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Early gene regulation of osteogenesis in embryonic stem cellsw
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The early gene regulatory networks (GRNs) that mediate stem cell differentiation are complex,

and the underlying regulatory associations can be difficult to map accurately. In this study, the

expression profiles of the genes Dlx5, Msx2 and Runx2 in mouse embryonic stem cells were

monitored over a 48 hour period after exposure to the growth factors BMP2 and TGFb1.
Candidate GRNs of early osteogenesis were constructed based on published experimental findings

and simulation results of Boolean and ordinary differential equation models were compared with

our experimental data in order to test the validity of these models. Three gene regulatory

networks were found to be consistent with the data, one of these networks exhibited sustained

oscillation, a behaviour which is consistent with the general view of embryonic stem cell plasticity.

The work cycle presented in this paper illustrates how mathematical modelling can be used to

elucidate from gene expression profiles GRNs that are consistent with experimental data.

1 Introduction

The differentiation of mouse embryonic stem cells (mES) into

numerous cell types has been widely demonstrated in vitro.1–6

However, the signalling pathways and associated changes in

gene expression that regulate this process are not well char-

acterized. The differentiation of these pluripotent cells into

bone is no exception, and a clearer understanding of the

regulatory mechanisms that govern osteogenesis is vital for

any future therapeutic applications, including those relating to

tissue engineering.

Growth factors are potent regulators of differentiation and

have been used in numerous studies to induce the osteogenic

differentiation of mES cells.6–20 Bone morphogenetic protein 2

(BMP2) and transforming growth factor b1 (TGFb1) are examples

of such growth factors.12,14,15,6–10,17,19 The Runt-related

transcription factor Runx2 is an essential regulatory gene

within osteoblasts21–26 and has been shown to mediate the

downstream expression of numerous osteogenic genes including

osteocalcin, alkaline phosphatase, bone sialoprotein and osteo-

pontin.22,27–30 The gene is known to be regulated by exposure to

both BMP2 and TGFb1;10,14,23 however the upstream elements

that control this process are not fully understood.

The homeobox proteins Dlx5 and Msx2 have both been

shown to regulate the expression of osteocalcin and Runx2

in numerous cell types,31–33 after stimulation by both BMP2

and TGFb1.14,15,34,35 Increases in Dlx5 expression have been

induced in myogenic, osteoblast and mesenchymal cells after

stimulation with BMP2.36–39 Runx2 expression is known to

be downstream of these genes, with over-expression of Dlx5
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Insight, innovation, integration

Gene regulation is a complex system consisting of multiple

elements (genes) that co-regulate one another, forming intricate

networks that determine cellular activity. How these gene regula-

tory networks are affected by external inputs is a wide area of

investigation but the level of complexity within these systems often

makes accurate determinations difficult. We present an integrated

approach that utilises mathematical models to map the inter-

actions of a set of genes known to be involved in early bone cell

formation. The formation of these models was then used to

inform novel experimental characterisations of these genes in

response to biological signals, demonstrating how small changes

in biological inputs can affect larger changes in gene networks.
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linked to increases in Runx2 expression,10,15 and interactions

between Dlx5 and the Runx2 promoter being observed in myoblast

cell lines.10 Msx2 is thought be a negative regulator of Runx2

expression37,40,41 as studies have demonstrated that the protein

binds to the Runx2 promoter without inducing its expression.41

In contrast to BMP2, studies using TGFb1 have indicated that

the growth factor is a negative regulator of osteogenesis.12,15

High levels of TGFb1 have been detected in both bone and

cartilage tissue and may play key roles in their regulation.7,42 In

one study with myogenic cells, BMP2-mediated activation of

Dlx5 was suppressed by exposure to TGFb1.15 Other studies

have shown that Msx2 expression is also regulated after TGFb1
exposure.43,44 However, there is a large body of evidence that

contradicts these studies, indicating that TGFb1 could be a

pro-osteogenic factor.17,38,45,46

In addition, in vivo studies have demonstrated that BMP2

induces ectopic bone formation,47 whereas TGFb1 can initiate

de novo bone formation only when injected next to pre-existing

bone tissue. Few in vitro studies have been carried out using the two

growth factors in combination; however, Lee et al. exposed primary

rat calvaria cells to both BMP7 and TGFb1. They demonstrated

that bone nodule formation was abrogated but the cells continued

to express osteopontin. Taken together, these data suggest that the

role of TGFb1 in the regulation of bone formation could depend

on cell type and the local environment.

The signalling and gene expression networks that regulate

crosstalk between BMP2 and TGFb1 regulation are not

known. Candidates for such interactions are Dlx5 and Msx2

as both genes have been shown to compete for the same binding

site on the Runx2 promoter.34 Furthermore, in one study BMP-

mediated Runx2 expression was further increased in myoblast

cells after exposure to TGFb1.38 Msx2 regulation of Runx2 is

somewhat contradictory, with some studies showing a suppression

of Runx2 expression40,41 and others indicating that the gene

plays no role in the regulation of Runx2, and may in fact be

pro-osteogenic via a Runx2-independent mechanism.36

Mathematical models have been developed in previous

studies to characterise gene regulatory networks (GRNs)48

and, in some cases, to make novel predictions.49 Where

information about the GRN is incomplete, mathematical

modelling can be used to investigate alternative scenarios

and to compare model predictions with available experimental

data. Various modelling techniques have been used to achieve

these goals, including ordinary differential equations (ODEs),

Boolean networks, Petri nets, Bayesian or graphical Gaussian

models, as well as Stochastic and Process Calculi.48–66

The idea to model GRNs with Boolean networks was

originally proposed by Kauffman.58 With increasing numbers

of experimental studies performed to unravel genetic inter-

actions, the Boolean approach has been used to model GRNs

associated with a variety of processes in many different

organisms including flower specification of Arabidopsis

thaliana,67,68 the cell cycle of budding yeast, fission yeast and

mammals69–71 and the embryonic segmentation of Drosophilia

melanogaster.72 The Boolean simulations in these studies were

able to capture the qualitative dynamics observed in the

corresponding experiments.

Booelan networks model gene expression via nodes that

represent either genes or input factors (for example a growth

factor) and edges that represent interactions between the nodes,

with the associations being characterized as either activating or

inhibiting. The expression level of regulators at simulation step n

determines whether the target gene is expressed (on) or not (off) in

simulation step n+ 1.58 The network is updated at each (discrete)

time-step through Boolean functions, so transitions between states

in the network are deterministic and synchronous. Stable steady

states of the Boolean model correspond to cell phenotypes that

can be compared to experimental results. Discrete Boolean logic

rules can also be converted to continuous ODEs.66

ODE models permit more detailed and quantitative char-

acterization of GRNs. Concentrations of inputs and para-

meters associated with reactions involving promoters and

genes can relatively easily be modelled within an ODE based

framework,53 with stable steady states in the resulting systems

of ODEs again representing cell phenotypes.

In this study we monitored the expression of Dlx5, Msx2

and Runx2 over 48 hours in mES cells. Based on publised

results, candidate GRNs were incorporated into Boolean and

equivalent ODE models. Simulations of Boolean models were

conducted to select networks that are consistent with the

observed 0 and 24 hour expression profiles and then ODEs

corresponding to these GRNs were simulated to identify

model parameters that best fit experimental data.

2 Results and discussion

2.1 Gene expression in mES

Embryonic stem cells were exposed to the growth factors

BMP2 and TGFb1 for 48 hours and expression levels of the genes

Dlx5, Msx2 and Runx2 were monitored at 0, 8, 16, 24 and

48 hours. All gene expression levels were normalised against

control conditions (cells without growth factors) so that relative

changes due to the growth factors could be determined. Non-

normalised expression levels are summarized in Table S1 (ESIw).
Expression of Dlx5 in mES cells (Fig. 1(a)) did not significantly

rise above control levels in the 16 hours following exposure to the

growth factors. After 24 hours both the BMP2 and BMP2/

TGFb1 groups showed a significant up-regulation (p r 0.05)

which was higher than the TGFb1 group (p r 0.001) and

demonstrated no significant changes in the expression of Dlx5.

In addition, the BMP2/TGFb1 group showed significantly

higher levels of expression at 24 hours than those treated with

either BMP2 (p r 0.05) or TGFb1 (p r 0.001) alone. All

groups returned to initial expression levels after 48 hours

stimulation except for the TGFb1 group which showed a small

decrease in expression compared to the other groups (pr 0.01)

and its initial Dlx5 expression level (p r 0.001).

Similarly mES cells exposed to TGFb1 alone, showed

significantly reduced expression of Msx2 (Fig. 1(b)) over the

48 hour time-course (p r 0.001), with reduced levels being

observed from the 16 hours time point (Fig. 1(b)). Expression

levels were also lower than those of the other two experimental

groups between 16 and 24 hours (p r 0.001). The highest

levels of expression of Msx2 were associated with the BMP2

group at 24 hours, these being significantly higher than those

observed within the TGFb1 (p r 0.001) and BMP2/TGFb1
(p r 0.05) groups. Levels of expression returned to initial
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values in both TGFb1 and BMP2/TGFb1 groups at the

48 hours time point. In contrast, the levels of expression of

Msx2 observed within the BMP2 group remained elevated

48 hours after stimulation (p r 0.01).

Increases in the levels of Runx2 expression (Fig. 1(c)) were

observed at 24 hours in both the BMP2 and TGFb1 groups

compared to both the initial expression levels (p r 0.001 and

r 0.05 respectively) and the levels within the BMP2/TGFb1
group (p r 0.001 and r 0.05).

2.2 Mathematical modelling of mES cells

Potential GRNs of transcription factors (TFs) Dlx5, Msx2,

Runx2 and input growth factors BMP2 and TGFb1 were

created based on previous experimental results (see Fig. 2).

Fig. 2 represents 243 different GRNs: all of them were

incorporated into Boolean models.

Throughout the simulations a two-step approach was

applied: Boolean models were used to identify networks that

are consistent with the observed expression profiles and

corresponding ODE models were fit to experimental data.

First, in order to compare Boolean model results to our

experimental data, t = 0 hour and t = 24 hours mRNA

expression levels associated with distinct cell phenotypes were

categorized as on or off (see Table 1). The binary categoriza-

tion of expression levels was supplemented by biological

knowledge: mRNA levels are low in mES cells, so the initial

mRNA expressions were considered to be off. The mRNA

level for each TF at 24 hours was considered to be on if

there was significant difference compared to the mRNA level

at t = 0 hours and off otherwise.

On the second step, each matching Boolean logic rule was

transformed into an equivalent ODE model using the HillCube

method (see ESIw, S2).66 Expression values at time t = 0 were

used as initial conditions and the model results were compared

to experimental data at times t = 8, 16 and 24 hours. The

system reaches steady state by t= 24 hours, so fitting to data at

t = 48 hours as well did not significantly change the results. In

order to fit the model results to the experimental data, para-

meter optimization was conducted with the EcsPy73 module in

Python using a genetic algorithm.74

One or more Boolean models were constructed (see detailed

explanation is ESIw, S2) for each of the 35 = 243 GRNs shown

in Fig. 2. During the Boolean simulations the mRNA levels at

t = 0 hour (see Table 1) were considered as input and steady

states of the models were compared to the binary representa-

tion of the experimental data at t = 24 hours (see Table 1).

Using this method three different GRNs were found to

reproduce the experimental data, as shown in Fig. 3 and Table

S3 (ESIw). In these GRNs, the mechanism by which Runx2

regulates Dlx5 can not be resolved: in the different models the

regulation is either absent, positive or negative.

Fig. 1 Quantitative expression of (a) Dlx5, (b) Msx2 and (c) Runx2 in

mouse embryonic stem cells, after exposure to BMP2 (unbroken line)

TGFb1 (broken line) and BMP2/TGFb1 (dotted line). Gene expression

was normalized against housekeeping gene and then normalized against

control expression (cells without growth factors). The zero time point

was used as a calibrator for relative expression.

Fig. 2 Possible gene regulatory networks of early osteogenesis (based

on previous studies). Arrowheads denote activation and blunted ends

inhibition. Associations depicted by continuous lines were demonstrated

in at least two studies; associations based on single studies are depicted by

a broken line. During simulations the nature of connections depicted by

broken lines was allowed to be activating, inhibitory or inactive; hence the

figure represents 35 = 243 different GRNs.
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In order to guide further experiments the matching logic rules

were used to predict the effect of under- and over-expression of

Dlx5, Msx2 or Runx2. Under-expression was simulated by holding

the value of the relevant variable fixed at zero, over-expression was

simulated by holding the value of the relevant variable fixed at one.

Steady state levels of Dlx5 and Msx2 were predicted for the

different GRNs summarized in Fig. 3. If Runx2 positively

regulates Dlx5, then upregulation is predicted both in control

and TGFb1 medium, and downregulation of Msx2 is predicted in

TGFb1 medium. In all other cases (when Runx2 negatively

regulates or does not regulate Runx2), downregulation of Dlx5 is

predicted both in control and TGFb1 medium, whereas upregula-

tion of Msx2 is predicted in TGFb1 medium. By comparing our

theoretical predictions with experimental results in which

Runx2 is over-expressed it should be possible to reduce the

number of feasible GRNs for osteogenesis in mES cells.

Simulation of each set of matching logic rules using Boolean

models generated oscillatory results in TGFb1 medium, as

shown in Fig. S2 (ESIw). However the corresponing ODE

models generated sustained oscillations only for the GRN in

which Runx2 negatively regulates Dlx5. This is in accordance

with the network topology: oscillation only occured when each

TF (Dlx5, Msx2 and Runx2) could be both up- and down-

regulated (see Fig. 3). A parameter fit was conducted for the

system of ODEs corresponing to the GRN in which Runx2

negatively regulates Dlx5 (see ESIw, eqn (S10)–(S12)). Simula-

tion results are shown in Fig. 4(a)–(c).

In accordance with the experimental data (see Fig. 1), at

most time-points the expression levels of Dlx5 generated by

the ODE simulations for both the BMP2 and BMP2/TGFb1
groups are higher than the TGFb1 group (Fig. 4(a)). Similarly,

the simulated expression levels of Msx2 (Fig. 4(b)) for the

BMP2 and BMP2/TGFb1 groups are higher than the TGFb1
group. In contrast to the Dlx5 and Msx2 data, Runx2 expres-

sion in the BMP2 and TGFb1 groups is higher than in the

BMP2/TGFb1 group and this is also reflected by the simula-

tion results (Fig. 4(c)).

ODE models can illustrate the order of appearance of TFs:

simulation results indicate that Runx2 expression starts later

than Dlx5 or Msx2. This result is consistent with the view that

Table 1 Experimental results of mRNA expression inmES cells quantified
as on or off at 0 h and 24 h after the addition of growth factors scaled
to expression level in control medium

Time (hours) Media
Gene expression

Dlx5 Msx2 Runx2

0 Off Off Off
24 BMP2 On On On

TGFb1 Off Off On
BMP2/TGFb1 On On Off

Fig. 3 Summary of Boolean modelling results for mES cells. Graphical

representation of logic rules that matched the experimental data (cf.ESIw,
S4). Arrowheads denote activation and blunted ends inhibition, rounded

arrowheads indicate that regulation is different for different matching

logic rules: the possible regulations are denoted by numbers on the

arrows: +1 refers to positive, �1 to negative regulation; 0 denotes

no regulation.

Fig. 4 Levels of (a) Dlx5, (b) Msx2 and (c) Runx2 obtained from

simulation of eqn (S10)–(S12) (see ESIw, S4) using initial conditions

and parameter values summarized in Table S5 (ESIw): modelling

exposure to BMP2 (unbroken line), exposure to TGFb1 (broken line)

and exposure to both BMP2 and TGFb1 (dotted line and square

symbol). Simulation results were normalized against simulation results

modelling control medium.
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Dlx5 and Msx2 are upstream regulators of Runx2,10,44 however

it is not readily observable from the experimental data.

In summary, based on a literature search, 243 possible

GRNs of osteogenesis were proposed. By comparing Boolean

models to experimental data, the number of possible networks

were reduced to three. Simulations of the corresponding

systems of ODEs show sustained oscillation in one of the three

networks and indicate that Runx2 expression starts later than

Dlx5 or Msx2 expression.

2.3 Discussion

While stem cells have the capacity to differentiate into different

cell types, the mechanisms that regulate their transformation

are poorly understood. In this study three early regulators

of osteogenesis were monitored over a 48 hour time period

in mES cells. Previous experimental studies were used to

formulate network models of the early regulation of the central

osteogenic gene Runx2 (Fig. 2).10,15,43,44,34–41,75,76 The gene

expression profiles of each cell type were then monitored

experimentally and the data used to determine likely network

interactions.

