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This paper presents a novel methodology, adaptive multiscale regression (AMR), to adaptively process

Raman spectra for quantitative analysis. The proposed methodology aims to construct an optimal

calibration model for a Raman spectrum at hand, regardless of its structural characteristics, thus

facilitating the application of Raman spectroscopy as a general tool for analytical chemistry. AMR

firstly splits the spectra in a calibration set into frequency components at different scales using adaptive

wavelet transform (AWT). Parallel member models constructed at different scales are then fused into

a final prediction. The contributions of member models to a fusion model are straightforwardly

estimated by a partial least square (PLS) model that emerges from a cross-validation results matrix (X)

and reference values (Y). This procedure avoids information leakage by fully utilizing the multiscale

nature of the input Raman spectra instead of arbitrarily removing some part of the spectral information

by calibrating to selected features. Theoretically, we establish that AMR represents an automatic data-

driven strategy that captures the Raman spectral structures adaptively and accurately. Our work tests

and refines the AMR method by drawing upon the systematic analysis of spectra formulated to yield

challenges representative of those encountered in common Raman analyses. AMR compares favorably

with other popular preprocessing methods. Satisfactory calibration results suggest that AMR has the

capacity to improve robustness and reliability of Raman spectral analysis, and may well extend to other

spectroscopic techniques.
Introduction

Multivariate calibration plays a role of great significance in many

qualitative and quantitative applications of analytical chem-

istry.1–6 Raman spectroscopy in particular has come to rely on

multivariate calibration models for facile quantitative analysis.7

However, despite the discriminating power of multivariate

analysis, overwhelming fluorescence background and varying

sources of other spectral interference often combine to limit

conventional Raman approaches.8 The presence of spectral

interference can limit the prediction precision of a quantitative

measurement, and may spoil the reliability of prediction.9,10 For

this reason, analysts have developed various preprocessing

strategies to improve the reliability of calibration models for

Raman spectral analysis.

A number of preprocessing methods operate successfully to

remove spectral interference in advance of calibration. These fit

generally into one of two categories:11 (1) methods that perform

geometric spectral preprocessing, such as Multiplicative Signal

Correction (MSC),12 first-derivative based on SG-smoothing

(SG-1D),13 second-derivative based on SG-smoothing (SG-

2D),13 wavelet prism (WP),14 and continuous wavelet transform
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Instruments, Tianjin University, Tianjin, China 300072
bDepartment of Chemistry, University of British Columbia, Vancouver,
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(CWT),15 and (2) methods that reduce dimensionality by

orthogonal projection or variable selection, such as orthogonal

signal correction (OSC),16 uninformative variable elimination

(UVE),17 stacked partial least square (SPLS).18 However, the

design of any given pretreatment method seldom conforms

optimally with the requirements of a specific analytical

problem, and thus the performance of a method usually varies

by case.

This complicates the generalization of any pretreatment

strategy, and can raise questions about its impact on the

validity of a given calibration model. Moreover, improper

signal preprocessing prior to modeling often gives rise to

information leakage, owing to the loss of analyte signal,19

which can worsen the performance of a calibration model.

These factors combine to limit the degree to which an analysis

can rely on conventional methods of pretreatment. For broad

utility, a calibration model requires a pretreatment method,

tailored to quantitatively extract analyte signatures in the

presence of uncontrolled variance, owning to particular sources

of spectral interference.

Spectra are inherently multiscale in nature. A spectral signal

contains contributions localized differently in both time (wave-

length position) and frequency (peak width resolution)

domains.20 Present pretreatment methods seldom use these two

localization characteristics simultaneously. But, information

exists in the time-frequency covariance of localization, and
Analyst, 2012, 137, 237–244 | 237
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pretreatment strategies that can exploit this will suffer less

information leakage and erroneous feature selection.

In this regard, we suggest that a recently developed technique,

dual-domain multiscale regression (DDMR),19–21 provides an

attractive new way to direct feature selection for the purpose of

suppressing the effects of interference in Raman spectra. A

strategy employing this method would first decompose spectra

into different frequency blocks in the time domain by adopting

DWT, and then construct parallel models from which to fuse

frequency components into a final model according to a scheme

of weights.

