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[6]Saddlequat: a [6]helquat captured on its racemization pathwayT
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A dicationic [6]helicene congener captured on the racemization pathway in its saddle-shaped geometry
is introduced. Synthesis, structure, resolution, and dynamic properties of this chiral [6]saddlequat
in-between and its highly stereocontrolled transformation into enantiopure [6]helquat are discussed
and demonstrated. The dynamic aspects established by experiment and supported by detailed DFT-D
calculations are presented visually in the form of a movie (electronic table-of-contents and electronic
supplementary information). The title [6]saddlequat was found to be an isolable chiral species on the
entirely chiral enantiomerization pathway of a [6]helquat that is discussed as an example of Mislow’s

“rubber glove” molecule.

Introduction

Helicenes and helicene congeners continue to attract attention
due to their fascinating helical shape, inherent chirality, and
electronics."™ Because of their unique structure, their self-
assembly,>S catalytic,” chiroptical,® and acid-base® properties
have been intensively studied. Furthermore, the recently reported
ability of helicene congeners to inhibit the activity of telome-
rase,'® topoisomerase I,'* and interact with DNA duplexes'? and
G quadruplexes'® promises interesting future applications.

A distinctive feature of helicenes is the existence of a thermal
racemization pathway equilibrating the right-handed helix with
the left-handed one (P = M, Scheme 1 and Scheme 2). This
unique phenomenon of thermally triggered racemization via
helix inversion has been extensively investigated.’*'” In a typical
helicene, e.g. [6]helicene, helix inversion proceeds via a Ci-
symmetric saddle-shaped transition state that is achiral
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(Scheme 1a).'* In some rare cases, helicene congeners having
saddle-shaped energy minima on their racemization pathways
have been reported. Two examples, where the presence of such
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Scheme 1 (a) Racemization of [6]helicene via achiral saddle-shaped
transition state, (b) racemization of [9]helicene via saddle-shaped inter-
mediate, and the corresponding energy profiles. r.c. = reaction
coordinate.
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Scheme 2 Racemization of [6]helicene congener via isolable saddle-
shaped intermediate studied in this work.

saddle-shaped energy minima is predicted, are [9]helicene
(Scheme 1b)'* and a recently disclosed [11]helicene deriva-
tive.'”!® We supposed, if the saddle-shaped energy minima exis-
ted in a sufficiently deep energy valley, then, the species
corresponding to these minima could, in principle, be isolated
and characterized as stable intermediates. They would represent
a helical system captured during its racemization pathway.

Here we describe the synthesis, structure, and dynamic prop-
erties of a [6]helquat, a dicationic [6]helicene congener captured
on the racemization pathway in its saddle-shaped geometry
(Scheme 2). Resolution of this chiral saddle-shaped species and
its highly stereocontrolled transformation into enantiopure
[6]helquat is demonstrated.

Results and discussion

In our recent studies, we introduced helquats,’*2? helical dica-
tions that represent a missing structural link between helicenes
and viologens. By taking advantage of a highly flexible three-step
synthetic route,*! we accessed isomeric triynes 1 and 3 (Scheme 3
and ESIt). We found that, as usual, triyne 1 is transformed solely
to the corresponding [6]helquat 2 via rhodium-catalyzed [2 + 2 +
2] cycloaddition.**?* However, the isomeric triyne 3 leads under
the same reaction conditions to formation of an isolable saddle-

2TfO" = |
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| | [Rh(PPh3);Cl]

—_—
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[rac-5][TfO]; [rac-4][TfO],
helquat saddlequat

Scheme 3 Triyne 1 leads solely to helical product 2 while isomeric triyne
3 gives the saddle-shaped species 4 as the major product.

shaped species 4 along with the formation of [6]helquat 5,
featuring the typical helical shape. Both structures 4 and 5 were
confirmed by a variety of spectroscopic methods."*C, 'H, HSQC,
HMBC, COSY and ROESY NMR spectra permitted full
assignment of all '"H and '"*C resonances and established
connectivity and spatial arrangement. Importantly, the three-
dimensional identity of the individual dicationic frameworks has
been unambiguously proved by single-crystal X-ray diffraction
analyses (vide infra).*®

The saddle-shaped product 4, which we suggest to denote as
[6]saddlequat 4, arises from a kinetically controlled [Rh
(PPh3);Cl]-catalyzed [2 + 2 + 2] cycloisomerization that furnishes
a mixture of [6]saddlequat 4 and the corresponding [6]helquat 5
in a4 : 1 ratio.® The solubilities of the diastereoisomeric salts [4]
[TfO], and [5][TfO], in tetrahydrofuran are considerably
different and allow for the straightforward non-chromato-
graphic separation of the two stereoisomers. Notably, and of
particular importance for this study is that the saddle-shaped
species [4] is sufficiently long-lived to be comfortably studied
experimentally.

Moreover, both [5] and [4] are chiral entities formed as race-
mates during the [2 + 2 + 2] cycloaddition depicted in Scheme 3.
This is evidenced by capillary electrophoresis (CE) with sulfated
v-cyclodextrin chiral selector, which shows two peaks of equal
intensity corresponding to the two enantiomers of compound 4
(Scheme 4). A similar situation is observed in the case of
compound 5.26%7

The calculated Gibbs free energy of the saddlequat [4] is 18 kJ
mol ! higher relative to helquat [5] in DMSO as determined by
DFT-D calculations® (TURBOMOLE:* B3LYP/def2-TZVP//
ri-PBE/def2-SV(P) + disp*® + DMSO,3! see ESI for detailst3?). In
line with this predicted energy difference, upon heating in
DMSO-ds at 100 °C saddlequat [4][TfO], gradually and
completely converted to helquat [5][TfO], (Scheme 5). This
process can be followed by NMR via disappearance of peaks
corresponding to [4] and appearance of peaks corresponding to
[5] (Scheme 5). Data analysis from this experiment led to the
activation free energy value AG* of 120 kJ mol~! for the trans-
formation [4] — [5].

In order to gain a thorough understanding of the conversion of
[4] to [5] we turned to detailed DFT calculations. To this end,

rac-4

rac-5 hu L

rac-4 + rac-5

T
15 20 25 30 35 4.0
Migration time [min]

Scheme 4 Saddlequat [4] and helquat [5] are both chiral entities. Both,
[4] and [5], are produced from the triyne 3 in racemic form as evidenced by
capillary electrophoresis with sulfated y-cyclodextrin chiral selector.?’
See ESI for details.

This journal is © The Royal Society of Chemistry 2011
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Scheme 5 Transformation [rac-4] — [rac-5] at 100 °C in DMSO-dg
followed by '"H NMR.

TURBOMOLE calculations at the DFT-D level®3! shed light
on the energy profile of and structures involved in the entire
racemization pathway of helquat [5] (Scheme 6). In line with our
experimental results, calculation predicts that the saddlequat [4]
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exists in this calculated energy profile as a local energy minimum
that is in a sufficiently deep energy valley that it can be isolated
and studied.

Inspection of the calculated energy profile around saddlequat
[4] indicates that there are two possible, energetically distinct,
pathways leading to two helquat [5] structures of opposite hel-
icity (pathways a and b in Scheme 6). The lower, pathway a,
corresponds to a AG™ value of 119 kJ mol ™!, which fits very well
with the experimentally determined value of 120 kJ mol™' for
transformation [4] — [5] (see NMR study, Scheme 5). Following
the energetically less favorable pathway b would also transform
the same saddlequat to helquat, but now to the helquat of the
opposite helicity.

We thus speculated that the existence of these two energeti-
cally distinct pathways would allow for the stereocontrolled
transformation of enantiopure saddlequat [4] into enantiopure
helquat [5] (via pathway a in Scheme 6). To test this hypothesis,
access to non-racemic [4] was crucial. Therefore, we turned to
resolution of racemic [4]. By employing the same resolution
protocol recently reported for a [5]helquat derivative,?** we
were able to achieve straightforward resolution of [rac-4][TfO],
(Scheme 7). Specifically, the exchange of triflate anions in [rac-4]
[TfO], for enantiopure (R,R)-dibenzoyltartrate anions led to the
formation of two diastereomeric salts, one of which crystallized
from methanol in diastereomerically pure form, as evidenced by
a single peak in the chiral CE trace.?**” Single crystals suitable
for X-ray diffraction analysis were obtained and enabled
absolute configuration assignment of the dicationic scaffold of
[S.,R.-4] (Fig. 1).2* Subsequent exchange of the (R,R)-diben-
zoyltartrate anions in this diastereomerically pure salt for tri-
flate anions via ion exchange resin completed the resolution
giving (+)-[S,,R,-4] ditriflate in its enantiomerically pure form
(CE in Scheme 7).

el

r.c.

Scheme 6 Calculated racemization pathway of helquat [5] passing through saddlequat [4]. Pathways a and b denote the two distinct routes from
saddlequat [4] to the two enantiomeric helquats [P-5] and [ M-5], respectively. See also the movie in the electronic table-of-contents and ESI for details.}
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Scheme 7 Resolution procedure for [rac-4][TfO], and the corresponding CE traces showing two peaks for [rac-4] ditriflate and a single peak for the
isolated (+)-[S,,R,-4] ditriflate after resolution. See ESI for further details.