In mES cells, the transcription factors Dlx5 and Msx2

(Fig. 1(a) and (b)) were upregulated when stimulatied with

BMP2. Cultures exposed to both TGFb1 and BMP2 did not

demonstrate significant differences in expression of Dlx5 and

Msx2 compared to the cultures with BMP2 only. In contrast,

Runx2 expression in mES cells showed an increase at 24 hours

in response to both BMP2 and TGFb1 but not BMP2/TGFb1
(Fig. 1(c)). The increases in expression of Dlx5 and Msx2 in

mES cells in response to BMP2 is consistent with previous

studies, with Dlx5 serving as a pro-osteogenic factor10,15,36–39

and Msx2 as a negative regulator of osteogenesis.37,40,41 There

are however, some studies that suggest a pro-osteogenic role

for TGFb1.17,38,45,46,77–79

Significant differences between the experimental groups across

the four time points can be difficult to rationalize. As a result it can

be difficult to infer interactions between the genes of interest (Dlx5,

Msx2 and Runx2). For these reasons, mathematical models were

developed to identify those gene regulatory networks that are

consistent with the experimental data.

Analysis of the mES data (Fig. 3) indicates that Runx2

upregulation in response to BMP2 is mediated by changes in

Dlx5 expression caused by direct stimulation with BMP2 or a

BMP2-Msx2 mediated mechanism. The observed increase in

Runx2 expression in response to TGFb1 stimulation suggests

that this process is mediated by the Msx2 stimulation of Dlx5

(Fig. 3). In addition, Dlx5 acts as a negative regulator of Msx2, a

gene known to be involved in the regulation of proliferation,34,76

and could therefore mediate a reduction in cell proliferation.

While the link between Dlx5 and increases in Runx2 expression

is well established,10,15,44 the response to TGFb1 and the possible

mediation of this response through Msx2 expression suggested by

the model have not previously been demonstrated.

In accordance with the view that oscillation of TFs is a

possible source of heterogeneous differentiation in stem cells,80

our model predicts sustained oscillation of TFs in response

to TGFb1 if Runx2 negatively regulates Dlx5. In fact,

Runx2 oscillation has been observed in osteoblastic cells.81

We concede though that based on our experimental data,

regulation of Dlx5 by Runx2 could not be classified (see

Fig. 3) and previously Dlx5 was shown to be upregulated by

Runx2.75 In our model oscillation is predicted only in response

to TGFb1 stimulation and not BMP2 stimulation. The osteo-

inductive role of BMP2 is well established36–39 and TGFb1 is

considered pro-ostogenic as well.17,38,45,46 However there are

studies that have indicated that TGFb1 is a negative regulator

of osteogenesis.12,15

In this paper a general methodology was used to identify

candidate GRNs (Fig. 3) of early osteogenesis using experi-

mental data from mES cells (Fig. 1). Expression of mRNAs in

mouse primary bone cells were also measured (see Fig. 5) and

using the same methodology the GRNs shown in Fig. 6 were

obtained. GRNs corresponding to mES cells were different

from GRNs corresponding to mouse primary bone cells (see

Fig. 3 and 6). Whereas in mES cells Dlx5 inhibits Msx2, in the

predicted GRN for primary bone cells Dlx5 activates Msx2.

Similarly, Msx2 inhibits Runx2 in mES cells, but activates it in

primary bone cells. In addition oscillatory behaviour was only

possible in GRNs corresponding to mES cells. Our results

indicate that the interaction between TFs changes as cells

differentiate into a mature phenotype.

3 Experimental

3.1 Cell culture

The mouse ES cell line denoted columnar epiblast epithelium

(CEE) (52, 53). Cells were cultivated on feeder layers consisting

of a mitomycin-C inactivated (Calbiochem) mouse embryonic

cell line (SNL). Medium consisted of Dulbeccos modified Eagles

medium (DMEM) (Gibco) supplemented with 10% (v/v) foetal

bovine serum (Invitrogen), 2mM L-glutamine (Invitrogen),

0.1M 2-mercaptoethanol (Sigma-Aldrich), 50 g ml�1 penicillin,

50 g ml�1 streptomycin (Invitrogen) and 5000 U ml�1 leukaemia

inhibitory factor (Calbiochem).

