels in the cell. Because
each assay provides a one-dimensional snapshot of active signaling pathways, it has become
desirable to perform multiple assays (e.g. mRNA expression and phospho-proteomics) to measure
a single condition. However, as experiments expand to accommodate various cellular conditions,
proper analysis and interpretation of these data have become more challenging. Here we introduce
a novel approach called SAMNet, for Simultaneous Analysis of Multiple Networks, that is able to
interpret diverse assays over multiple perturbations. The algorithm uses a constrained optimization
approach to integrate mRNA expression data with upstream genes, selecting edges in the
protein—protein interaction network that best explain the changes across all perturbations.

The result is a putative set of protein interactions that succinctly summarizes the results from

all experiments, highlighting the network elements unique to each perturbation. We evaluated
SAMNet in both yeast and human datasets. The yeast dataset measured the cellular response to
seven different transition metals, and the human dataset measured cellular changes in four
different lung cancer models of Epithelial-Mesenchymal Transition (EMT), a crucial process in
tumor metastasis. SAMNet was able to identify canonical yeast metal-processing genes unique
to each commodity in the yeast dataset, as well as human genes such as B-catenin and
TCF7L2/TCF4 that are required for EMT signaling but escaped detection in the mRNA and
phospho-proteomic data. Moreover, SAMNet also highlighted drugs likely to modulate EMT,
identifying a series of less canonical genes known to be affected by the BCR-ABL inhibitor
imatinib (Gleevec), suggesting a possible influence of this drug on EMT.

“ Dept. of Biological Engineering, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA.
E-mail: fraenkel-admin@mit.edu
b Computational and Systems Biology Program,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
“ Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
1 Electronic supplementary information (ESI) available. See DOI:
10.1039/¢c2i1b20072d

Introduction

Cells respond to external stimuli at many levels, including
changes in gene and subsequently protein expression levels,
post-translational changes to proteins, changes in subcellular
localization and changes in levels of small molecules. While
some of these changes can be measured via mRNA expression
assays,! alternative technologies are needed to capture the full
response. For example, genetic screens can identify genetic

Insight, innovation, integration

The increasing use of high throughput technologies in biology
has led to an overwhelming amount of data. As the cost of
genome-wide assays has dropped, experiments across various
cellular conditions at once are no longer uncommon. Here we
introduce SAMNet, an optimization algorithm that uses the
underlying protein—protein interaction network to integrate
results from multiple types of assays across various conditions,

highlighting genes and pathways that might have been missed
by the original experiments but are relevant to the underlying
cellular process. We illustrate how SAMNet can be used to
integrate genetic mutant data and mRNA expression data
across seven conditions in budding yeast as well as phos-
phorylation data and mRNA expression data in a model of
Epithelial-Mesenchymal transition (EMT) in lung cancer.
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mutations that change a cellular response to a particular
perturbation,”> phospho-proteomics assays can identify
changes in protein activity,’ transcription factor binding
assays® can identify changes in binding activity and epigenetic
screens can detect changes in chromatin structure.” However,
each experiment only detects a fraction of the total cell state,
making interpretation of the experiments challenging.

The cataloging of protein—protein interactions across
species and conditions into databases such as STRING® has
fueled the development of computational algorithms that
search for relationships between various genes. These algorithms
use the published interactome as a blueprint for putative signaling
pathways then identify which signaling pathways best explain the
changes measured with specific high-throughput assays. Given a
set of genetic hits and differentially expressed mRNA, various
approaches have been used to identify signaling pathways active
in these experiments, such as dynamic programming-based
methods,” probabilistic models of the underlying pathways,®
and network-flow based optimization approaches.’ Other
network approaches, such as Steiner tree-based algorithms,
have been shown to identify proteins that best explain the
presence of genetic hits in the interactome (without expression
data).'® Steiner trees have also been used to explain expression
changes downstream of phosphorylation activity.':!?

In this work we introduce SAMNet, for Simultaneous
Analysis of Multiple Networks, an algorithm that uses a
network flow model to integrate two distinct high-throughput
experiments across multiple conditions. Our approach is
motivated by the fact that cellular responses to many distinct
biological perturbations show significant overlap, a fact that
has been recognized since pioneering work by Gasch er al."?
As a result, independent analysis of data from different
perturbations will be biased toward revealing the common
pathways at the expense of the specific responses. By adopting
a multi-commodity flow-based approach, SAMNet identifies
interactions from the protein—protein interaction network that
are unique to each condition.

Network flow algorithms are a family of algorithms that
select a combination of edges in a network that provide the
best path from a designated source to a designated sink. The
earliest mention of network flow in the context of the protein
interaction network is the FunctionalFlow algorithm used to
ascribe function to unknown proteins by quantifying the flow
through the weighted interactome from proteins of known
function.'* ResponseNet, a single-commodity flow algorithm
used phenotypic and mRNA expression data to study the
effects of alpha-synuclein toxicity.” More recently, a multi-
commodity variant was used to characterize the results of
RNA interference experiments in yeast.'>'® Information flow
models make up a similar class of algorithms that model the
interactome as an electrical circuit, where each edge acts a
resistor and carries the current from an artificial source to each
gene in the network to determine its importance. Information
flow algorithms have also been used to integrate genetic and
expression data within the protein interaction network'” " as
well as random walk approaches.?!