Fig. 1 X-Ray single crystal structure assigning absolute configuration of
the dicationic framework of (+)-[S,,R,-4][(R,R)-dibenzoyltartrate],. (R,
R)-Dibenzoyltartrate anions and crystal water molecules are omitted for
clarity.?®

By heating this enantiopure sample of saddlequat (+)-[S,,R,-
4] ditriflate at 100 °C in DMSO-d, we were able to confirm our
hypothesis that the saddle-shaped species can indeed be trans-
formed into enantiopure helquat [5] with no loss of chirality
(Scheme 8). The experimental proof for this phenomenon was
made possible by a powerful CE method using sulfated
y-cyclodextrin as a chiral selector.?®*” This provided us with an
ideal experimental tool for monitoring the enantiocomposition
of both [4] and [5] during the stereocontrolled transformation
[4] — [5]. CE electropherograms show a single peak

corresponding to the starting (+)-[S,,R,-4] ditriflate giving rise
to a single peak corresponding to (—)-[5], providing definitive
evidence for the complete stereocontrol governing this process
(Scheme 8). The course of this stereocontrolled transformation
(+)-[S., R4 TfO], — (—)-[S][TfO], was also followed by ECD
spectroscopy. During the transformation, the characteristic
peaks of (+)-[S,,R,-4] ditriflate gradually give way to peaks of
(—)-[5] ditriflate positioned at longer wavelengths (Scheme 9).

To confirm that the saddlequat (+)-[S,,R,-4][TfO], was
transformed as predicted by calculation we sought the absolute
configuration of the helquat (—)-[5][TfO], formed during the
process. Calculation predicted that in following the energetically
more favorable pathway a, saddlequat (+)-[S,,R,-4] would give
rise to helquat [5] of P helicity (Scheme 6). Single-crystal X-ray
diffraction analyses confirmed that this was indeed the case
(Fig. 2).%

To evaluate the racemization barrier of helquat [5] it was
essential to have a non-racemic sample of the compound. In our
hands, stereocontrolled transformation of enantiopure
(+)-[S.,R.-4] proved to be the only feasible method to access
enantiopure samples of helquat [5] as independent attempts at
resolution of racemic [5] via diastereomeric salts failed.

With a route to enantiopure helix 5 established, a solution of
(—)-[P-5][TfO], in DMSO was heated at 180 °C. CE enantio-
composition analysis of samples taken over the course of heating
determined the activation free energy value to be AG* = 153.3kJ
mol~! and the racemization half-life (77,,) to be 4.8 h at 180 °C.
This experimentally determined racemization barrier fits well
with that predicted by DFT-D calculations, AG* of 157.7 kJ
mol~! (Scheme 10).

The consistent agreement between the experimental data and
DFT-D calculations forms a body of evidence that can be best
summarized in the dynamic visual form of the movie we present
in the electronic table-of-contents.

This journal is © The Royal Society of Chemistry 2011
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Scheme 8 Chiral CE monitoring confirms complete stereocontrol in the
transformation of saddlequat (+)-[S,,R,4][TfO], to helquat (—)-[5]
[TfO], at 100 °C, as evidenced by the exclusive production of a single
enantiomer of [5]. Bottom CE trace: reference mixture of [rac-4] and [rac-
5]. See ESI for details.t
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Scheme 9 ECD spectra recorded in the course of the stereocontrolled
transformation (+)-[S,,R,-4][TfO], — (—)-[5][TfO], in DMSO at 100 °C.
See ESI for further details.t

Fig. 2 X-Ray crystal structure assigning absolute configuration of hel-
quat (—)-[P-5][TfO], as obtained by stereocontrolled transformation
from saddlequat (+)-[S,,R,4][TfO], at 100 °C. X-Ray quality crystals
were grown from the perchlorate salt of [P-5]. Perchlorate anions and
crystal water molecules are omitted for clarity.?
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Scheme 10 Thermal racemization of helquat [5][TfO], proceeds at 180
°C in DMSO with T}, of 4.8 h (experimental AG* = 153.3 kJmol™',
calculated AG* = 157.7 kJ mol™"). See ESI for details.

We note, that [6]helquat 5 represents an interesting example of
a “rubber glove” molecule®* as its enantiomerization takes
place exclusively by a chiral pathway via chiral [6]saddlequat 4.
As introduced by Mislow in the 1950s,** enantiomerization in
“rubber glove” molecules can only proceed via chiral pathways as
no achiral conformations can be attained for such structures.
This molecular phenomenon is paralleled in the macroscopic
world by turning a right-handed rubber glove inside-out leading
to an object superimposable with a left handed-glove, never
attaining an achiral (symmetric) conformation on its enantio-
merization pathway.

Conclusions

In conclusion, we have presented a detailed experimental and
theoretical investigation of a stereochemically rich®* helicene-
type racemization pathway featuring a saddle-shaped local
energy minimum sufficiently stable to be isolated, characterized,
and studied in detail. This saddle-shaped species arises from
a kinetically controlled [Rh(PPh;);Cl]-catalyzed [2 + 2 + 2]
cycloisomerization of the triyne precursor.’” Resolution of this
chiral saddle species allows for production of enantiopure helix
via a highly stereocontrolled chiral information transfer.?®

2318 | Chem. Sci., 2011, 2, 2314-2320
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Capillary electrophoresis with sulfated vy-cyclodextrin chiral
selector is shown as an advantageous and direct method for
analysis of enantiocomposition of both saddle- as well as helical-
shaped charged species. Finally, this study describes [6]helquat 5
as an example of a “rubber glove” molecule and introduces
[6]saddlequat 4 as an isolable chiral species lying on the entirely
chiral enantiomerization pathway of [6]helquat 5.
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