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We perform numerical simulations to study self-assembly of nanoparticles mediated by an elastic
planar surface. We show how the nontrivial elastic response to deformations of these surfaces leads to
anisotropic interactions between the particles resulting in aggregates having different geometrical
features. The morphology of the patterns can be controlled by the mechanical properties of the surface
and the strength of the particle adhesion. We use simple scaling arguments to understand the formation
of the different structures, and we show how the adhering particles can cause the underlying elastic
substrate to wrinkle if two of its opposite edges are clamped. Finally, we discuss the implications of our
results and suggest how elastic surfaces could be used in nanofabrication.

I. Introduction

Elastic surfaces are ubiquitous in nature and technology and
appear across all length scales, from the cellular microenviron-
ment to large-scale objects such as bridges and buildings. The
mechanical properties of these surfaces play an important role
both in their biological function and in their wide usage in
material engineering. For instance, it is known that the stiffness
of an elastic substrate alters the morphology and dynamics of
tissue cells adhering onto it.! Variable cytoskeleton assembly?
and cell spreading® on substrates of different mechanical prop-
erties are two nice examples of this. Furthermore, surfaces’
response to external stress have been exploited in metrology*®
and in the production of micro- and nano-scale patterned
surfaces that may serve as components with novel optical, elec-
tronic and magnetic properties.®

We are interested in understanding how elastic surfaces can be
used to template aggregation of nanocomponents. The idea of
using interfaces, specifically fluid ones, as a means of driving self-
assembly of arbitrary building blocks was first introduced by
Whitesides et al.”® In this case, the presence of floating objects on
a fluid interface induces local deformations in its profile which
are minimized when the objects are isotropically driven close to
each other.*!® By manipulating the tension of the interface, and
by tailoring the chemistry of the building blocks, millimeter-size
objects, microchips and microcomponents have been successfully
self-assembled.’** Unlike fluid interfaces, whose large scale
physical properties are dominated by their surface tension, elastic
surfaces resist stress and respond to it in a spring-like fashion.

Elastic surfaces bend and stretch in response to deformations.
The resulting macroscopic behavior is characterized by strong
nonlinearities." The mechanical properties of macroscopic
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elastic sheets have recently been the subject of intense investi-
gation.*'>'® Under an applied force an elastic surface deforms in
a way that minimizes the energy associated with the deformation.
It is easy to show'! that the ratio between stretching and
bending energies for an arbitrary deformation of amplitude /2 on
a flat elastic sheet of thickness ¢ scales as EJ/E;, ~ (h/t)>. There-
fore, for sufficiently thin sheets, bending is the preferred mode of
deformation and unstretchability can be thought of as an overall
geometrical constraint to the deformations. The net result is that
thin elastic surfaces respond to an external applied stress with
stretch-free deformation involving (when possible) exclusively
uniaxial bending. Skin wrinkling under applied stress’®'® and
stress focusing via d-cone formation of crumpled paper’® are two
examples of this phenomenon.

Such nontrivial phenomenology extends to the micro-scale.
There are several artificial and naturally occurring examples of
microscopic elastic surfaces, including graphite-oxide sheets,?*!
graphene sheets,??* cross polymerized biological membranes,>*
cross polymerized hydrogels,® buckypaper,>=7 the spectrin-actin
network forming the cytoskeleton of red blood cells,*®?® and very
recently they have been fabricated using close-packed nano-
particle arrays.® Our expectation is that diffusible particles
adhering over an elastic surface should be driven to aggregate
into configurations that reduce the mechanical cost of the overall
surface deformation. These configurations will depend on the
geometry of the surface, its elastic properties and the strength of
the adhesion (the applied force).

We have recently shown how the response to deformations of
elastic nanotubes can alter the elastic properties of a flexible
filament binding to it,*' and that elastic nanotubes and nano-
shells can drive self assembly of nanoparticles in a variety of
patterns that depend on the interplay between bending and
stretching rigidities of the template, and the amount of defor-
mation of the surface.’*3® In this paper we explore the phase
behavior of nanoparticles adhering onto a planar (extended)
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elastic substrate as a function of the mechanical properties of the
substrate, namely its stretching and bending rigidity, and the
strength of the adhesion. We also analyze the role of the
boundaries of the elastic sheet and their influence on the aggre-
gation patterns. Our findings suggest that the geometrical
features of the anisotropic aggregation of the particles can be
tuned in a variety of patterns by controlling the elastic parame-
ters of the problem.

II. Methods

The elastic plane is modeled via a standard triangulated mesh
with hexagonal symmetry.** To impose surface self-avoidance we
place hard beads at each node of the mesh. Any two surface
beads interact via a repulsive truncated-shifted Lennard-Jones

potential:
R [ R G A TR

0, r>2g

where r is the distance between the centers of two beads, o is their
diameter, and ¢ = 100kgT.