At present, the majority of DWT applications select the base

wavelet filter from one of the eight standard types of wave-

lets.22,23 This limitation of fixed wavelets generally yields

a suboptimal filter for a given experimental signal.24 The

adoption instead of a wavelet filter tailored to the Raman

signal at hand offers the potential of significantly improved

calibration results. A second-generation, adaptive wavelet

transform (AWT) based on a strategy of lifting, facilitates this

kind of construction.25 AWT builds a unique wavelet filter

adapted to the specific set of Raman spectra, thus improving

the wavelet regression performance. This characteristic enables

AWT to extract quantitative information in a more efficient

way.

The success of dual-domain regression depends on the effec-

tiveness by which it fuses parallel member models. Current dual-

domain regression methods19–21,26 fuse member models into

a final prediction, weighted by the reciprocal of the prediction

residual error sum of squares (PRESS). Although this fusion

strategy succeeds, it is somewhat artificial and lacks a funda-

mental connection between each member model and the corre-

sponding fusion model. It is hard for this relatively fixed strategy

to efficiently capture the variations of data structure as presented

in different data sets, and usually results in a suboptimal fusion

model.

In the present work, we introduce a new data-driven fusion

strategy. This new strategy simply constructs a partial least

square (PLS) model to estimate the relationship between cross-

validation result matrix obtained by member models and refer-

ence values. Through PLS projection, corresponding regression

coefficients represent the contribution of the member model on

each fusion model. We anticipate that this PLS fusion strategy

can capture the data structures in data sets adaptively and

accurately.

We further propose novel multiscale algorithm, adaptive

multiscale regression (AMR). AMR, firstly tailors the wavelet

filter to match the spectral structure using an AWT lifting

scheme, and then constructs parallel member models with

wavelet coefficients at different scales to fuse into a final

prediction employing the PLS weighting strategy.

Our work has tested and refined the AMRmethod by drawing

upon the systematic analysis of two Raman data sets formulated

to yield challenges representative of those encountered in

common Raman spectral analyses. Satisfactory calibration

results suggest that AMR has the capacity to improve the

robustness and reliability of Raman spectral analysis. In addi-

tion, we demonstrate that AMR compares favorably many with

other popular preprocessing methods, including MSC, SG-1D,

SG-2D, WP, DDPLS and OSC.
238 | Analyst, 2012, 137, 237–244
Theory

Adaptive wavelet transform

AWT was originally developed to adjust wavelet transforms to

complex geometries and irregular sampling,25,27 enabling the

simultaneous design of wavelet filters and the completion of

wavelet transform calculations. As described in the wavelet

literature,25,27 AWT requires a spatial (or time) domain

construction of biorthogonal wavelets, based on a process

known as lifting, as opposed to convolution, as used in DWT.

Lifting enables the design of a more intricate wavelet filter

ensuring perfect reconstruction.27 With the flexibility of lifting,

AWT allows the development of wavelet filters required in the

transform algorithms, custom adaptated to the situation at hand,

thus optimizing the quantification or discrimination capability of

AWT regression.

Two kinds of lifting strategies operate in AWT: primal lifting

and dual lifting. The primal lifting strategy lifts the low-pass filter

with the help of the high-pass subband, while the dual lifting

strategy lifts the high-pass filter with the help of the low-pass

subband. Because the Raman spectral background owing to

scattered laser light and sample fluorescence oscillates with low

frequency, and dominates th-ıe uninformative component of the

signal, we use only the primal lifting strategy in this work to

improve the efficiency of the low-pass filter.

In a primal elementary lifting step (ELS), the biorthogonal

quadruplet, ~h, ~g and h, g (derived from a mother wavelet filter),

yields a new quadruplet, ~hnew, ~g and h, gnew, via:

~h
newðzÞ ¼ ~hðzÞ � ~gðzÞsðz�2Þ

g newðzÞ ¼ gðzÞ þ hðzÞsðz2Þ (1)

where h(z), g(z) represent z-transforms of the low-pass filter, h,

and the high-pass filter, g, respectively, and s(z) is any Laurent

polynomial. A Laurent polynomial s(z) has the form:

s(z) ¼ s1z
pmax + s2z

pmax�1 + . + sendz
pmin (2)

involving positive and negative integer powers of z. The

difference between the maximum and minimum integer power of

z, (pmax-pmin) defines the degree, D, of s(z). Eqn (1) and (2),

show that the optimization of AWT depends on the selection of

appropriate Laurent polynomials.28Here, we employ the Lawton

strategy, as presented by Curran et al. to select optimal Laurent

polynomials.29 This requires only one parameter, s. We adopt

a numerical strategy for optimizing s with a step size of 1/128 in

the range of [�1, 1]. We accept the s corresponding to the

minimum RMSECV as the one that produces the optimal

wavelet filter.

In contrast with DWT, one does not necessarily propagate

wavelets in AWT by translation and dilation, but the trans-

formations produced by lifting still present all of the powerful

properties of DWT.27 The strategy of AWT optimization yields

an optimized filter that can shape wavelet components to adapt

well to a given Raman data structure. AWT splits spectra into

multiple frequency components at different scales. A spectrum c0,

for example, decomposes into different scale components

[D1, D2, . ,Dl,Cl], just as with DWT, where D and C are detail

and approximation coefficients, respectively, and the scale

parameter, l, controls the depth of the decomposition. Increasing
This journal is ª The Royal Society of Chemistry 2012
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l increases the accuracy of the frequency division. Because AWT

is a linear transformation, the quantitative information con-

tained in the wavelet coefficients at each scale theoretically

equates to their reconstruction. Thus we can use the AWT

coefficients directly, instead of their reconstructions, for the

purpose of further calibration.
Adaptive mutliscale regression

The AMR strategy offers some key advantages for multivariate

calibration. (1) Its novel multiscale algorithm prevents infor-

mation leakage. (2) It uses an automatic data-driven strategy to

capture Raman spectral structures adaptively and accurately,

regardless of drastic variations from one data set to another.

AMR avoids information leakage by reweighting the contribu-

tions of frequency components instead of simply removing them.

The method adaptively optimizes its parameters according to the

data structures at hand, to produce an accurate and reliable

calibration model.

We perform adaptive multiscale regression after AWT. The

procedure constructs parallel member models using AWT coef-

ficients at different scales [D1, D2, . ,Dl,Cl], and then fuses

them into a final model using a PLS weighting strategy. The

procedure can be expressed as following

ŷ ¼ Ŷb + e, E(e) ¼ 0, Cov(e) ¼ s2I (3)

where ŷ denotes the predicted values, and Ŷ ¼ [ŷ1, ŷ2,., ŷl, ŷl+1]

represents the prediction matrix obtained from all member

models in AMR. b is the PLS regression vector between Ŷ and ŷ.

e denotes an m � 1 error vector, where m is the number of

samples. E(e) and Cov(e) describe the expectation and covari-

ance respectively. In the matrix Ŷ, terms ŷi represent the

prediction values obtained from ith member model, as follows,

ŷi ¼ Xibi + ei, Xi ˛ [D1, D2, . ,Dl,Cl], 1 # i # l + 1 (4)

where Xi represents the frequency component at corresponding

scale, bi denotes the PLS regression vector of the ith member

model, and ei gives the corresponding error. Generally, ŷi is

estimated by a leave-one-out cross-validation (LOOCV) proce-

dure applied to the frequency components at each scale.

However, LOOCV often causes over-fitting, resulting in an

unreliable estimation.30,31 In order to reduce the risk of over-

fitting our AMR training set, we instead utilize Monte Carlo

cross-validation (MCCV) to estimate ŷi. In keeping with litera-

ture suggestions for MCCV,30,31 we re-sample a minimum of

2.5m times, where m is the number of samples, and use the

theoretically optimal ratio of 0.6m to 0.4m to determine the sizes

of randomly selected calibration and validation sets,

respectively.

Combining eqn (3) and (4), we can write the AMR regression

model as,

ŷ¼
Xlþ1

i¼1

Xibibiþ e; EðeÞ ¼ 0; CovðeÞ ¼ s2I (5)

We estimate both regression coefficients, bi and bi in eqn (5),

by PLS, which binds the developed AMR fusion model to the
This journal is ª The Royal Society of Chemistry 2012
structure of data set at hand. Since bi is a scalar, we can express

eqn (5) in matrix format,

ŷ ¼ ½b1X1; b2X2; ::: ; blþ1Xlþ1�

2
664

b1

b2

«
blþ1

3
775þ e

¼ ½X1;X2; ::: ;Xlþ1�

2
664

b1b1

b2b2

«
blþ1blþ1

3
775þ e (6)

Eqn (6) establishes that the essential difference between AMR

and PLS lies in the independent estimation of each block

component.

We illustrate AMR by a flowchart in Fig. 1. In summary, an

AMR calculation proceeds by means of the following steps:

(1) We decompose the signal to scale l using AWT, obtaining

the corresponding AWT coefficients [D1, D2, . ,Dl,Cl]. We use

the Lawton strategy in combination with MCCV to select the

optimal wavelet filter. We set l as the floor integer of (log2(p)),

where p is the number of variables.

(2) To calibrate, we construct the ith member PLS model at the

scale i of AWT, determining the PLS factors and regression

vector bi by MCCV. We then combine the MCCV predicted

values, ŷi,t, for each member PLS model to form the training

matrix Ŷt ¼ [ŷ1,t, ŷ2,t, . ,ŷl,t, ŷl+1,t].

(3) We build up a new PLS model to correlate the matrix Ŷt ¼
[ŷ1,t, ŷ2,t, . ,ŷl,t, ŷl+1,t] with a vector y of predicted values

according to eqn (3). We treat the regression coefficients, b, of

PLS model as the contribution of each member model to the final

prediction model.

(4) To apply AMR for prediction, we decompose a set of

unknown spectra with AWT. We then predict property value,

ŷi,p, with the ith member model, and fuse into a final prediction

using [ŷ1,p, ŷ2,p, . ,ŷl+1,p] b.
Experimental

Raman instrument

We record Raman spectra using a SpectraCode model RP-1

spectrometer. This system integrates a component spectrograph

(Acton 150 mm f/4.0) with a thermoelectrically cooled CCD

detector (Princeton Instruments 1024 � 256 20 mm pixels) and

a backscattering probe that combines interferometric optics with

spatial filtering to provide near-total stray light rejection. This

probe illuminates the sample with the output of a fiber-coupled

785 nm single-mode diode laser light source that has an output

power of 350mW. It collects the backscattered laser light using an

eighteen-around-one bundle of 100 mm i.d. optical fibres, which

abuts the 100mmentrance slit of the spectrographas a linear array,

affording image compression to enhance sensitivity. A 300 groove

mm�1 grating blazed at 900 nm disperses this light over an image

plane measured in CCD pixels as 189 high by 844 wide. Binning

columns of two pixels yields 422 horizontal elements of resolution

spanning a Raman shift interval from 250 to 2400 cm�1. For illu-

mination at 785 nm, Raman Stokes shifts larger than 2400 cm�1

fall at wavelengths longer than the detection limit of the CCD.
Analyst, 2012, 137, 237–244 | 239
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Fig. 1 Adaptive multiscale regression flow chart for a scale of 8.

Fig. 2 RMSECV values versus representative Lawton parameter (within

[�1,1]) for the prediction of the light-scattering coefficient for pulp sheet

samples (top) and lactic acid in milk (bottom), where the star in each case

marks the optimal Lawton parameter.
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We collect signal recorded by the CCD on a laboratory

computer under LabVIEW control, and process the resulting

files off-line using multivariate analysis algorithms described

above, which we have developed using MATLAB.

