Anatase TiO2 hierarchical nanostructural microspheres with tunable pore size, pore volume, and specific surface area were prepared by a facile two-step method of electrospray and hydrothermal treatment. Compared to the calcination, the hydrothermal treatment can transfer the electrosprayed TiO2 microspheres to porous hierarchical nanostructures. Adding ammonia in the hydrothermal process has a great effect on the pore structure of TiO2 microspheres. The hydrothermal-treated samples with >2.0 ml ammonia being added are composed of both big and small nanocrystals. Some of the large nanocrystals grow in the [001] direction and contain step-like {101} surfaces. The large nanoparticles are formed through the combination of small particles by dehydration, which finally leads to the change of TiO2 microspheres from mesoporous to large-porous structure. The effects of the specific surface area, the pore volume, and the pore size on the photocatalytic activity are studied. It is considered that the pores on the surface layer of TiO2 microspheres are like a door that can control the diffusion of reactants between the outside and the inside. If the size of pores on the surface is big enough to allow the fast diffusion of reactants, the photocatalytic activity will increase with the increase of specific surface area and pore volume. In addition, further calcination on the TiO2 spheres after hydrothermal treatment can increase the photocatalytic activity, which is better than the commercial P25.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?