We enforce the surface fixed connectivity by linking every bead
on the surface to its first neighbors via a harmonic spring
potential

Ustretching = Ks(r - rB)z- (2)

Here K is the spring constant and it models the stretching
rigidity of the surface. r is the distance between two neighboring
beads, rg = 1.23¢ is the equilibrium bond length, and it is
sufficiently short to prevent overlap between any two triangles on
the surface even for moderate values of K.

The bending rigidity of the elastic surface is modeled by
a dihedral potential between adjacent triangles on the mesh:

Ubending = Kb(l + COS¢) (3)

where ¢ is the dihedral angle between opposite vertices of any
two triangles sharing an edge and K, is the bending constant.

Particles of diameter g, = 100 are described via the repulsive
truncated-shifted Lennard-Jones potential introduced in (1) with
o — o.. The generic binding between the nanoparticles and
surface is described by a Morse potential:

[ Dy(e7lr=me) _ emalrmmw)y -y < 100
Uhtone = { 0, r>100

4)

where r is the center-to-center distance between a nanoparticle
and a surface-bead, ryp is bead-nanoparticle contact distance
rng = 5.50 and Dy is the binding energy. The interaction cutoff is
set to 10¢ and v = 1.25/0.

The simulations were carried out using the LAMMPS
molecular dynamics package®* with a Langevin dynamics in the
NVT ensemble. Dimensionless units are used throughout this
paper. The timestep size was set to df = 0.0027y (7o is the
dimensionless time) and each simulation was run for a minimum
of 5-10° iterations. In this study we considered unconstrained
and edge-constrained sheets. To minimize edge effects in
unconstrained sheets we considered surfaces with an overall

circular geometry. Two different equilibrium radii Rpjane = 500
and Rpane = 60.40 were explored. To preserve the mechanical
stability of the sheet the nanoparticles were placed both on top
and at bottom of the surface. When edge-constrained surfaces
were considered, a rectangular shape was selected and the
particles were placed only on one side of the plane. For this
specific case we considered two surface equilibrium areas, 4 =
(176 x 152)0? and A4 = (244 x 212)0” In both cases a wide range
of nanoparticle surface fractions between 10% and 60% was
explored. Typical values of ¢ ~ 10-20 nm would imply particles
of diameter ~100-200 nm and surfaces of area 4 ~ 200—
1000 pm?. Fig. 1 illustrates the model used in our simulations.

III. Results

We find that elastic surfaces can drive nanoparticle aggregation.
The geometry of the aggregates can be tuned into a variety of
patterns controlled by the mechanical properties of the surface
(K; and Kp) and the strength of the particle’s adhesion (D). Let
us begin by looking at the role of the membrane’s stretching
rigidity. Fig. 2a) shows a diagram of the different aggregates
obtained for different values of K as a function of the extent of
the surface deformation (regulated by Dy) at fixed bending
rigidity Kp. Fig. 2c) shows simulation snapshots of the corre-
sponding patterns. As expected, when Dy is small the surface is
basically unaffected by the presence of the particles and the
particles behave effectively as a low-density two-dimensional
hard sphere fluid. In the opposite limit, when the particles bind
very strongly, the membrane undergoes large local deformations
limiting the diffusion of the particles and resulting in kinetically
trapped configurations. Repeating the simulations under the
same conditions leads to a different not well defined configura-
tion. We call this phase the arrested phase.

The intermediate regime is characterized by five distinct
structured phases. For small values of K the aggregation is
completely driven by the minimization of the bending energy. As
a result particles aggregate into a two-dimensional hexagonal
crystal. This is what happens for instance in lipid bilayers where
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Fig. 1 Illustration of the triangulated mesh model used in our simula-
tions. The surface beads of diameter o (blue spheres) are set at the nodes
of each triangular element to enforce surface-self-avoidance and are
linked to their first neighbors with springs of the constant K and the
equilibrium length rg (measured form the beads centres). The surface
connectivity is kept constant, and apart from boundary nodes each
surface bead has six neighbors. The dihedral angle 1-2-3-4 from which
bending energies are computed is also indicated. This energy is minimized
when all angles between neighboring triangles are equal to .
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a bending-mediated isotropic, V' ~ —r~*%, interaction can drive
surface inclusions at a separation r from each other to aggre-
gate.’® Upon a small increase in K, the hexagonal crystal rear-
ranges into square lattices. As K is further increased we find that
the crystalline aggregate is disrupted in favor of a network of
short connected lines. This phase is the consequence of balancing
the stretching and the bending energy: the former preferring the
stretch-free uniaxial deformations, and the latter driving in-plane
isotropic aggregation.

