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A theoretical approach is presented for relating structural information to transport properties in ion

conducting borophosphate glasses. It relies on the consideration of the different types of glass

forming units and the charges associated with them. First it is shown how changes of the unit

concentration with the overall glass composition can be understood. Then it is demonstrated how the

changes in the unit concentrations upon borate–phosphate mixing lead to a re-distribution of

Coulomb traps for the mobile ions and a subsequent change in long-range ionic mobilities. The

theories are tested against experiments and yield good agreement with the measured data both for the

unit concentrations and the variation of the activation energy.

1 Introduction

The chemical composition of ion conducting glasses can be

varied to a large extent and this offers many possibilities to

optimise these materials with respect to different demands, in

particular to high ionic conductivities.1 One important method

for enhancing ionic conductivities in glasses is by mixing

different glass formers such as silicates, borates, phosphates,

etc. The occurrence of a maximum in the ionic conductivity or

minimum in the conductivity activation energy upon mixing is

commonly referred to as the mixed glass former effect (MGFE).

The MGFE has been found in a number of different systems as,

for example, the alkali borosilicates,2 alkali borophosphates,3,4

as well as GeS2 + SiS2,5 P2O5 + TeO2,6 TeO2 + B2O3,7 MoO3 +

TeO2,8 and GeO2 + GeS2
9,10 mixed network former glasses with

different types of mobile ions (Li, Na, Ag). It is, however, not

always observed. For example, Maia and Rodrigues11 did not

find a maximum in the conductivity in a lithium borosilicate

system similar to the one investigated by Tatsumisago et al.2

The origin of the MGFE is not well understood. For the glass

system 0.3Li2S + 0.7[(1 2 x)SiS2 + xGeS2], Pradel et al.5 showed

that the MGFE in the composition range 0.5 = x = 0.65 is

caused by a phase separation into an almost Li free GeS2 glass

and a Li2S + SiS2 glass. The enhancement of Li mobility can

thus be traced back to the enrichment of Li ions in the SiS2

component.12,13 When the MGFE is not induced by phase

separation, we recently suggested to distinguish between two

situations I and II,14 where in situation I the network forming

units (NFUs) remain the same during glass former mixing

(as, for example, when germanates are mixed with their

thio-analogues), while in situation II different types of NFUs

exist for each glass former, which change their concentrations

upon mixing. For situation I, it was shown14 that the MGFE can

be caused by reduced activation barriers for ionic jumps in

heterogeneous environments containing both glass formers.

In this article we present a theoretical approach applicable to

situation II, which relies on the NFUs building the host structure

for the ionic motion. We argue that the charges associated with

the NFUs and the way that they are localised are of crucial

relevance for characterising the statistical properties of the

energy landscape that govern the long-range ionic transport

properties. This view is in line with earlier findings that changes

of dc-conductivities correlate with the concentration of BO4

tetrahedra.3,15

To demonstrate the new approach we apply it to the mixed

glass former effect in sodium borophosphate glasses, where

detailed information on the NFU concentrations has been

gained recently by magic angle spinning nuclear magnetic

resonance (MAS-NMR).3,16 We first show how the observed

changes of NFU concentrations with the borate-to-phosphate

mixing ratio can be understood from a general modelling.

Then we will use this structural information on the NFUs to

calculate changes of the conductivity activation energy upon the

mixing ratio.

2 NFU concentrations in alkali borate glasses

Before developing a model for the NFU concentrations in the

more complex ternary alkali oxide-borate-phosphate glass

compositions, we first revisit here the situation in the simpler

binary alkali oxide-borate glasses. Since the pioneering work of

Bray and coworkers17,18 and further subsequent experimental

investigation and theoretical modelling (for a recent overview,

see Wright19) the behaviour of the NFUs in the alkali borate

glasses has been clarified to some extent. Overall, three types of
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NFUs can be distinguished,{ see Fig. 1: the trigonal, neutral

B(3) unit with three bridging oxygens (bOs), the tetrahedral,

negatively charged B(4) unit with four bOs, and the trigonal,

negatively charged B(2) unit with two bOs and one non-

bridging oxygen (nbO). Since the bOs are shared by two boron

atoms, the total number of oxygens attributed to these NFUs is

4 6 (1/2) = 2 for the B(4) unit, 3 6 (1/2) = 3/2 for the B(3) unit,

and 2 6 (1/2) + 1 = 2 for the B(2) unit.

For convenient notation let us denote by {B(n)}, n = 2,3,4, the

fraction of units {B(n)}, i.e. {B(n)} = [B(n)]/[B], where [B(n)] is the

concentration of NFUs of type B(n) and [B] = [B(2)] + [B(3)] +

[B(4)] the total number concentration of NFUs. The NFU

fractions {B(4)} as a function of the alkali ion fraction {M} =

[M]/[B] = y/(1 2 y) (M = Li, Na, K, Rb, or Cs) in glasses of

composition yM2O-(1 2 y)B2O3, as measured by MAS-

NMR17,20–24 and neutron scattering25 are redrawn in Fig. 2.

For small {M} = 0.4, each alkali ion M (or, more precisely,

each MO1/2) converts one B(3) to a B(4) unit, and accordingly

{B(4)} = {M} in Fig. 2. This well-known behaviour leads to the

so-called ‘‘borate anomaly’’, which refers to the fact that a better

connected glassy network (and a correspondingly higher glass

transition temperature) is found for larger modifier contents, in

contrast to what is commonly seen in other types of modified

network glasses, where the cations of the modifier generate nbOs

and hence a reduced connectivity.

For large {M} > 0.4, the one-to-one replacement of B(3) by

B(4) units with each addition of M ceases to be valid due to the

emergence of B(2) units that compensate for the charges of the

alkali ions. As a consequence, {B(4)} becomes smaller than {M}

in Fig. 2. The number of charge compensating B(2) units (and the

associated reduction of {B(4)} with respect to the line {B(4)} =

{M}) depends on the type of alkali ion, with a trend of becoming

larger with larger alkali ion size, although the {B(4)} data for Rb

in Fig. 2 lie below those for Cs.

2.1 Beekenkamp model

A good theoretical description of the overall behaviour seen in

Fig. 2 has been given by Beekenkamp26 already in 1965. He

assumed that the B(4) units are preferentially compensating the

charges of the alkali ions, but cannot be directly linked by a bO.

This avoidance of B(4)–B(4) linkages likely has its origin in a high

effective dipolar interaction between the O–B, B–O bonds

forming the links. The NFU fractions then have to obey the

following set of relations:

{B(2)} + {B(3)} + {B(4)} = 1 (1a)

fB 2ð ÞgzfB 4ð Þg~ Mf g~ y

1{y
(1b)

4{B(4)} ¡ 3{B(3)} + 2{B(2)} (1c)

The first eqn (1a) follows from the given total boron content

and the second eqn (1b) from the requirement of charge

neutrality. The relation (1c) expresses that the number of bOs

linked to B(4) units must be smaller than or equal to the number

of bOs linked to B(3) and B(2) units, since a bO bonded to a B(4)

has to be linked to either a B(3) or B(2) unit due to the B(4)–B(4)

avoidance. Let us note that the two eqn (1a) and (1b)

automatically imply that the fraction {O} of oxygens given by

the stoichiometry ({O} = 3/2 + {M}/2) equals the one calculated

from the units ({O} = 2{B(2)} + 3{B(3)}/2 + 2{B(4)}). This

condition could thus by used as an equivalent alternative to the

requirement of charge neutrality.

For small {M}, only the favoured B(4) units are needed for

charge compensation ({B(2)} = 0) and eqn (1b) and (1a) yield

{B(4)} = {M} and {B(3)} = 1 2 {M}. This is valid as long as

relation (1c) is satisfied, i.e. for 4{M} ¡ 3(1 2 {M}) or {M} ¡

3/7 $ 0.429. For {M} . 3/7, in addition B(2) units are needed for

charge compensation. Since the B(4) are favoured over the B(2)

units, the number of B(4) units has to be taken as large as possible

under the constraint (1c), i.e. this relation becomes an equation.

Inserting it into eqn (1a) yields {B(4)} = [3 2 {B(2)}]/7, and

inserting this into eqn (1b) gives {B(2)} = 7{M}/6 2 1/2 and

{B(3)} = 1 2 {M}. In summary, the Beekenkamp model predicts

{ In borate glasses with very high alkali content (larger than 50 mole
percent), B(1) and B(0) units were also reported,19 but we will not consider
such high alkali contents here, where the glassy matrix can be viewed to
change from a network to a ‘‘salt glass’’ structure.

Fig. 1 Sketch of the NFUs in alkali borate glasses: Below the chemical

representations the charge numbers of the NFUs are given. The charge of

the B(4) unit is delocalised over the four bOs, while the charge of the B(2)

unit is more localised at the site of the nbO.

Fig. 2 B(4) fraction as a function of alkali fraction {M} in alkali borate

glasses. The symbols refer to results from MAS-NMR measure-

ments17,20–24 and neutron scattering.25 Different fillings for the same

symbols correspond to different studies. Results from the theoretical

modelling are indicated by lines. The dashed line corresponds to the

regime of low alkali content ({M} ¡ {M}*). The solid line marks the

Beekenkamp result in the regime of high alkali content ({M} . {M}*)

and the dashed line marks the modified Beekenkamp model with f = 1/4.

The dashed-dotted line indicates the result from the refined modelling in

section 2.3 for K = 1.3.
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fB 4ð Þg~
Mf g, Mf gƒ3=7

1

2
{

1

6
Mf g, Mf gw3=7

8
<

:
(2a)

{B(3)} = 1 2 {M} (2b)

fB 2ð Þg~
0, Mf gƒ3=7

7

6
Mf g{ 1

2
, Mf gw3=7

8
<

:
(2c)

The predicted behaviour for {B(4)} is indicated by the dashed

and solid lines in Fig. 2. The terminal point (intersection of

dashed with solid line) {M}* = 3/7 of {B(4)} = {M} is in good

agreement with the measurements. Except for the lithium

borates, the line {B(4)} = 1/2 2 {M}/6 captures quite well the

behaviour for {M} . {M}*, although there is a tendency of the

measured {B(4)} to be smaller, in particular at larger {M} > 0.7.

The measured {B(4)} data for Li are significantly higher than

that predicted by the Beekenkamp model. This points to the fact

that the constraint of forbidden B(4)–B(4) linkages is too strict in

this case. It has been conjectured that the small Li ions can come

closer to the bOs in these linkages and thereby are able to

stabilise them.24 With respect to the two other unit types B(2) and

B(3), let us note that the result {B(3)} = 1 2 {M} follows already

from eqn (1a), (1b) and simply expresses the fact that for each

additional M, a neutral B(3) unit needs to be replaced by one of

the two charged units. With {B(4)} and {B(3)} known, {B(2)} is

fixed by the overall boron content.

2.2 Constant fraction of B(4)–B(4) linkages

In order to account for the discrepancies between the

Beekenkamp model and the measurements, one may release

the constraint of strict absence of linkages between B(4) units. In

fact, it is known that in crystalline alkali borates such linkages

exist19 and there is evidence that this is the case also in vitreous

systems.27 Gupta28 proposed a model, where all B(4) are sharing

a bO with exactly one other B(4), leading to a replacement of

relation (1c) by 3{B(4)} ¡ 3{B(3)} + 2{B(2)}, since each of the

remaining three bOs bonded to a B(4) unit has to be linked to

either a B(3) or a B(2) unit.

More generally, we can introduce the fraction f of B–O bonds

belonging to B(4) units that are part of B(4)–B(4) linkages. We

then have to replace relation (1c) by

4(1 2 f){B(4)} ¡ 3{B(3)} + 2{B(2)} (3)

since now a fraction (1 2 f) of the B–O bonds belonging to B(4)

units must be connected to either B(3) or B(2) units. In this way

the Gupta model can be re-interpreted as referring to the case

f = 1/4, as far as the NFU fractions are concerned. The same type

of calculations as outlined above for the Beekenkamp model

(that corresponds to f = 0) for this model yield

fB 4ð Þg~
Mf g, Mf gƒ Mf gf

3{ Mf g
6{4f

, Mf gw Mf gf ~
3

7{4f

8
<

:
(4)

As before, {B(3)} = 1 2 {M} and {B(2)} = 0 for {M} ¡ {M}f,

while {B(2)} = 1 2 {B(3)} 2 {B(4)} for {M} . {M}f.

According to eqn (4), when increasing f from f = 0, one obtains

a shift of {M}* from 3/7 to a higher value {M}f = 3/(7 2 4f ) and

a steeper fall of {B(4)} for {M} . {M}f, corresponding to a

change in slope from (21/6) to [21/(6 2 4f)]. As an example, we

have indicated the result for f = 1/4 as a dotted line in Fig. 2. This

line overestimates {B(4)} in the interval 0.43 , {M} , 0.7 but it

appears as a limiting line of the B(4) fraction for {M} ¢ 0.7 in

lithium borate glasses. This suggests that the Gupta model

corresponds to a limiting case in the sense that a B(4) unit can

have at most one linkage to another B(4) unit.

2.3 Balancing mutually linked B(4) with B(2) units

While the approach of fixing the fraction f is a straightforward

extension of the Beekenkamp model, it is not clear why f should

be independent of {M}. For a refinement of the theoretical

treatment, we now assume that a B(4) unit can have at most one

linkage to another B(4) unit and invoke the often applied concept

that concentrations of different structural subgroups in a glass

are balanced via chemical reactions.{ Let us consider network

configurations with mutually linked B(4) units in balance with

network configurations without such linkages but with addi-

tional B(2) units according to

B 2ð Þ<B̃
4ð Þ

(5)

Here B̃
4ð Þ

denotes a B(4) unit that is linked to another B(4). The

reaction (5) represents the most simple one by which a balancing

of the respective units is described under conservation of both the

charge and the number of oxygens (2 6 (1/2) + 1 = 4 6 (1/2)).