Primary mouse calvaria cells (bone) were extracted from

CD1 neonatal mice. An incision was made through the skin of

the scalp, the calvaria were then located and excised from the

skull, ensuring that no soft tissue was attached. The individual

calvaria were then washed in phosphate buffered saline (PBS)

with 2% Antibiotic/Antimicrobial (AA) (Sigma-Aldrich), and

digested at 37 1C for 45 minutes in a 1.4 mg ml�1 Collagenase

I-A and 0.5 mg ml�1 Trypsin II-S made up in AlphaMEM

(Gibco). The resulting digest was passed through a 0.7 m cell

strainer, centrifuged at 250g for 10 minutes, re-suspended in

complete media and seeded into T75 culture flaks (3 flasks per

litter). The cells were further expanded and cyropreserved in

FBS containing 10% dimethylsulphoxide. After resuscitation

cells were cultured until they reached 80–90% confluence at

which point they were used for experimentation.

Each cell type was seeded into 10 cm2 cell culture plastic well

plates at a seeding density of 10 000 cells per cm�2. Cells were

left overnight in medium consisting of MEM (DMEM for

mES and alpha MEM for bone cells) with 10% (v/v) foetal

bovine serum (Invitrogen), 2 mM L-glutamine (Invitrogen),

0.1 M 2-mercaptoethanol (Sigma-Aldrich), 50 g ml�1 penicillin,

50 g ml�1 streptomycin (Invitrogen). Four experimental
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conditions were established, each consisting of five replicates:

cells alone, with no growth factors (CO); cells with 300 ng ml�1

BMP2; with 10 ng ml�1 TGFb; or 300 ng ml�1 BMP2 and

10 ng ml�1 TGFb1. Cultures were lysed for RNA analysis at

0, 8, 16, 24 and 48 hours after exposure to growth factors.

3.2 Real-Time PCR

All cell lysis and RNA extractions were carried out using a Qiagen

RNeasy Mini kit as per manufacturers instructions, with an on

column DNAse digestion step (Qiagen). RNA was quantified

using anND100 spectrophotometer (Nanodrop) integrity assessed

with an Agilent 2100 Bioanalyzer (Agilent Technologies).

Synthesis of cDNA was achieved by use of Superscript

III reverse transcriptase as per manufacturers instructions

(Invitrogen). Quantitative Real-Time PCR was performed

for Msx2 and Dlx5 genes by use of SYBR Green fluorescent

dye (Applied Biosystems 7500). Primers were designed using Primer

Express software (Applied BIosystems) and the primer sequences

used were as follows: Dlx5 50-ATGACAGGAGTGTTTGACA-

GAAGAGT-30 and 30-GGGAACGGAGCTTGGAAGTC-50,

Msx2 50-ACGCGGCGCAGAAAGTC-30 and 30-CCTCCTCAT-

CCGACGAAAAC-50. The housekeeping gene used in each case

was GAPDH with primer sequences 50-CATGGCCTTCCGT-

GTTCCTA-30 and 30-GCGGCACGTCAGATCCA-50. Runx2

gene expression was quantified using a TaqMan probe with

commercially purchased primers for both Runx2 and GAPDH

(Applied Biosystems). All results were first normalized against the

housekeeping gene using ddCt analysis with a 0 time point used as a

calibrator for relative expression analysis. All experimental readings

(BMP2, TGFb1 and BMP2/TGFb1) were further normalized

against control expression levels (CO) giving the fold increase (or

decrease) over (or under) control expression.

3.3 Experimental statistics

All data sets analyzed in this study had five replicates.

Gaussian distribution was assessed by use of Kolmogorov

and Smirnov test. Differences data sets that had Gaussian

distribution were assessed for statistical significance using a

one-way analysis of variance (ANOVA) with Tukey multiple

comparison test. The Bartlett method was used to assess equal

standard deviations. Comparisons between non-parametric

data sets were achieved by use of the Kruskal–Wallis test with

the Dunn multiple comparison test.

3.4 Mathematical modelling – initial GRNs

The TFs Dlx5, Msx2 and Runx2 are the dependent variables

in our models and the externally supplied growth factors

BMP2 and TGFb1 are the control parameters. Previous

experimental studies were used to construct the GRNs shown

in Fig. 2. Direct regulatory connections between the control

parameters and model variables that have been reported by

at least two different studies are depicted by continuous

lines; additional regulatory connections identified in only

one study are depicted by dashed lines.10,15,43,44,34–41,75,76

Fig. 5 Quantitative expression of Dlx5 (a), Msx2 (b) and Runx2 (c)

in mouse primary bone cells, after exposure to BMP2 (unbroken line)

TGFb1 (broken line) and BMP2/TGFb1 (dotted line). Expression

levels are normalized as in Fig. 1.

