Issue 13, 2018

Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity

Abstract

Oxygen vacancies in inorganic semiconductors play an important role in reducing electron–hole recombination, which may have important implications in photocatalysis. Cuprous oxide (Cu2O), a visible light active p-type semiconductor, is a promising photocatalyst. However, the synthesis of photostable Cu2O enriched with oxygen defects remains a challenge. We report a simple method for the gram-scale synthesis of highly photostable Cu2O nanoparticles by the hydrolysis of a Cu(I)-triethylamine [Cu(I)–TEA] complex at low temperature. The oxygen vacancies in these Cu2O nanoparticles led to a significant increase in the lifetimes of photogenerated charge carriers upon excitation with visible light. This, in combination with a suitable energy band structure, allowed Cu2O nanoparticles to exhibit outstanding photoactivity in visible light through the generation of electron-mediated hydroxyl (OH˙) radicals. This study highlights the significance of oxygen defects in enhancing the photocatalytic performance of promising semiconductor photocatalysts.

Graphical abstract: Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2017
Accepted
16 Feb 2018
First published
16 Feb 2018

Nanoscale, 2018,10, 6039-6050

Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity

M. Singh, D. Jampaiah, A. E. Kandjani, Y. M. Sabri, E. Della Gaspera, P. Reineck, M. Judd, J. Langley, N. Cox, J. van Embden, E. L. H. Mayes, B. C. Gibson, S. K. Bhargava, R. Ramanathan and V. Bansal, Nanoscale, 2018, 10, 6039 DOI: 10.1039/C7NR08388B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements