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We use numerical simulations to show how noninteracting hard particles binding to a deformable

elastic shell may self-assemble into a variety of linear patterns. This is a result of the nontrivial elastic

response to deformations of shells. The morphology of the patterns can be controlled by the mechanical

properties of the surface, and can be fine-tuned by varying the binding energy of the particles. We also

repeat our calculations for a fully flexible chain and find that the chain conformations follow patterns

similar to those formed by the nanoparticles under analogous conditions. We propose a simple way of

understanding and sorting the different structures and relate it to the underlying shape transition of the

shell. Finally, we discuss the implications of our results.
I. Introduction

Spontaneous assembly of components into large ordered aggre-

gates is a ubiquitous phenomenon in nature, and is observed

across all length scales. Aggregation of proteins into functional

nanomachines,1 formation of viral capsids,2,3 packing of phos-

pholipids into biological membranes4 and assembly of colloidal

particles into macroscopic photonic crystals5 are just a few

examples of such fundamental processes. The human body itself

develops as a hierarchical self-assembly of units of different sizes.

Understanding the physical mechanisms driving self-assembly of

biological or artificial components will shed light on critical

biological processes and simultaneously holds promise for the

development of materials with novel functional, mechanical, and

optical properties.

The use of fluid interfaces has revolutionized the field of self-

assembly6,7 by providing a universal mechanism through which

arbitrary building blocks can be driven close to each other. As

a result the process of self-assembly, once specific to molecular

systems, has been extended to components of much larger size.6

The physics behind this mechanism is well known,8,9 and its

manifestations are a matter of common experience, as seen for

instance in the clustering of cereal on milk surface. Local

deformations in the interface profile, caused by the presence of

floating objects, induce long-range capillary forces. These are the

result of the minimization of the total surface area of the inter-

face that is regulated by its surface tension. By manipulating the

surface tension of the interface, and by tailoring the chemistry of

the building blocks, millimetre-size objects, microchips and

microcomponents have been successfully self-assembled.10–12

In this work we try to understand how elastic surfaces, which

have quite different mechanical properties from their fluid
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counterparts, can be used to drive self-assembly of nanoparticles.

Unlike fluid interfaces, whose molecules can freely diffuse across

their area, the elements of elastic surfaces are tethered together,

and respond to small deformation in a spring-like fashion. The

resulting macroscopic behavior, regulated by bending and

stretching energies, is characterized by strong nonlinearities.13

The mechanical properties of macroscopic elastic sheets have

recently been the subject of intense scrutiny.14–19 However, there

are several microscopic artificial and naturally occurring exam-

ples of such materials, including graphite-oxide sheets,20,21

graphene sheets,22,23 cross polymerized biological membranes,24

buckypaper,25–27 the spectrin-actin network forming the cyto-

skeleton of red blood cells,28,29 and very recently they have been

fabricated using close-packed nanoparticle arrays.30

It is easy to show13,19 that the ratio between the stretching and

bending energies for an arbitrary deformation of amplitude h on

a flat elastic sheet of thickness t scales as Es/Eb � (h/t)2. There-

fore, for sufficiently thin sheets, bending is the preferred mode of

deformation. This has a profound effect on the way elastic

surfaces respond to deformations as the only stretch-free defor-

mation involves uniaxial bending. Skin wrinkling under applied

stress15,17 and stress focusing via d-cone formation of crumpled

paper19 are two beautiful examples of this phenomenon. We have

recently shown how the response to deformations of elastic

nanotubes can alter the elastic properties of a flexible filament

binding to it,31 and drive self assembly of colloidal particles into

helical and axial lines.32

In this paper we show how the elastic response to deformations

of a spherical shell can be used to self-assemble colloidal particles

in a variety of patterns that only depend on the mechanical

properties of the system and the amount of deformation of the

surface. We also show how a fully flexible polymer bound to the

shell will spontaneously arrange to conform to similar patterns

observed for the nanoparticles. What makes this problem very

interesting is that unlike planar or cylindrical geometries, for
This journal is ª The Royal Society of Chemistry 2011
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which there is a clear solution to the stretch-free deformation

problem, any deformation of a spherical shell will necessarily

involve stretching of the surface. The shape of the deformation

minimizing the stretching energy in this case is therefore not

immediately obvious. Furthermore, a buckling transition from

the spherical to a faceted icosahedral shape is known to take place

at large stretching energies,33 and finally for sufficiently small

shells (or large deformations) the ratio between bending and

stretching energy becomes independent of h, and only depends on

the radius of the sphere R and its thickness t, Es/Eb � (R/t)2.13
II. Model

We model the elastic surface via a standard fishnet network

representation.34 Each node of the network is placed to conform

to the symmetry of an icosadeltahedron. In such surfaces, like

viral shells, all but 12 nodes have a regular triangulation with six

neighbors; 12 five-fold disclinations are also present as required

by Euler’s theorem relating number of faces, edges and faces on

a spherical triangulation. The number of nodes Nk describing the

surface is then related to the location of the five disclinations, and

satisfies the constraint Nk¼ 10(n2 + nm + m2) + 2.35 Here n and m

indicate that one must move n nodes along the row of neigh-

boring bonds on the sphere, and then after a turn of 120�, move

for m extra steps.

We studied two different sphere sizes; the smaller one has Nk¼
6752 nodes and symmetry described by n ¼ 15 and m ¼ 15, the

larger one contains Nk ¼ 10832 nodes with n ¼ 19 and m ¼ 19.

To impose surface self-avoidance we place hard beads at each

node of the mesh. Any two surface beads interact via a purely

repulsive truncated and shifted Lennard-Jones potential

ULJ ¼
43

�
s

r

�12

�
�

s

r

�6

þ1

4

" #
; r # 21=6s

0 ; r . 21=6s

8>><
>>: (1)

where r is the distance between the centers of two beads, s is their

diameter, and 3 ¼ 100kBT.

We enforce the surface fixed connectivity by linking every bead

on the surface to its first neighbors via a harmonic spring potential

Ustretching ¼ Ks(r � rB)2 (2)

Here Ks is the spring constant and r is the distance between two

neighboring beads. rB ¼ 1.23s is the equilibrium bond length,

and it is sufficiently short to prevent overlap between any two

triangles on the surface even for moderate values of Ks.

The bending rigidity of the elastic surface is modeled by

a dihedral potential between adjacent triangles on the mesh:

Ubending ¼ Kb(1 + cosf) (3)

where f is the dihedral angle between opposite vertices of any

two triangles sharing an edge and Kb is the bending constant.

Colloidal particles of diameter sc ¼ 10s are described via the

repulsive truncated-shifted Lennard-Jones potential introduced

in eqn (1) with s / sc. Finally the polymer is constructed as

a ‘‘pearl necklace’’ with N ˛ [20,45] monomers of diameter also

sm ¼ 10s. Neighboring monomers are connected by harmonic
This journal is ª The Royal Society of Chemistry 2011
springs as in eqn (2) with the equilibrium bond length rM ¼
1.18sm and spring constant of 120kBT/s2. Polymer self-avoidance

is again enforced via the repulsive truncated-shifted Lennard-

Jones potential introduced in eqn (1) with s ¼ sm.

The generic binding of the polymer monomers (and the

colloids) to the surface is described by a Morse potential:

UMorse ¼
D0

�
e�2aðr� rMBÞ � 2e�aðr� rMBÞ� ; r # 10s

0 ; r . 10s

(

(4)

where r is the center-to-center distance between a monomer and

a surface-bead, rMB is the monomer-bead contact distance rMB¼
5.5s and D0 is the binding energy. The interaction cutoff is set at

10s and a ¼ 1.25/s.

We used the LAMMPS molecular dynamics package38 with

a Nos�e-Hoover thermostat,36,37 in the NVT ensemble to study the

statistical behavior of the system at room temperature. The

timestep size is set to dt¼ 0.002s0 (s0 is the unit time expressed in

standard MD units) and each simulation was run for a minimum

of 5 � 106 steps. The radii of the undeformed spherical shells are

R ¼ 29.05s for Nk ¼ 6752, and R ¼ 34.16s for Nk ¼ 10832.
III. Results

To understand how the configurational properties of the binding

polymer and colloids are related to the elastic properties of the

templating surface, we performed a series of simulations for

many values of Ks, Kb, D0 (which controls the extent of the

surface indentation) and for different polymer lengths and

number of colloidal particles. We find that a convenient way of

representing our data is via the dimensionless parameter known

as the Foppl-Von K�arm�an number, defined as g ¼ YR2/k, where

Y is the Young’s modulus of the shell and k is the bending rigidity

as defined in the continuum theory of elasticity.13 We begin our

analysis by studying the buckling transition of the shell as

a function of g in the absence of binding agents. This will give us

critical information about how to relate the shape of the tem-

plating surface (the elastic shell) and its elastic properties. To

identify the buckling transition and match the numerical

parameters of our model with g we follow the analysis carried

out in.33 Fig. 1A shows the results of our simulations. The surface

asphericity A, defined as

A ¼
�
DR2

�
hRi2

¼
XN

i¼1

ðRi � hRiÞ2

hRi2
; (5)

Ri being the radial distance of the surface bead i and hRi being

the mean radius of the shell, is plotted against g ¼ (4/3)KsR
2/Kb.

The buckling transition, for which the spherical shape begins to

facet, begins for values of g T 102. This result is in good

agreement with that computed in ref. 33, and represents a good

test of our numerical model. We next add colloidal particles to

the system and observe their self-assembly on the surface of the

spherical shell. Depending on the value of g, particles arrange in

patterns that minimize the elastic energy of the shell. Fig. 1B

shows the resulting patterns as a function of g for different values

of indentation, and a constant number of colloidal particles N ¼
35. A convenient way of extracting the indentation is obtained by

computing (Ap � A)1/2, where Ap is the asphericity of the shell in
Soft Matter, 2011, 7, 1874–1878 | 1875
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Fig. 1 (a) Plot of the asphericity A versus Foppl-Von K�arm�an number g indicating the buckling transition in our model of a spherical elastic shell in the

absence of colloidal particles. (b) Phase diagram indicating how the different aggregates formed by the colloidal particles depend on the mechanical

properties of the shell (g) and the degree of indentation measured in terms of the particle-induced asphericity (Ap � A)1/2/N computed using N ¼ 35

particles. The five different phases are indicated with Roman numerals and include data for spherical shells of radius R ¼ 29.05s and R ¼ 34.16s.

Different symbols are used to emphasize simulation points that give rise to the different phases. (c) Snapshots from our simulations of the phases

indicated in the phase diagram. From top to bottom g ¼ 5.6, g ¼ 37.5, g ¼ 75, g ¼ 225 and g ¼ 4500. For the sake of clarity, the particles defining the

shell are depicted with a larger volume and the regions around the disclinations are depicted with a lighter color.Pu
bl

is
he

d 
on

 2
3 

D
ec

em
be

r 
20

10
. D

ow
nl

oa
de

d 
on

 9
/1

8/
20

25
 4

:2
1:

02
 P

M
. 

View Article Online
the presence of the particles and A is the asphericity without

them.

The general feature of the diagram is that self-assembly occurs

for only a relatively narrow range of particle deformations.