SAMNet uses a constrained optimization formulation based
on the multiple commodity flow problem to model multiple
experiments simultaneously as ‘“‘commodities” that must transit

from a common source to a common sink through a shared
protein interaction network. Each edge in the interaction
network has a particular capacity, and therefore must be ‘shared’
by all commodities. This constraint forces the algorithm to
select interactions that are unique to each cellular perturba-
tion, thus avoiding the selection of common stress pathways, a
common pitfall of other optimization approaches. We test
SAMNet on two distinct datasets. We model the effect of seven
different transition metals on the budding yeast Saccharomyces
cerevisiae®* through integration of genetic mutant and mRNA
expression data. Having shown that the algorithm can identify
meaningful biological pathways across the 14 datasets (seven
conditions, two assays each), we also used the algorithm in a
model of Epithelial-Mesenchymal Transition (EMT) in human
lung cancer cell lines.?

Our results indicate that SAMNet is a powerful tool for
modeling diverse sources of high throughput data across
multiple experiments. As the cost of performing these experi-
ments decreases, the relative cost of analysis will only rise. By
selecting relevant proteins and interactions that are unique to
cellular perturbations, SAMNet provides a crucial step in the
preliminary processing of these data and can be used to
generate further hypotheses from the data.

Materials and methods

Network-based integration of ‘omics’ data

We modeled our approach on a previous algorithm, ResponseNet,’
in which genetic hits were connected to an artificial node
representing the “‘source” of “flow” and the differentially
expressed genes were connected to an artificial node representing
the ““sink”. The algorithm then selected the best edges and nodes
through which the “flow” could run from the source to the sink
based on a cost for each edge, ultimately representing the best
combination of protein—protein and protein DNA interactions
that explained the genetic and transcriptional data.

Similarly, we represent the proteins, mRNA and their
interactions as a graph G = (V,E) where the vertex set V'
represents proteins and mRNA while the edge set E represents
putative physical interactions between them. Fig. 1 depicts G.
The vertex set V' is comprised of both proteins (squares and
circles in Fig. 1) and mRNA (diamonds in Fig. 1). Edges
among proteins (solid lines in Fig. 1) are derived from prior
knowledge about protein—protein interactions and edges
between proteins and mRNA are derived from inferred
protein—DNA interaction networks (dashed lines in Fig. 1).
A gene is included as an mRNA node if the gene is putatively
transcribed by a protein present in the protein-interaction
network and a gene is included as a protein node if the
translated gene is known to interact with another protein.
As such, it is possible to have a gene represented in both
mRNA and protein form, as it can exist in both states in
the cell.

Network optimization formulation

In the original graph G, there are two subsets of nodes that
represent the biological experiment in question, one representing
the differentially expressed mRNA for each condition £,
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Fig. 1 The integration of four distinct data types into a single weighted
graph with the auxiliary nodes S and 7. Four different conditions are
represented, with the genetic hits/phosphorylated proteins (squares) and
differentially expressed mRNA (diamonds) derived from distinct experi-
ments. Internal nodes (circles) are derived from the interactome. Black
edges represent data from published interactions, colored edges represent
chemical-specific data. Dashed edges represent protein-DNA inter-
actions while solid edges represent protein—protein interactions.

labeled expr, (diamonds in Fig. 1), and one representing the
upstream modifiers, either genetic hits or phosphorylated
proteins in each condition k, labeled hits; (rectangles in Fig. 1).
Proteins/mRNA identified in the original experiments that have
no known interactions are omitted from the network.

While ResponseNet had a similar formulation, SAMNet
differs from ResponseNet by representing each cellular condi-
tion as a commodity, which is an abstraction derived from the
field of operations research to represent a collection of goods
that must travel from one point (in this case, the source S) to
another (the sink 7). Each condition, for instance a cell state
with a specific perturbation, is represented by its own com-
modity. This enhancement requires modifying the Response-
Net optimization from a basic network flow algorithm to a
multi-commodity network flow formulation to allow for
shared use of the same underlying network G without allowing
flow to travel from the hits in one condition to the differen-
tially expressed genes from another condition (hit; to expr)).

The non-zero edge weights w; > 0 in G represent con-
fidence in the interaction between the two proteins and are and
equivalent across all commodities. We also add a capacity
constraint cap; for each edge that is set to 1 in the original
graph G.

The graph G is then augmented as follows to incorporate the
specific perturbation data:

(1) G = (V,E,C), where C represents the set of commodities,
or conditions, to be evaluated. The sets of vertices and edges
are the same for each commodity.

Q) V' = V u {S,T}, where S and T are auxiliary nodes
representing the source and sink of the network.

(3) E' = E U {(S.i,k) Vi € hitsy, Vk € C} v {(j,T,k) Vj €
expry, k € C}. This update creates condition-specific edges
between the source and genetic hits for a particular condition £,
and also between mRNA differentially expressed in condition k
and the sink.

4. Weights from the S to genetic hits wg;, represent growth
deficiency in the yeast data as defined by Jin er al.*? and
absolute log fold change in phosphorylation activity as described
by Thomson er al.* We define the capacities from the source
to genetic/phospho-proteomic hits such that they sum to 1 for
each commodity: capg; = Y e —~"4— 5 o

j€hits w g”‘

5. Weights w;7;. from the mRNA nodes to T represent the
absolute log-fold change of the mRNA under perturbation k
in the original data.>** We define the capacities from the
expression values to the sink as the weights normalized to 1 for

each commodity: cap,; = Y e %

We define the flow variable fj; to represent the flow from
node i to node j for commodity k. We then use CPLEX version
12.4.0 (freely available for academic purposes from the IBM

website) to solve the following linear program:

mlnz { > —log(wsi) x fs + D

keC [ichits; eV jev

- lOg(Wifk) X fiik

+ Z — log(wyrx) ><f/Tk:| —Z Z 7 X ik (1)

Jj€expry keC ichitsy
Subject to:

Shk=fu VieV,keC ()

Jjev’ jev!
Y fsw= Y fim VkeC (3)

ichitsy icexpry

Zﬁjk < capy (4)

keC
SJiw =0 (5)