For even larger values of K the connected network is dis-
rupted and particles arrange into straight parallel lines.
Increasing K at this points only leads to a larger stiffness of the
linear aggregates. This transition is completely driven by the
stretching energy. The parallel lines start appearing when K; >
K. This is clearly shown in Fig. 2b) where we show how the
formation of straight and connected aggregates depend on both
stretching and bending constants. For K/K;, >> 1 one indeed
recovers the thin and unstreachable sheet limit for which only
stretch-free (uniaxial) deformations are possible. The most
dramatic consequence of this property of elastic plates is the fifth,
folded phase. This phase occurs for larger values of Dy, when
particles tend to increase the contact area with the membrane as
much as possible. In this region the surface immediately folds
into a well organized higher three-dimensional hexagonal struc-
ture (Fig. 2¢).

To better characterize the dependence of the different phases
on K, from the hexagonal to the square lattice, from the

connected network to the linear one, we also measured the
frequency of particle contacts as a function of K. Fig. 3 shows
the probability distribution of the number of the nearest neigh-
bors as a function of K in the different phases. The connectivity
decreases when increasing K, going from the six neighbors of the
hexagonal phase to the four of the square lattice, and finally to
the two and three neighbors of the connected and the straight
lines. For the linear aggregates the significant difference is not in
the location of the peak of the distribution (indeed a large
number of particles will have two neighbors even in the con-
nected linear aggregates), but in the relative height of P (n = 3).
It should be emphasized that the number of connections does
decrease continuously with increasing K. It is tempting to
interpret these data in terms of a single growing length scale that
sets the size for the average distance between any two nodes in
the linear network, and consider the straight-line phase as the
limiting behavior in which this distance becomes larger than the
surface. A simple mean field calculation balancing stretching and
bending energies' points to the length scale /, o« h"*(K{/Ky)"*R'",
which qualitatively produces the correct phenomenological
behavior, but unfortunately the small system sizes analyzed in
this study prevent us from making such a link more concrete.
It is important to stress that the free boundaries of the
membrane play an important role. Indeed, it is not clear whether
the linear phases indicated in Fig. 2 are stable with respect to
folding. In fact, in a few cases our longest simulations of the
linear phases resulted eventually in a folded phase. We expect this
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Fig.2 (a)Phase diagram of nanoparticles binding to an elastic planar surface. In this case the bending rigidity is Ky, = 150k T the equilibrium radius of
the surface is R = 60.4¢ and the number of nanoparticles is N = 40. The lines separating the different phases serve as a guide to the eye. The arrow points
in the direction of lower line connectivity. (b) Boundary between connected to straight parallel lines as a function of K and Kj,. The dashed K}, = K; line
serves as a guide to the eye. (c) Simulation snapshots of the seven observed phases. For the sake of clarity the hexagonal and the square crystal phases are

shown with the larger number of particles than the other phases.
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Fig. 3 Probability distributions of particle contacts in a self-assembled
aggregates for different values of K, and constant K, = 150kg7. From
right to left the distributions refer to the planar hexagonal crystal, the
planar square crystal, the interconnected lines, and the straight parallel
lines.

to be an effect of the free boundary of the surface that can be
taken care of by applying a small external tension or by clamping
the outer edge of the surface. To show that this is indeed the case,

we considered a rectangular elastic sheet in which two opposite
sides (edges) are kept fixed (clamped). In the absence of the
adhering particles the sheet remains flat to its equilibrium size.
Once the particles bind to it we observe only two phases for
moderate values of K, the gas phase and the straight-linear
phase. The former appears when Dy is insufficient for the parti-
cles to deform the membrane, while the latter occurs when D,
crosses a certain threshold value which depends mainly on the
bending rigidity of the plane (Fig. 4a).

The linear structures formed in this phase always appear to be
perpendicular to the constrained sides of the membrane (Fig. 4b).
However we observe that the distance between them can be tuned
by changing K and Kj,. This kind of pattern is reminiscent of the
wrinkle pattern that occurs when a thin elastic sheet is subjected
to a longitudinal stretching strain.'®'” The sheet is then unable to
contract laterally near the clamped boundaries, so it wrinkles to
accommodate the in plane stress. Cerda and Mahadevan showed
that, for a constant tension, the wavelength of the wrinkles scales
as A ~ (L)' ~ (Ky/Kg)"*. 1

Indeed, we find the same reasoning can be applied here.
Instead of having an external force stretching the plane, the

C
T - o )
a _/'/'. e
a - (=]
e ol
A4 i
e
o
(Kb/Ks)” 120.96"%, N=60
1 I"
400 500
T T
o (K/K)'*=0.90"7, N=120
__30F = -
o [
_‘25_ » -
< | I T ‘II\,:H 150 160 180 . o
201 " o — -
15}- . S -
w0F— .
5- 1 1 1 1 1 1 1 14 12
% 02 04 06 08 1 12 14 16 (K/K)'"'=0.676", N=120
1/4 §
K/K) ']