When (Ap � A)1/2 is too small, i.e. the surface is basically unaf-

fected by the presence of the particles, we find no aggregation;

this is the result one should indeed expect when placing N

noninteracting hard particles on the surface of a rigid sphere

(at low densities). We indicate this phase as the gas phase. When

(Ap � A)1/2 is too large and significant deformations are induced

by the binding particles, we find that the system becomes kinet-

ically trapped (at least within the timescales considered in this

study) into metastable states. In fact, repeating the simulations

under the same conditions leads consistently to different and not

well defined aggregation patterns. We indicate this phase as the

arrested phase. For intermediate deformations, particles consis-

tently self-assemble in a variety of patterns whose features are

clearly related to the mechanical properties of the shell via g.

For small values of g we find that particles aggregate iso-

tropically to form a two dimensional crystal on top of the sphere.

The presence of these 2d crystals tends to flatten the surface

underneath it. As a consequence, if a sufficiently large number of

particles is added to the system we find that the side length of the
1876 | Soft Matter, 2011, 7, 1874–1878
crystal is limited by the shell diameter, and extra particles begin

to aggregate on its opposite side (Fig. 1B-I). As g becomes larger,

at low surface coverage, particles become localized over the

twelve disclinations, and as N increases linear aggregates initially

grow by linking the five fold disclinations on the sphere and

finally form a linear network with 3-line joints winding around

the disclinations in the shell (Fig. 1B-II). As the templating

surface begins to facet, each segment of the network straightens

revealing a clear patterns following the seams that a pentagonal

tiling of the sphere would generate (a dodecahedron, Fig. 1B-III).

It should be noticed that the previous two phases are topologi-

cally equivalent. The only difference is the presence of extra

particles sitting on the twelve disclinations in region II of the

diagram. Increasing the surface coverage in region III results in

thickening of the width of the dodecahedral pattern by formation

of parallel and adjacent secondary lines of particles.

At even larger values of g, once the shell is well faceted,

particles arrange into a linear and non-connected aggregate that

smoothly winds around and away from the twelve disclinations

(Fig. 1B-IV). This pattern is reminiscent of that of the baseball or

tennis ball seam, the difference being that in our case the

geometry of the aggregate is dictated by the presence of 12

topological defects, while in the baseball the seam winds around
This journal is ª The Royal Society of Chemistry 2011

https://doi.org/10.1039/c0sm01143f


Fig. 2 Snapshots showing the particle aggregates as a function of

surface coverage for the phase II (see Fig. 1B). These snapshots are taken

for a spherical shell with g ¼ 37.5 and R ¼ 29.05s.
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the location of the four s ¼ 1/2 disclinations that a thin nematic

liquid crystal texture would generate on a sphere.39,40

Finally, for the largest values of g we find that particles

arrange into straighter but shorter aggregates (rods) that localize

into ten distinct regions of the shell. The length of the rods grows

with the surface coverage until a critical size which depends on

the size of the sphere and equals roughly the distance between

two disclinations located at the opposite vertices of two of the

icosahedral triangles that share one edge (Fig. 1B-V). Further

increase of N results in the formation of multiple rods per region

which align parallel to each other. Fig. 2 shows the explicit

dependence of the pattern as a function of surface coverage in

region II of the phase diagram.

To gain insight into the physical origin of the different patterns

formed by the particles, we measured the strain and bending

energy at each node of the shell for different values of g in the

absence of the particles. Fig. 3 shows the energy map of the two

contributions for small, intermediate and large values of g. The

results are quite revealing and provide a simple framework from

which the patterns can be understood. Particles aggregates align

to follow the low bending and stretching energy regions on the

shell. The formation of isotropic aggregates and the presence of

the particles on top of the disclinations for small values of g

suggests that bending energy plays an important role in deter-

mining the pattern in region 1 and 2 of the diagram. Regions III,

IV and V are instead completely dominated by the stretching

energy which is driving the shape transition of the shell.
Fig. 3 Bending energy map (top) and stretching energy map (bottom) of a

strengths as indicated in the color map on the side.

This journal is ª The Royal Society of Chemistry 2011
Of particular interest are the two phases that occur for very

large values of g (region IV and V). This condition that can be

obtained either by increasing the radius of the sphere R or by

significantly altering the relative weight of stretching and

bending energies in favor of the former. In this regime particles

can easily bend the surface in regions that are far away from the

icosahedral vertices, yet the only bending deformations that will

not induce stretching energy are those that involve bending

around a single radius of curvature. We believe that the transi-

tion from the dodecahedral arrangement to the smooth closed

loops in Fig. 1B region IV is due to the large stretching energy

cost that would be associated with the formation of either sharp

corners or three-lines joints. This constraint become so severe in

region V of the same figure, that the linear aggregates break into

shorter pieces of roughly equal length that straighten by flat-

tening the edges shared by any two triangles of the underlying

icosahedral geometry.

Interestingly, we find that almost all phases depicted in Fig. 1

can also be acquired by a fully flexible chain binding to the shell

for analogous degrees of deformations and comparable number

of monomers. The only differences are due to the connectivity

constraints on the chain. Region II and region V are obviously

impossible to achieve with a chain; nevertheless, the difference in

region V is minimal as short rods are in this case replaced by

a poly-line with segments having the same length of the rods

formed by the colloids. In region II the polymer traces a simple

path connecting the disclinations. Fig. 4 shows snapshots of the

different phases for the fully flexible chain. Given these similar-

ities between the behavior of the polymer and that of the

colloidal particles, it is clear that the mechanism regulating the

conformational changes of the chain on a flexible shell is identical

to that driving the self-assembly of the colloidal particles on the

same surface.

IV. Conclusions and discussions

In this paper we detail how deformable elastic surfaces can be

used to mediate self-assembly of otherwise noninteracting

colloidal particles, and/or alter the conformational properties of

a fully flexible chain bound to it. We find that the structure of the

aggregates (the conformation of the polymer) can be understood

in terms of the mechanical properties of the templating shell via

the Foppl-Von K�arm�an number g. Specifically, we have shown

how there are two distinct regimes: one dominated by the shell
spherical shell as a function of g. Different shades indicate the relative

Soft Matter, 2011, 7, 1874–1878 | 1877
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Fig. 4 Snapshots showing the different conformations adopted by

a fully flexible chain when binding to a deformable elastic shell. From left

to right g ¼ 5.6, g ¼ 37.5, g ¼ 112.5, g ¼ 140 and g ¼ 2700.
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bending energy, and the other by its stretching energy. In the

former case the shell acquires an overall spherical shape and

particles localize on top of the disclinations and organize to link

small bending energy regions. In the latter case the shell facets

into an icosahedron with vertices located where the twelve five-

fold disclinations reside; here particles follow low stretching

pathways across the shell.

Crucially, the underlying shell’s shape transition determines

the role of the disclinations in the self-assembly process. The

twelve five folded points attract the binding colloidal particles for

small values of g and repel them in the other regime. This result

can be of great importance for controlling the functionalization

of mesoparticles such as for instance colloidosomes.41 In fact, we

have shown how a small number of particles can be localized

around the twelve disclinations in the bending dominated regime,

and around the vertices of a dodecahedron (dual to the icosa-

hedron) in the stretching dominated regime.

Our results can be considered as another example or an

extension of the ideas discussed by Nelson39,42 regarding the

functionalizability of the four s ¼ 1/2 disclinations in a nematic

liquid crystal texture covering a colloidal particle. One of the

main differences, apart from the overall symmetry of the

problem, is that in our case the shape of the template is allowed

to change in response to the elastic strains induced by the pres-

ence of the defects, and that self-assembly (or conformational

changes in a flexible chain) is driven by the elastic response to

deformation of the shell. It would be interesting to study how

particles self-assemble over a deformable shell under the overall

tetrahedral symmetry provided by a nematic liquid crystal

texture.
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