This linear program is comprised of an objective function
(eqn (1)) and a series of constraints (eqn (2)—(5)) that together
identify a putative set of edges that best explain the connection
between upstream signaling changes and changes in mRNA
expression. The objective function finds a balance between
large networks that explain many connections but use low-
confidence edges, and small networks that explain very little of
the data but use high-confidence edges. This balance is
achieved by maximizing the total flow in the network while
minimizing the total cost of the weight of each edge multiplied
by the flow passing through it (f;x). The parameter y is a
tuning parameter that effectively controls the size of the net-
work by altering the balance between these two goals. Eqn (2)
to (5) are constraints that are required for the following
purposes: eqn (2) maintains the conservation of flow, forcing
the flow entering a particular node to also leave that node,
unless that node is the source S or the sink 7. Eqn (3), called
demand satisfaction, ensures that all flow is accounted for —
everything that leaves the source S must reach the sink 7.
Eqn (4), the capacity constraint, forces all commodities to
share the capacities of the edges. Eqn (5) ensures non-negative
flow. The primary difference between this approach and the
single-commodity flow in the ResponseNet algorithm®
eqn (4), which requires that the combined flow of all commodities
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passing through an edge be limited to a single capacity
value. This requirement prevents components of the response
that are common to many conditions from dominating the
networks.

Python scripts that run SAMNet, as well as the ensuing analysis
including GO and KEGG enrichment determination are publicly
available at http://www.github.com/sgosline/SAMNet.

Yeast transition metal dataset analysis

To evaluate the efficacy of the algorithm we used a published
yeast dataset that measured both the growth phenotype
and mRNA expression levels upon treatment with different
metals.?” In this study, the yeast deletion library was screened
with seven different transition metals, each at their respec-
tive ECso concentration (50% total effective concentration).
Genetic hits were defined as mutations that cause cells treated
with the transition metal to grow at least 50% slower than wild
type treated with the same concentration of metal. mRNA
expression data was also retrieved from the same set of
experiments, and differentially expressed genes (p < 0.01 as
defined by the original experiment) were included in our final
set. The total number of genetic hits and differentially expressed
genes are in Table 1.

The genetic hits and differentially expressed genes have
very little overlap (at most eight genes for any of the seven
commodities), as expected from previous analysis.?? Further-
more, clustering either the genetic or the expression profiles
suggests very different relationships among the transition
metals, as shown in Fig. SIA and S1B (ESI¥). Fig. S1A (ESIY)
illustrates the clustering of growth inhibition values of genetic
hits across all metals. Fig. S1B (ESIt) depicts the clustering of
mRNA expression changes upon treatment with the same
metals. The disagreement between dendrograms illustrates
the differences in the two types of data.

To construct graph G described above with the yeast data,
we represented edges between proteins with predicted protein—
protein interactions derived from the STRING database®
using interactions with supporting experimental evidence and
a confidence score > 0.6. Differentially expressed mRNA were
connected to the network using predicted protein—-DNA inter-
actions derived from published ChIP data binding sites of the
entire set of yeast transcription factors and then filtered for
known transcription factor motifs as described by Maclsaac
et al.** Only genetic hits that had predicted interactions (either
with mRNA or with other proteins) were included in the
network. mRNA nodes were distinct from protein nodes to

Table 1 Sizes of Yeast metal datasets used for SAMNet. Genetic hits
identified in the original screen that were not in the STRING inter-
actome were removed from consideration

Metal Differentially

treatment Genetic hits expressed mRNA Overlap
Arsenic 38 566 1
Cadmium 49 898 6
Chromium 59 861 6
Copper 39 815 7
Mercury 3 877 0

Silver 2 814 0

Zinc 38 839 1

avoid conflating the two types of molecules, as protein inter-
actions cannot occur between un-translated mRNA.

On the yeast interactome (6190 nodes and 114973 edges
in G”), the algorithm took ~ 5 minutes to complete on a 64-bit
server with four dual-core processors and 16 GB of RAM. We
defined the predicted network as ' = {f;; > 0}. We selected a
y parameter of 15 to maximize the robustness of the algorithm
as described below. The resulting network had 1706 nodes and
2662 edges. The network can be found in Cytoscape format in
the data/yeast_metal/metalOutput subdirectory of the online
source code repository.

Human EMT dataset analysis

To illustrate the ability of our algorithm to scale to a more
complex organism and interpret other types of data, we
evaluated previously published data that compared epithelial
non-small cell lung cancer (NSCLC) cells to fixed mesenchymal
cells as well as to cells with epithelial mesenchymal transition
(EMT) artificially induced.?® To better determine the role of
distinct signaling pathways in EMT, this study stimulated the
transition via three distinct mechanisms (which are known to
work together in the cell) to identify the specific influence each
pathway may have on the cell. We believed that SAMNet
could better identify specific differences between the three
modes of EMT induction by comparing them in a network
context.

From this publication we collected mRNA expression levels
and phospho-protein levels in H358 epithelial cells with EMT
induced via three different mechanisms — over-expression of
Zebl, over-expression of Snail, or stimulation with TGFp.
mRNA fold changes values were collected from the original
manuscript and only those mRNA that exhibited at least an
absolute fold change difference of two and p < 0.05 were
included in the set of differentially expressed mRNA. The
authors also collected mRNA expression changes between
two epigenetically fixed mesenchymal cells — Calu6 and
H1703 — and compared them with the two epithelial cells
(H358 and H292). To average the effects of two cell lines
together, nRNA were considered to be differentially expressed
if the absolute change between the average mRNA in both
fixed cell lines and the average mRNA in the epithelial
was greater than 1.5. Phospho-peptides were identified by
tandem mass-spectrometry with proteins selected as differen-
tially phosphorylated if peptides containing a phosphoserine,
phosphothreonine or phosphothyronine were identified at
> 95% confidence, fold changes between those peptides were
in the upper or lower distribution quartiles (> 75% or <25%)
and the changes in expression represented p < 0.05 according
to a t-test. The number of differentially phosphorylated
proteins and differentially expressed mRNA are described in
Table 2.

We connected phosphorylated proteins to putative tran-
scription factors using the PSIQUIC interactome,* selecting
only those edges with a confidence score greater than 0.5. We
then connected the interactome to differentially expressed
mRNA using putative protein-DNA interactions derived as
follows. We downloaded DNase I hypersensitivity data from
the ENCODE consortium performed on the A549 cells,
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Table 2 Sizes of Human EMT datasets used for SAMNet

EMT Phospho- Differentially

State proteins expressed mRNA Overlap
Fixed 132 131 13

Snail 14 1019 5
TGFp 58 1020 28

Zebl 14 1019 6

another lung cancer cell line.> We then added an edge between
a transcription factor ¢t and an mRNA m if the TRANSFAC
MATCH algorithm?® identified a binding site within a DNase
I hypersensitive site for 7 within 5 kb of the transcription start
site of m and m was the closest gene to that site. We ran
MATCH using the minFP.prf file that provides thresholds for
each motif that are high enough to minimize false positive
identifications of transcription factor binding sites.

With the human interactome (limited to interactions with a
confidence score >0.5) and four conditions, the results took
<1 minute to complete. We selected a y parameter of 14 to
maximize the robustness (described below), at which point the
final network had 357 nodes and 411 edges. The final network
in cytoscape format can be found in the data/human_emt/
emtOutput subdirectory in the online source code repository.

Identifying parameters yielding robust networks

To implement SAMNet we needed to identify the optimal
parameters for network flow (y) and construction of the
transcription factor—gene network. Ideally, these parameters
would show the best performance in recovering true signaling
networks. However, as no signaling network is completely
known, there are no gold standard datasets that can be used
for this purpose. Instead, we assumed that the optimal para-
meters would identify networks robust to noise in the input
data.

To determine the optimal value of y, we ran SAMNet after
omitting fractions of the input data and then calculated the
specificity and sensitivity of the networks obtained from
the random subsamples. More specifically, we generated
300 different sets of input for each dataset as follows. Fifty
of the sets were missing a randomly chosen 10% of the genetic
hits (phospho-proteins for the Human dataset) and 50 sets
were missing a randomly chosen 10% of the differentially
expressed genes. Similarly, 50 randomly chosen inputs were
missing either 30% or 50% of either the genetic hits or
differentially expressed genes. We varied the network flow
parameter y in both the yeast and human datasets, rerunning
the optimization on each of the 300 subsets of the data
to identify the value at which the resulting networks were
most similar to the original network. Specifically, for each
resulting network p, we calculated the fraction of nodes in the
original network found in p (specificity) and how many nodes
in p were in the original network (sensitivity). We then
averaged the specificity and sensitivity measurements across
all 100 resulting networks for each fraction of data left
out (10%, 30%, 50%) to arrive at the values in Tables Sl
and S3, ESL.f

The results are in Fig. S2 and Table S1 (ESIY) for Yeast.
Human results are in Table S3 and Fig. S4 and S5 (ESI¥).

Careful analysis of the values in Tables S1 and S3 (ESIt)
revealed that a y value of 15 for the yeast dataset and 14 for the
human dataset result in the highest specificity and sensitivity
over all the commodities.

Because using DNAse I hypersensitive sites followed by
motif search has only recently become a common way of
determining tissue-specific binding sites,”’ we varied the dis-
tance between motif match and transcription start site to
determine if this could have an impact on the robustness of
the network as defined above. While increasing the distance
between transcription factor binding site and transcription
start site could lead to erroneous edges in the network, we
evaluated the specificity and sensitivity of SAMNet using
transcription factor binding sites up to one, three, five and
ten kilobases upstream of the transcription start site. We
found that allowing for transcriptional binding up to five
kilobases upstream of the transcription start site provided
the network that was most robust to random variation of
input data across the distances tested (Table S3 and Fig. S5,
ESIY).

Network visualization and functional interpretation

We used Cytoscape®® to visualize the networks. This tool
enabled us to select for high flow nodes or edges as depicted
in Fig. 3 and also to focus on different subsets of nodes that we
found to be interesting (Fig. 5).

To identify terms that were over-represented in specific
commodities within the network, we used the GOstats and
Category packages from Bioconductor!! to compute the
hyper-geometric probability of a given GO term or KEGG
pathway (respectively) being over-represented within a specific
set of terms compared to the entire network. We used GOStats
to compute the conditional p-value for the GO enrichment to
account for the graphical hierarchy of the ontology because
standard false discovery rate (FDR) p-values are not reliable
given the relationship between each of the terms in the
ontology. For each commodity k, we identified the vertex set
n that have at least one edge carrying commodity k and
searched for categories with a higher expected number of
proteins in n than expected by chance (p < 0.01 for Yeast,
p < 0.05 for Human) given the size of the entire flow net-
work (1706 nodes in Yeast dataset, 357 nodes in Human).
While using such a small background reduces the signi-
ficance of the enrichment p-values, we believe it compen-
sates for biases in the interactome and the input data to
only focus on those processes that are distinct for each
commodity. The most significant yeast terms are shown in
Table 3 (to save space only those terms with p < 0.001 are
shown, full results are shown in Table S2, ESIY). For the
human dataset we found KEGG terms to be more informa-
tive and thus included those in Table 4 (p < 0.05) but still
listed all GO terms (p < 0.05) in Table S4 (ESIt). We used
a higher p-value threshold for the human data because
the lower number of nodes led to a decrease in statistical
significance.

We also used functional enrichment to compare nodes
identified by SAMNet for a specific commodity and ResponseNet
on the same data. For each value of y we calculated GO terms

This journal is © The Royal Society of Chemistry 2012
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Table 3 GO terms enriched (p < 0.001) for proteins ascribed to be related to a single metal treatment by SAMNet

Commodity Term GOBPID p-Value

Arsenic Negative regulation of transcription from RNA polymerase II promoter GO0:0000122 135 x 1074
Arsenic Tubulin complex assembly GO:0007021 2.52 x 107*
Arsenic Osmosensory signaling pathway GO:0007231 3.17 x 1074
Arsenic Cellular response to abiotic stimulus GO:0071214 317 x 1074
Arsenic Regulation of catalytic activity GO:0050790 4.16 x 107*
Arsenic Filamentous growth of a population of unicellular organisms GO0:0044182 433 x 1074
Arsenic Pseudohyphal growth GO:0007124 5.07 x 1074
Arsenic Regulation of cell communication GO:0010646 5.85 x 1074
Arsenic Regulation of signaling process GO0:0023051 585 x 107*
Arsenic Negative regulation of signal transduction GO:0009968 9.40 x 107*
Cadmium Covalent chromatin modification GO:0016569 1.76 x 107*
Cadmium Signaling GO0:0023052 445 % 107*
Cadmium Response to DNA damage stimulus GO:0006974 6.33 x 1074
Cadmium Response to stress GO0:0006950 8.19 x 107*
Cadmium TOR signaling pathway GO0:0031929 9.83 x 107*
Chromium Negative regulation of transcription GO:0016481 813 x 10°°
Chromium Negative regulation of RNA metabolic process GO:0051253 1.08 x 1073
Chromium Negative regulation of biosynthetic process GO:0009890 1.77 x 1073
Chromium Negative regulation of nitrogen compound metabolic process GO:0051172 275 x 1073
Chromium Negative regulation of biological process GO:0048519 1.89 x 1074
Chromium Negative regulation of cellular metabolic process GO:0031324 1.97 x 107*
Chromium Regulation of cell division GO:0051302 435 x 1074
Chromium Chromatin silencing GO0:0006342 587 x 107*
Chromium Regulation of gene expression, epigenetic GO:0040029 587 x 107*
Copper Endocytosis GO:0006897 1.57 x 107>
Copper rRNA processing GO:0006364 329 x 1073
Copper Actin polymerization or depolymerization GO:0008154 401 x 107*
Copper Proteasome assembly G0:0043248 6.62 x 107
Copper ncRNA metabolic process GO0:0034660 7.07 x 1074
Mercury Cell wall organization or biogenesis GO:0071554 212 x 1073
Mercury Cellular macromolecule biosynthetic process GO0:0034645 228 x 107>
Mercury Signal transmission GO:0023060 6.99 x 107°
Mercury UFP-specific transcription factor mRNA processing during unfolded protein response GO:0030969 247 x 1074
Mercury Reproductive developmental process GO0:0003006 263 x 1074
Mercury Barrier septum formation GO:0000917 5.99 x 107*
Mercury Regulation of signal transduction GO0:0009966 7.53 x 1074
Mercury Regulation of cellular component size GO0:0032535 8.90 x 107*
Mercury Cell communication GO:0007154 9.36 x 107*
Silver Meiotic DNA double-strand break formation GO:0042138 8.45 x 107°
Silver Mitochondrial signaling pathway GO0:0031930 405 x 1073
Silver SCF-dependent proteasomal ubiquitin-dependent protein catabolic process GO:0031146 468 x 1073
Silver Double-strand break repair via homologous recombination GO:0000724 8.96 x 1073
Silver G1/S transition of mitotic cell cycle G0:0000082 6.81 x 1074
Silver DNA catabolic process GO0:0006308 8.59 x 107*
Zinc Golgi vesicle transport GO0:0048193 9.74 x 107
Zinc Golgi to vacuole transport GO:0006896 3.97 x 1074
Zinc Cell cycle phase GO0:0022403 8.49 x 107*

identified as enriched (p < 0.05 according to Fisher’s exact test)
for both SAMNet and ResponseNet. We then calculated the
fraction of terms unique to a particular algorithm compared to
all terms identified by both algorithms in Fig. 2C. To illustrate
that the terms identified were unique to specific commodities,
we performed the same comparison across terms that were not
shared between two or more commodities in Fig. 2D. For
most commodities, SAMNet was able to identify more unique
GO terms for each commodity than the corresponding
ResponseNet network.

Scanning network for putative drug targets

To determine if the network was over-represented among
various drug-targets, we downloaded a list of drug-protein
interactions from PharmGKB (http://www.pharmGKB.org).”’
We then computed, for each drug in the database, the number
of targets that were found in the EMT network and computed

the probability of finding this many drug targets by chance via
Fisher’s exact test. Full results are in Table S5 (ESI¥).

Results

SAMNet identifies condition-specific genes to enable
multi-dimensional data analysis

The primary enhancement of SAMNet over previous optimi-
zation algorithms is the ability to model multiple conditions
simultaneously to reveal condition-specific response pathways.
The capacity constraint (eqn (4)) in the optimization criteria
requires that the flow through an edge for each commodity
must only be enough such that the sum of flow over all
commodities is less than the edge capacity. Therefore, the
algorithm must consider all commodities when determining
how much flow for each commodity can be sent along each
edge in the network. The goal is to leverage the availability of
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Table 4 KEGG pathways enriched (p < 0.05) for proteins ascribed to a single EMT state

Commodity Term KEGGID p-Value
Fixed Chronic myeloid leukemia 05220 0.000478681
Fixed Epithelial cell signaling in Helicobacter pylori infection 05120 0.000680791
Fixed Adipocytokine signaling pathway 04920 0.004669895
Fixed Pancreatic cancer 05212 0.00722651
Fixed Acute myeloid leukemia 05221 0.010175165
Fixed Jak-STAT signaling pathway 04630 0.013123511
Fixed Huntington’s disease 05016 0.013942901
Fixed Peroxisome 04146 0.031660636
Fixed T cell receptor signaling pathway 04660 0.032080957
Fixed Small cell lung cancer 05222 0.032080957
Fixed Cell adhesion molecules (CAMs) 04514 0.036944687
Fixed Melanoma 05218 0.048088525
tgfb GnRH signaling pathway 04912 0.000957486
tgfb ECM-receptor interaction 04512 0.006782428
tefb MAPK signaling pathway 04010 0.015789683
tgfb Pathogenic Escherichia coli infection 05130 0.018867568
tgfb Axon guidance 04360 0.024357116
tgfb Gap junction 04540 0.032635449
tgfb NOD-like receptor signaling pathway 04621 0.032635449
tefb Neurotrophin signaling pathway 04722 0.035733824
Zebl Spliceosome 03040 221 x 1073
Zebl Histidine metabolism 00340 0.033517425
Snail Endometrial cancer 05213 0.002423778
Snail Adherens junction 04520 0.018937741
Snail Non-small cell lung cancer 05223 0.041822122

multiple conditions, creating a unified network that highlights
pathways that are distinct to each condition without ruling out
the possibility that two cellular conditions can indeed share
interactions if the experimental results dictate such behavior.

To determine if this enhancement had a significant impact
on the result, we compared the SAMNet network with the
result of running each perturbation separately with the same
value of y using ResponseNet.?> Our results in Fig. 2 show the
graph statistics for the SAMNet graph compared to the
individual ResponseNet graphs using the same parameters.
When run with the same parameters, SAMNet identifies for
each commodity a subset of the ResponseNet graph run on the
same data that is highly enriched in condition-specific nodes
and edges when compared to other conditions. Fig. 2A illus-
trates how 40-60% of the nodes identified by SAMNet are
unique to each commodity while ~80% of the nodes in each
individual ResponseNet network are shared across all experi-
ments. We get similar results when we compare fraction of
unique edges in the network in Fig. 2B, with SAMNet identifying
more commodity-specific interactions than ResponseNet run
individually on each data set. We also compared SAMNet to
the Prize Collecting Steiner Forest (PCSF) algorithm which takes
an alternate optimization approach to identify highly likely edges
in an interaction network.’® Our results, depicted in Fig. S7
(ESI¥), illustrate that while the PCSF identifies more distinct
nodes and edges than ResponseNet, more than 50% of each
solution is shared with other commodities. These results indicate
that the while PCSF outperforms ResponseNet in identifying
relevant networks, it is not as well suited as SAMNet for finding
the pathways specific to each member of a set of perturbations.

To further compare SAMNet with ResponseNet with
respect to the ability to generate functionally relevant networks
we calculated the GO terms enriched for each commodity as
described in Materials and Methods. For every value of y we
computed the GO terms enriched for each set of nodes involved

in a particular chemical treatment identified by either SAMNet
or ResponseNet. The results, shown in Fig. 2C, illustrate that
for all but the lowest value of y SAMNet identifies more GO
terms for each commodity than ResponseNet. Because we are
interested in GO terms that are unique for each commodity, we
eliminated each GO term that was enriched in more than one
commodity to determine if SAMNet was still able to identify
more unique GO terms than ResponseNet, shown in Fig. 2D.

The full SAMNet network for yeast contains 1706 nodes
and 2662 edges (Fig. S6, ESIf). We summarize the final
network in Fig. 3, which depicts those edges that consume
the highest amount of flow. While it omits most nodes, even
the summarized network in Fig. 3 provides a mechanistic
explanation of how divergent genetic hits can converge on
common yeast stress response pathways as well as shared
pathways across various metals. For example, the vacuolar
(H-)-ATPase (V-ATPase) complex® is targeted by silver and
zinc. While many elements of this complex are genetic hits
(VPH2, VMA7, VMAS, VMA6, VMA4, VMA2, VMA2I1 and
VMAZ22 in zinc and VMAD in silver), SAMNet identifies other
members of V-ATPase complex as relevant, such as VPHI,
which was not identified as a genetic hit, or VMA21 and
VMAZ2, which were genetics hits in the zinc treatment but not
in the silver treatment. Furthermore, the high degree of
similarity between the silver and zinc treatments, while indi-
cated in the original clustering of the mRNA expression data
(Fig. S1, ESIt) was not evident in the genetic hit data and
illustrates how SAMNet can infer pathways even with missing
data. Because flow is forced through both genetic hits and
differentially expressed genes equally, the algorithm can com-
pensate for missing data in one type of assay.

Across more than half of the conditions, SAMNet impli-
cates RAVI and SKP1, members of the RAVE complex which
is also a regulator of the V-ATPase complex.’’ The large
amount of flow passing through these proteins corresponds
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to their centrality in cellular processes,” confirmed by the essen-
tiality of SKP1. Proteins with flow shared across most of the
commodities encompass general stress-related functions such as
HSF1, TOR1, GCN4 and GLN3 which are involved in cellular
stress as well as MSN2, an environment stress regulator.*> Lastly
we also see metal-specific proteins involved in the shared
response, such as YAP family members CIN5 and YAPL." 1t
is important to note that many proteins that are important in the
processing of heavy metals, such as VPH1 and YAPI, were not
detected in the original genetic or mRNA experiments for any
commodities despite their well-known role in metal processing.
Overall, however, SAMNet identifies putative nodes involved in
each commodity beyond those originally detected and thus
facilitates discovery of underlying biological processes involved.

