Issue 5, 2011

Structural trends of ionized water networks: Infrared spectroscopy of watercluster radical cations (H2O)n+ (n = 3–11)

Abstract

The nature of water networks exposed to ionizing radiation is important in various radiation-related chemistry and biology. To understand structural evolution of ionized water networks at the molecular level, we report here infrared spectra of watercluster radical cations (H2O)n+ (n = 3 − 11) in the gas phase. Spectral features of free OH stretch modes are quite similar to those of protonated waterclustersH+(H2O)n, of which the hydrogen-bond network structures have been revealed. In addition, we observed an extra band attributed to the stretch of an OH radical in (H2O)n+. These results indicate that nominal (H2O)n+ should be regarded as H+(H2O)n−1(OH) motifs having similar network shapes to those of H+(H2O)n. We also analyzed hydrogen-bonded OH stretch bands and found that hydrogen-bond strength is a key factor to determine the position of the OH radical relative to the protonated site (H3O+/H5O2+). Because an OH radical is a weaker hydrogen bond acceptor than water, the first solvation shell of the protonated site is preferentially filled with water. As a result, the OH radical is separated from the protonated (charged) site by at least one water molecule in n ≥ 5 clusters. This result shows the instability of the H3O+-OH ion-radical contact pair in water networks, and implies the higher mobility of the OH radical due to its release from the charged site. Observed structural preferences are confirmed both in cold and warm clusterion sources.

Graphical abstract: Structural trends of ionized water networks: Infrared spectroscopy of watercluster radical cations (H2O)n+ (n = 3–11)

Supplementary files

Article information

Article type
Edge Article
Submitted
02 Dec 2010
Accepted
31 Jan 2011
First published
15 Feb 2011

Chem. Sci., 2011,2, 868-876

Structural trends of ionized water networks: Infrared spectroscopy of watercluster radical cations (H2O)n+ (n = 3–11)

K. Mizuse, J. Kuo and A. Fujii, Chem. Sci., 2011, 2, 868 DOI: 10.1039/C0SC00604A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements