Dark blue azo dye degradation by the electro-Fenton process and reaction mechanism prediction via theoretical Fukui function analysis†
Abstract
This study investigates the degradation of dark blue reactive azo (DBA) dye using the electro-Fenton process, with a focus on real-time colour monitoring to identify the most effective cathode–anode combinations for dye removal. Various electrode materials, including platinum (Pt), carbon fibre (C), silver (Ag), and copper (Cu), were tested. The combinations involving carbon fibre achieved a 75% colour removal within the first 20 minutes of electrolysis, whereas those with Pt electrodes did not exceed 15% in the same timeframe across different combinations. The results indicated that the carbon–copper (C–Cu) electrode combination, under optimized conditions, led to approximately 88% dye removal within 120 minutes. A kinetic study using a non-linear method demonstrated that the degradation followed a first-order kinetic model. To better understand the degradation mechanism, the degradation pathway of the DBA dye was predicted through a theoretical analysis using the Fukui function and supported by UV-Vis absorbance spectra, which revealed potential degradation by-products. The experimental data aligned with the theoretical spectra of potential by-products, confirming the electro-Fenton process's effectiveness in breaking down organic dye molecules. The study highlights the superior performance of carbon-based electrodes compared to platinum electrodes and underscores the importance of electrode material selection in optimizing the electro-Fenton process for dye degradation.