Lactic acid in milk

Lactic acid is used as an indicator of milk’s hygienic quality and

of its state of preservation. We recorded Raman spectra of 64

lactic acid and milk mixture solutions using exposure times of 25

s. For the milk, we used 4 different brands of commercially

available 2% milk, and collected 16 samples from each brand to

simulate biological matrix interference that may be encountered

in practice. Samples consisted of 15 ml milk mixed with 15 ml

lactic acid solutions with variant concentrations. The concen-

trations of lactic acid ranged from 0.44 g L�1 to 2.40 g L�1. After

extraction of spectral information by AMR, we divided the data

set arbitrarily into two parts, a training set with 32 samples and

a validation set with 32 samples to simulate the analysis of

unknowns.

Pulp data systems

In total, the complete sample set consists of 137 representative

sheets together with measurements of Light-scattering Coeffi-

cient established separately using standard procedures of the

Pulp and Paper Technical Association of Canada. For each sheet

sample, we collected fifteen Raman spectra using 5 s exposures

taken at different positions on each sheet sample with sample

rotation during acquisition, and averaged these to form a final

spectrum in each case for processing. Before building a calibra-

tion model with our AMR extracted spectra, we set aside the data

for 31 sheet samples, selected randomly to simulate the analysis

of a batch of real unknown samples. We then used the remaining

106 AMR processed sheet sample spectra as a training set.

Results and discussion

Determination of optimal AWT parameters

The lifting scheme, by which we derive a wavelet filter for AWT,

relies on the Lawton parameter, s.29 To optimally determine s, we
use a root mean square error of prediction (RMSEP) criterion.
240 | Analyst, 2012, 137, 237–244
Fig. 2 illustrates the relationship between the parameter s and the

measured RMSEP obtained by MCCV for two data sets. From

this determination, we select optimal Laurent parameters with

reference to the lactic acid concentration of milk samples and the

Light-Scattering coefficient of sheet samples as 27/128 and

18/128, respectively. We regard the corresponding wavelet filters

constructed using these coefficients as the best representations.

Fusion of member models

After AWT, we construct parallel PLS member models at each

scale component of AWT. The connection of PLS member

models plays a critical role in our AMR methodology by

reflecting the importance of frequency components at each scale.

In practice, however, the data structure of different data sets

varies drastically, and the importance of each scale component

can fluctuate strongly. It is therefore difficult for a conventional,

fixed strategy, such as weighting with reciprocal prediction

errors, to capture variations, which can often result in a subop-

timal fusion model. As mentioned above, PLS modeling encodes

data structures of all kinds well, and we exploit this capacity to

estimate the relationship between member models and a fusion

model with accuracy and reliability. Thus, we treat the regression
This journal is ª The Royal Society of Chemistry 2012
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coefficients of the PLS model as the contribution of scale infor-

mation to final fusion model.

The two spectral data sets investigated here represent two

typical data structures encountered in practice. The analysis of

lactic acid in milk represents a single component quantification,

in which the characteristic features of an analyte are relatively

easy to untangle from a highly overlapped matrix. The prediction

of Light-Scattering Coefficients in sheet samples presents a much

more complicated challenge, because this parameter represents

the synergistic effect of a large number of physicochemical

properties and no simple spectral feature encodes for it directly.

In such a situation, any unguided removal of spectral background

or noise can cause information leakage, making a calibration

model unreliable. Even in a simple, direct, one-component case,

a complex and varying matrix (milk) can swamp the features of

an analyte (lactic acid). Removal of information should still be

done with caution. In this regard, the reweighting strategy in

AMR model can effectively avoid information loss, resulting in

a more robust prediction result.

Fig. 3 illustrates the PLS regression coefficients of member

models, b, together with their PLS factors. As shown in Fig. 3 (a),

the low-frequency and high-frequency blocks, C8, D8, D2 andD1,

possess tiny regression coefficients, and the medium-frequency

blocks, D3, D4, D5 and D6, have much larger absolute values of

regression coefficients. Among these coefficients, some are

negative and others are positive, the reason being is that these

PLS regression coefficients balance the relative contributions of
Fig. 3 Distribution of PLS weighting coefficients, b, and the corre-

sponding PLS factors of the member models for the determination of (a)

the concentration of lactic acid in milk and (b) the light-scattering coef-

ficient of pulp sheet samples.