Fig. 4 (a) Phase diagram of nanoparticles binding to a clamped rectangular elastic surface. Two phases are observed for different values of K}, and
depend only on Dy: the gas phase and straight parallel lines phase (SL). These data refer to the case in which K = 150kg7/o%, N = 60, and the area of the
the plane is (176 x 152)¢°. (b) Line separation A as a function of the mechanical properties of the surface. We show data for two different surface
coverages: ¢ = 38.7% (cross symbols) and ¢ = 21.2% (circle symbols). The straight lines represent the fit of the data to the scaling law A ~ (Kp/K;)"*. The
inset shows the dependence of A on the particle surface coverage, shown for three different values of the (K/K,)"* parameter: 1.35¢"*(top), 0.9
(middle), 0.51¢"* (bottom). (c) Simulation snapshots of linear aggregates for three different combinations of the elastic parameters and the surface

coverage densities. The equilibrium surface area is 4 = (176 x 152)q°.
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particles binding to the surface act as the stress source causing the
sheet to wrinkle perpendicularly to the fixed sides of the plane.
Since the wrinkles are the regions where the particles can gain the
highest contact area with the surface, i.e. the highest binding, the
particles follow the wrinkle pattern resulting in the straight
parallel aggregates. We believe that destabilization of the linear-
connected phase is due to the implicit symmetry breaking
imposed by the way the membrane is clamped, in fact, when
clamping is enforced on all four edges of the sheet, the phase
reappears.

We also analyzed the dependence of the wavelength of the
particles’ lines with K}, and K and it appears to nicely follow the
theoretical prediction of Cerda and Mahadevan (Fig. 4b).
Nevertheless, two extra parameters play a role in determining the
separation between the lines in this case: the surface coverage and
the particle’s binding energy. Since particle binding to the surface
is favorable, once the particle’s density becomes larger than that
required to completely fill the wrinkles with particles, new lines
(wrinkles) form in between the preexisting ones, bringing the
preexisting ones closer together. The inset in Fig. 4b) shows the
decrease in A with the increase in the particle density, for two
different values of K. In addition to that, we find that the
increase in Dy (for constant K and K) also brings the lines closer
together. Higher binding increases the amplitude of the wrinkles
(analogous to increasing the strain tension in [16]), which
decreases the surface area accessible to the particles, effectively
increasing the density.

It should be stressed that the mechanism driving self-assembly
of particles into linear aggregates that we describe is significantly
different from the controlled wrinkling methods recently devel-
oped for the fabrication of patterned surfaces.® There the wrin-
kles are preformed by compressing the substrate, and particles
trivially arrange along the wrinkles’ axis to maximize their
binding energy, in our case the surface is not pre-wrinkled, and
the linear aggregates develop (in a reversible manner) as a result
of a more delicate balance between the energies of the system and
the collective behavior of the particles. Interestingly, once the
wrinkled phase is formed it is possible to control the overall
direction of the lines by simply applying a small external tension.
For instance, the release of the surface clamping and simulta-
neous application of a small tension in the direction perpendic-
ular to the direction of the wrinkles, results in a reorientation of
the lines along the direction of the tension. This supports our
assumption of the reversibility of the line-forming process and
suggests even richer potential application of this approach for
periodical patterning.

Conclusions

In this paper we show how elastic surfaces can template self-
assembly of nanoparticles, in a similar way to fluid interfaces. We
show how by tuning the relative cost of bending and stretching
energies (i.e. the thickness of the sheet) it is possible to control the
geometry of the aggregates. The formation of the different linear
aggregates, for thin sheets, is an explicit manifestation of the
anisotropic interaction between the nanoparticles. When the
surfaces become effectively unstretchable, particles arrange into
macroscopic ordered parallel lines whose separation can be
controlled by the elastic parameters of the surface. Clamping of

the edges across the membrane substantially improves the peri-
odic ordering in the system.

The physical properties of our model can be mapped onto
a model of a thin sheet supported on an elastic foundation if the
stretching rigidity of the plane is substituted by the stiffness of the
elastic foundation. Therefore, the results of our theoretical study
are quite general and may suggest novel use of the elastic inter-
faces in nano/micromechanics and material engineering. Possible
experimental systems where our predictions could be tested
include cross-polymerized or crystalline lipid bilayers, thin
polymeric  sheets, ultra-thin cross-linked nanoparticle-
membranes or possibly free standing liquid crystalline films in the
presence of colloidal particles. More generally, in any elastic
substrate that can be locally deformed by the interaction with
a diffusable binding component.
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