SAMNet can identify biological processes affected by different
perturbations

One of the primary challenges of identifying signaling path-
ways specific to various cellular perturbations is the fact that

many responses share similar pathways. By forcing all pertur-
bations to “‘share” flow through capacitated edges, SAMNet is
forced to distribute flow across multiple relevant pathways. As
mentioned above, 40-60% of the nodes in each commodity are
unique to that commodity, allowing sufficient sample size to
search for enriched biological processes in the Gene Ontology
(GO) graph. Table 1 shows the GO Biological Process terms
uniquely enriched in sets of commodity-specific nodes at
p < 0.001.

Our approach recovers many of the effects of each metal
that were not identifiable with the combined single commodity
approach. For example, the proteins ascribed to the mercury
commodity are over-represented among cell wall biogenesis-
related genes, which has been documented in Hg™ resistant
strains of Yeast.* Cadmium has been identified as playing a
role in chromatin modification in human cell lines.>* Zinc-
specific proteins are enriched in vesicle transport which has
been observed at the phenotypic level.>® Lastly, the over-
whelming number of RNA and ribosomal-associated terms
in the copper commodity also has experimental support,
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as copper has been implicated in hepatic RNA-processing
defects in mouse disease models.*¢

SAMNet identifies key mediators of epithelial-mesenchymal
transition (EMT)

Having shown that SAMNet can identify condition-specific
undetected proteins, we moved to a less characterized system
in a more complex organism to determine if the algorithm can
identify relevant pathways. Using the same underlying network
formulation, we identified protein—protein and protein—DNA
interactions that best explain changes in phospho-protein
levels upstream of mRNA expression levels across four models
of EMT. These four models included H358 cells induced with
over-expression of Zebl, H358 cells induced with over-expression
of Snail, H358 cells induced by stimulation with TGFp
and Calu6/H1703 cells to represent an epigenetically fixed
mesenchymal model (see Methods). For each model, phospho-
proteomic and mRNA expression fold changes were collected
and run together as a separate commodity in the SAMNet
algorithm. The final network, comprised of 357 nodes and
411 edges, is depicted in Fig. 4a.

The nodes in the network representing a large amount of
flow (indicated by the size of the node) are generally well-
known mediators of cancer. For example, high-flow nodes
GRB2, SRC and EGFR have been identified as regulators of
cancer progression.”’ Key transcriptional regulators ESR1
and TP53 were identified by the algorithm as regulating
differentially expressed genes across multiple conditions.®

Fig. 4B depicts the network surrounding B-catenin (CTNNBI1)
and TCF7L2, also known as TCF4.

This interaction is a hallmark of EMT in which E-Cadherin
(CDHI1 in Fig. 4B) becomes phosphorylated and releases
B-catenin from the membrane, causing it translocate to the
nucleus where it activates TCF7L2/TCF4 and LEF1 transcrip-
tion factors.” While these proteins were found to be slightly
active in the fixed mesenchymal cell line (grey), they exhibit
strong mRNA regulatory effects in the TGFf and Snail-
induced cell lines suggesting that this activity may be related
to the transition from the epithelium to the mesenchyme, since
it is not present in the fixed cell line. TCF7L2 and CTNNI1B
were absent from the original experiments due to lack of
detectable fold change (as their interaction is activated by
translocation). Nevertheless, SAMNet was able to identify
these proteins as key mediators of EMT. Based on these
results, we would suggest that perturbing the E-Cadherin
pathway might disrupt TGFp and Snail-induction of EMT
to a greater degree than Zebl-induction.

SAMNet can specifically identify signaling changes in various
EMT models

The large degree of dissimilarity between transition metal
treatments in the yeast dataset made it fairly straightforward
to identify condition-specific proteins involved in each pertur-
bation. Therefore it was surprising that, given the high degree
of similarity between the various experiments in the EMT
data, we were able to identify unique KEGG pathways
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phosphorylated proteins have grey borders. Pie charts represent flow distribution through nodes, while edge color represents the condition in which
that edge was selected. (B) CTNNBI1 and TCF7L2 and their interacting nodes.

(p < 0.05) among nodes ascribed to each condition, described
in Table 4.

Many of the over-represented KEGG terms are in line with
what is expected of the various cellular conditions. For
example, the fixed condition is highly enriched in genes
involved in epithelial cell signaling and the TGFf model
includes EMC—receptor interaction related genes. Also, various
cancer pathways (including non-small cell lung cancer) are
identified across all conditions. However, there are less-expected
patterns as well. The JAK-STAT pathway was unique to the
fixed mesenchymal model, suggesting that this pathway and its
anti-apoptotic effects are not present in cancer cells until after
the transition to the mesenchyme. The Snail condition was
enriched in adherens junction-related proteins while TGFp
was enriched in Gap junction related proteins, suggesting a
possible division of tasks across various EMT signaling pro-
teins. Interestingly, the spliceosome pathway appeared highly
enriched among Zeb1-related proteins. A recent study of EMT
in a human mammary epithelial cell line (HMLE) identified
alternative splicing as a key mechanism of EMT, leading to the
many alternatively spliced isoforms that can make cells more
invasive.** When we searched for enriched KEGG terms in the
ResponseNet networks in a similar fashion, we only found
enriched terms for the fixed commodity (Table S6, ESIY)
suggesting that SAMNet is a necessary improvement to study
these pathways.