This journal is ª The Royal Society of Chemistry 2012
member models. This provides PLS weighting more flexibility

and accuracy in capturing the data structure compared with

a conventional weighting strategy. As a result, the larger the

absolute value of a coefficient |bi| is, the more important is its

member model. As shown in Fig. 3, it is clear that the analytical

information here concentrates mainly in the medium-frequency

components. This is consistent with the inherent multi-resolution

nature of spectra, which is to say that the background and noise

are mainly located in low-frequency and high-frequency

components, while the analytical information occupies the

medium-frequency components.19–21 It is of great interest to find

that the sum of all PLS regression coefficients approximately

equals 1, confirming that the AMR strategy of combining

member PLS models represents a weighting strategy. Similarly,

the same conclusion can be reached for Fig. 3 (b).

With AMR, it is of great interest to investigate the extracted

spectral information after weighting. As indicated in eqn (6), the

extracted spectral information can be expressed in the form of

[b1X1, b2X2, . ,bl+1Xl+1], although the regression coefficients of

block components [b1,b2, . ,bl+1] are estimated independently.

Fig. 4 illustrates the extracted information for the prediction of
Fig. 4 Spectral information extracted by AMR for the determination of

(a) the concentration of lactic acid in milk and (b) the light-scattering

coefficient of pulp sheet samples, consisting of Raw Raman spectra (top

solid line) and extracted information (bottom solid line). Extracted data

obtained in each case from sums of coefficients [b1X1, b2X2, ., bl+1Xl+1]

using the AMR PLS reweighting strategy. Among PLS coefficients, some

are negative, causing negative-going peaks.

Analyst, 2012, 137, 237–244 | 241
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Table 1 Prediction results obtained with different regression models

Methods PLS factors RMSEPa RRMSEP(%) R

(a) lactic acid in milk
None 7 0.27 19.2 0.883
MSC 6 0.30 21.1 0.870
SG-D1 5 0.14 9.7 0.962
SG-D2 5 0.15 10.4 0.955
OSC 4 0.26 18.6 0.893
WP 4 0.13 8.8 0.959
DWT-UVE 2 0.16 11.6 0.950
DDPLS 3,2,2,3,2,7,2,2,1 0.13 9.1 0.954
AMR (9 blocks) 2,2,3,4,2,5,4,2,1 0.10 6.9 0.981
(b) light-scattering coefficient in paper sheet
None 10 1.96 8.2 0.934
MSC 9 1.99 8.3 0.930
SG-D1 8 1.69 7.1 0.948
SG-D2 5 1.89 7.9 0.940
OSC 5 4.67 19.6 0.877
WP 8 1.87 7.8 0.942
DWT-UVE 3 2.22 9.3 0.908
DDPLS 1,2,2,3,4,5,6,2,1 2.50 10.5 0.950
AMR (9 blocks) 1,1,1,2,6,6,6,2,2 1.31 5.48 0.968

a Units of g l�1 for lactic acid in milk, m2 kg�1 for light scattering in paper sheet.
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lactic acid and light-scattering coefficients. As shown in Fig. 4

(a), the spectral baseline and noise are greatly suppressed, and

a tiny shoulder-peak, present around 825 cm�1 establishes that

AMR efficiently isolates the lactic acid from the overlapping

interference. In Fig. 4 (b), we find that Raman features extracted

by AMR fit well with chemical groups, e.g. C]O stretch, and

bending vibrations associated with C–H, C–O–C, C–C, O–H and

O–O bonds, providing evidence that AMR extracts informative

features in the presence of uncontrolled variance. These groups

figure in fibre constituents representing the physicochemical basis

of the Light-Scattering Coefficient. The results indicate that the

AMR methodology clearly serves as a promising tool for

extracting useful information in the presence of uncontrolled

interference, and is capable of producing a high-quality cali-

bration model that is robust against spectral interference.
Fig. 5 Measured vs. predicted values of lactic acid concentration for

samples in the milk test set as determined by (a) PLS and (b) AMR.
Prediction results

Table 1 summarizes the AMR models for the two data sets, and

compares the results obtained with different pretreatment

methods. We employ MCCV to determine PLS factors.

As can be seen in Table 1 (a), the raw Raman spectra require

a high number of PLS factors to construct a PLS model that can

handle the substantial spectral interference, with poor prediction

performance. Perhaps unexpectedly, MSC preprocessing

worsens the calibration performance, confirming that an inap-

propriate preprocessing strategy can cause spectral distortion

and give rise to unreliable prediction. SG-1D, SG-2D and OSC

all improve the prediction performance compared with the raw

PLS model. As expected, WP effectively suppresses the effects of

spectral background and noise on calibration, producing

a parsimonious model with improved prediction precision.

However, the variable selection performed in the wavelet domain

using DWT-UVE does not further improve the WP model, on

the contrary, the prediction error clearly increases. This shows

that a simple variable selection can cause the loss of useful
242 | Analyst, 2012, 137, 237–244
information. Both DDPLS and AMR function to avoid infor-

mation leakage, and yield more reliable calibration models than

those employing conventional pretreatment strategies. The
This journal is ª The Royal Society of Chemistry 2012
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Fig. 6 Measured vs. predicted values of light-scattering coefficient for

sheet samples in the pulp test sets as determined by (a) PLS and (b) AMR.
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performance of AMR exceeds that of DDPLS, suggesting that

the flexibility of AMR in tailoring wavelet filter and fusion

weights to the Raman data sets at hand can significantly improve

the calibration performance.

Table 1 (b) tells a somewhat different story than Table 1 (a).

The structures of these two data sets are quite different. It seems

surprising that DDPLS produces a much worse calibration

model than WP. This occurs because a fixed weighting strategy

based on 1/PRESS2 does not capture the complex data structure

well. This underlines the power of PLS weighting, which changes

adaptively according to data structure, over 1/PRESS2, for

complex situations. With the further advantage of an optimal

wavelet filter, AMR is especially suited to encoding complex data

sets. We note for the pulp sheet samples in particular that the

smooth appearance of the Raman spectrum belies the presence of

a great number of individual vibrational bands, representative

generally of spectra that can be expected for exceedingly complex

materials or mixtures. For both systems, the introduction of

biological variance adds a realistic challenge to analysis.

It is of great interest to quantify the calibration performance of

models using AMR. Fig. 5 and Fig. 6 compare plots of measured

values versus predicted values obtained with PLS and with AMR.

Here, R and SD stand for correlation coefficients and standard

deviations obtained by least-squares regression between the

measured and the predicted values. We can see from the results

that AMR preprocessing significantly reduces scatter, and for the

case of lactic acid in milk, overcomes a systematic bias evident in

the PLS prediction results.
This journal is ª The Royal Society of Chemistry 2012
Conclusion

In the present work, we have progressed in developing a novel

regression method, AMR, for reliable Raman quantitative

analysis. We show that a strategy of adaptively utilizing the

multiscale nature of spectra, instead of using preprocessing

strategies that arbitrarily remove some part of the spectral

information, can effectively avoid information leakage. In AMR,

parallel, frequency-domain member models adaptively capture

the localized variations in the time domain, and a PLS

reweighting method accurately measures the relative importance

of these parallel models. AMR is thus capable of producing

a reliable and high-quality calibration model comparing favor-

ably to PLS models employing other pretreatment methods. Our

work has tested and refined the AMR method by applying it to

the systematic analysis of two complex Raman data sets

formulated to yield real challenges. Satisfactory calibration

results suggest that AMR has the capacity to provide a universal

tool for reliable modeling for all kinds of spectra, no matter the

details of the data structure.
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