Fig. 6 Summary of modelling results for mouse primary bone cells.

Graphical representation of logic rules that matched the experimental

data. Arrowheads denote activation and blunted ends inhibition,

rounded arrowheads indicate that regulation is different for different

matching logic rules: the possible regulations are denoted by numbers

on the arrows: +1 refers to positive, �1 to negative regulation;

0 denotes no regulation.
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These regulatory connections were treated as incomplete and

needing to be tested with simulations. During simulations

the additional connections were allowed to be activating,

inhibitory or inactive. As shown in Fig. 2, our compound

GRN includes four ‘fixed’ and five ‘uncertain’ regulatory

connections thus representing 35 = 243 candidate GRNs.

3.5 Mathematical modelling – Boolean modelling

For each GRN shown in Fig. 2 a Boolean logic rule (a set of

binary values relating the state of the target gene to the

expression levels of its regulators) was constructed. Parameters

gBMP and gTGF were control parameters with a constant binary

value (0 or 1) assigned to each, depending on whether or not the

corresponding growth factor was present in the culture medium

(see Table S4, ESIw). Levels of Dlx5, Msx2 and Runx2 were the

nodes of the network. See ESIw, S2 for detailed descriptions of

how the Boolean logic rules are generated from each GRN.

Simulations were performed to identify those logic rules that

are consistent with the experimental data from the mES and

primary bone cells. Binary representation of experimentally

obtained mRNA levels at time point 0 were used as initial

conditions and on each simulation step the state of each

variable was updated according to a particular logic rule.

The simulations were continued until a steady state or a limit

cycle was reached. A particular GRN was said to match

the data if the large-time limit of the simulation matched the

24 hour experimental values.

If a simulation yielded a steady state for each choice of

medium, then the result was directly compared to the binary

representation of the experimental results. If a simulation

yielded a limit cycle, then the values of each variable (Dlx5,

Msx2 and Runx2) were averaged, and the average values for

each variable were ordered according to their magnitudes. A

logic rule that yielded a limit cycle was considered a ‘matching

result’ if, for all variables, the average values associated with a

medium corresponding to an experimental on state were higher

than those corresponding to off state.

3.6 Mathematical modelling – continuous representation of

Boolean logic rules

Each matching Boolean logic rule was transformed into an

equivalent ODEmodel using the HillCubemethod (see ESIw, S3).66

The system of ODEs capable of producing sustained oscillations

was further analysed to obtain a parameter fit to the experimental

data. Optimization was conducted with the EcsPy73 modul in

Python using a genetic algorithm.74

4 Conclusions

We have presented a general methodology to identify GRNs

based on literature information and in vitro expression data.

This approach was illustrated by identifying GRNs of early

osteogenesis.

Guided by the literature involving mES cells, 243 GRNs of

early osteogenesis were proposed. Using Boolean modelling three

of 243 GRNs were found to be consistent with our experimental

data. Experimentally untested transcriptional connections were

either ruled out or suggested by our modelling results, one of the

hypotheses being that Runx2 stimulation by TGFb1 is mediated

via Msx2. In addition, simulation of system of ODEs corres-

ponding to the three GRNs consistent with our experimental

data showed that some of these models exhibit sustained

oscillation, a possible source of heterogeneous differentiation

capacity in stem cells. Oscillation was only observed when

addition of TGFb1 was modelled, a growth factor that was

identified as either a negative12,15 or positive17,38,45,46 regulator

of osteogenesis.

Using this approach, GRNs were identified which were

consistent with expression data of primary bone cells stimulated

by BMP2 and/or TGFb1. The obtained GRNs differ from

predicted GRNs of early osteogenesis, indicating that TF inter-

actions depend on the cells’ differentiation state.

The mathematical model and the experimental data neglect

numerous signalling processes (e.g. Smads,MAPK,Wnt signalling)

and gene interactions that regulate osteogenesis. However, the

accuracy of the model will increase as more experimental data

are incorporated and the approach we have adopted could be

adapted for any gene regulatory system.
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