To further investigate condition-specific pathways, we
manually selected sub-networks of interest from the larger
EMT network to illustrate how SAMNet can be used to
generate further hypotheses from multiple high throughput
experiments. Fig. 5SA highlights the transcriptional role of
ESR1 predominantly in the Snail induced model. Snail has
been found to repress ESR1 during EMT.*' This same work
identified significant cross-talk between the TGFP pathway
and the Snail-ESR1 pathway as well, suggesting that the
identification of this transcription factor is biologically rele-
vant. Based on the SAMNet results, we suggest that estrogen

receptor agonists and antagonists are more likely to alter
Snail-induced EMT compared to Zebl and TGFp induction.

Fig. 5B shows interactions with NFKB2, a subunit of the
NF«f complex and a node that is uniquely selected by the
induced models. Interestingly, while much is known about
the NFxp complex in its entirety, very little is known about its
individual components** and this network provides a putative
mechanism by which early EMT can regulate cancer progres-
sion. We hypothesize that specific inhibition of NFKB2 could
inhibit the transition of these cells.

Lastly, we focused on the elements of the spliceosome that
were selected by the network, labeled in grey in Fig. 5C along
with their immediate neighbors. Interestingly, five out of nine
of the spliceosome-related proteins were phosphorylated in
either the Zebl or Snail induced models. This suggests that
phosphorylation of members of the spliceosome can alter the
splicing behavior during induction of EMT. In each of the
cases cited above, the nodes found by SAMNet could be
detected by ResponseNet network under some parameter
settings. However, many of the condition-specific events were
muted as the nodes were shared by other conditions, making
identification of KEGG pathways impossible (Table S6,
ESI+). By identifying compact, condition-specific networks,
SAMNet makes it easier to generate high-priority hypotheses
for experiments.

SAMNet network can be used to identify novel drugs to treat
lung cancer

To explore other applications of SAMNet, we scanned the
proteins identified in EMT across all genes in PharmGKB, an
online repository of drug—gene interactions to see if the net-
work was enriched in targets of known cancer drugs. We
performed Fisher’s exact test to search for drugs that had a
significantly large number of interactions with genes in the full
EMT network. We identified 47 compounds with a signi-
ficant (p < 0.001) number of interacting genes in the network.
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Table S5 (ESIY) describes the drugs from PharmGKB, the
overlap of their predicted targets with genes in the network,
and the relative contribution of each commodity to the set of
genes. Interestingly, the most significant cancer-related com-
pound was imatinib, also known as Gleevec, a BCR-ABL
inhibitor that was designed to treat a specific mutation in
chronic myelogenous leukemia (CML) that has predicted
effects on genes across all four EMT models. While this drug
has not been approved to treat non-small cell lung cancers,
previous work has found that it potentiates cisplatin to
enhance cell death of NSCLC cell line A549.** Another study
identified that the same compound can inhibit TGFp-induced
cellular proliferation suggesting that Gleevec’s synergy with
cisplatin is directly related to EMT induction.** These two
studies, coupled with the over-representation of Gleevec-
affected genes in our network, suggest that Gleevec could have
an effect on targeting the growth of NSCLC cells through
EMT-initiated pathways. The next relevant drugs identified
were gemcitabine and gefitinib, both approved drugs for many
carcinomas including non small-cell lung cancer.

Discussion

Before the development of high throughput technologies,
biological hypotheses were tested one at a time between a
control and a test condition (e.g. a healthy and diseased
tissue). To analyze these results, scientists only needed to plot

the values in two dimensions to determine if there was a
difference between the samples. However, as the number of
conditions has increased along with the number of assays
performed, analysis of these high throughput datasets has
failed to keep pace. Examples of large, multidimensional
datasets include the cancer genome atlas (TCGA),* which
has a large repository of cancer tumor data across 20 cancers
including genetic, mRNA expression, miRNA expression and
other forms of data. Within breast cancer alone, there is also a
large amount of cell line data*® measuring the response of
24 different drugs in over 400 cancer cell lines. These datasets
provide the ability to identify specific differences between
various classes of patients or cell lines with greater statistical
power than a basic two-condition test. However, as these large
experiments become more common, the need for tools that
capitalize on the increased availability of data has only
increased.

Here we introduce SAMNet, an algorithm that is able to
identify unique pathways active across multiple experiments
while still taking into account results of multiple assays. By
forcing each experimental condition to share edges in a
capacitated and weighted network, our approach can distin-
guish protein interactions that are distinct to specific condi-
tions from those that are shared. Given the structure of
protein—protein interaction networks weighted by evidence,
most constrained optimization approaches”!' will always
select the highest confidence edges that explain the data,
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even if these same edges can also explain other, unrelated, data.
The selected edges can also be biased toward the experimental
platform at hand, and not the differences between the cellular
conditions. While these algorithms use permutation tests to
identify proteins/pathways that are specifically over-represented
in the final network, SAMNet eliminates the need for this step
by considering all conditions at once and selecting the best
edges for each. While multi-commodity flow has been used
previously in the context of the protein interaction network,'>'®
the model was much more constrained with the end goal of
identifying relevant RNA interference hits that explain changes
in expression of a single gene. SAMNet is data-agnostic and is
easily applied to various experimental setups and data types.
Our ability to demonstrate SAMNet on both a yeast system
with highly dissimilar treatments as well as a human system
with highly related experiments shows the algorithm is a useful
and broadly applicable tool to help scientists interpret high
throughput data. We illustrate how the algorithm can identify
biological processes uniquely affected in one condition versus
another. By generating specific hypotheses SAMNet can aid
experimentalists in designing specific follow-up experiments,
such as targeting the sub-networks in Fig. 5, to affect cells in
one state (e.g. Snail-induced epithelial cells) while not affecting
others. As more large scale and collaborate efforts generate
data across various conditions and patients we believe that
SAMNet will provide a useful tool to integrate these experi-
ments, enhance functional enrichment and provide specific
subnetworks that can best explain the observed results.
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