Applying the law of mass action to the reaction (5) gives

fB̃ 4ð Þg
fB 2ð Þg

~K (6)

where K is the reaction constant. While K may depend on {M},

one can conjecture that this dependence is weak, since (5) is

primarily a reaction related to the network structure. It should

thus be a good approximation to take K constant.

Since the B̃
4ð Þ

units are linked through one bO to another B(4)

(B̃
4ð Þ

) unit, the number of bOs to be connected to either B(2) or B(3)

units is proportional to 4ðfB 4ð Þg{fB̃ 4ð ÞgÞz3fB̃ 4ð Þg. Relation (1c)

then has to be replaced by

4fB 4ð Þg{fB̃ 4ð Þgƒ3fB 3ð Þgz2fB 2ð Þg (7)

Eqn (1a), (1b), (6) together with relation (7) form a complete

set to determine the NFU fractions under the principle of B(4)

preference for charge compensation. It is clear that the reaction

is only relevant when the B̃
4ð Þ

units form and accordingly the low

alkali regime described in eqn (2) is not modified, including its end

point {M}* = 3/7. For {M} . {M}* (and {M} ¡ {M}K, see eqn (9)

below) we obtain

{ The balancing should occur before the glass structure becomes frozen
into a non-equilibrium state, meaning that the corresponding reaction
constant is expected to depend on an effective temperature that varies
weakly with the cooling rate.
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fB̃ 4ð Þg~ 7K

6zK
Mf g{ Mf g�

� �
(8a)

fB 4ð Þg~ 3z K{1ð Þ Mf g
6zK

(8b)

and the fractions for {B(2)} and {B(3)} follow from eqn (1a) and (1b).

With increasing {M}, fB̃ 4ð Þg increases until fB̃ 4ð Þg~fB 4ð Þg, where

{M} equals§

Mf gK~
3 Kz1ð Þ
6Kz1

(9)

For {M} . {M}K, fB̃ 4ð Þg~fB 4ð Þg, that means the limit

described by the Gupta model is reached with {B(4)} = (3 2 {M})/5.

A success of the refined model is that it can comfortably

describe the measured {B(4)} in lithium borate glasses when

taking K = 1.3, see Fig. 2. It is interesting to note that a fitting of

the {B(4)} dependence on {M} in lithium borate glasses by three

linear regimes was already shown to give a good description by

Feller et al. in 1982.29 The refined model allows one to reason

this finding. Moreover, the model still includes the results of the

Beekenkamp model in the limit K A 0 (no linkages between

B(4) units), which describes the behaviour fairly well for the other

types of alkali ions (K could be also fitted for each type).

Finally, let us note that it is possible to obtain B(4) fractions

below the line of the Beekenkamp model for {M} . 3/7 [eqn (2a)]

and thus a possibly better agreement with the measured data. B(4)

fractions below this line result, for example, when assuming that

B(2)–B(4) linkages are less likely and B(2)–B(3) linkages are formed.

A more detailed discussion of such further refinements and

predictions for linkages will be presented elsewhere.

3 NFU concentrations in alkali borophosphate glasses

We now develop a model to describe the NFU concentrations in

alkali borophosphate glasses with general composition yM2O–(1 2

y)[xB2O3–(1 2 x)P2O5]. Detailed comparisons with experiments

are made for sodium borate glasses of composition 0.4Na2O–

0.6[xB2O3–(1 2 x)P2O5] as a function of the borate to phosphate

mixing parameter x. In these glasses, NFU concentrations were

determined recently by MAS-NMR3,16 and the results of these

measurements has served as a reference in our modelling approach.

Seven NFUs could be distinguished in the work by Zielniok

et al.:3 in addition to the three borate units shown in Fig. 1, there

are four tetrahedral phosphate units P(n), n = 0, … 3 with n bOs,

(4 2 n) nbOs, and charges (n 2 3), see Fig. 3. The total number

of oxygens attributed to the P(n) unit is (n/2) + (4 2 n) = 4 2 n/2.

Extending the definition of the previous section, we denote by

{X} (X = B(n) or P(n)) the fraction of network units with respect

to the network forming cations, i.e. {X} = [X]/([B] + [P]).

The equations for fixing the total boron content, the total

phosphorus content, and the charge neutrality are

{B(4)} + {B(3)} + {B(2)} = x (10a)

{P(3)} + {P(2)} + {P(1)} + {P(0)} = (12 x) (10b)

{B(4)} + {B(2)} + {P(2)} + 2{P(1)} + 3{P(0)} = {M} (10c)

with {M} = y/(1 2 y). Analogous to the alkali borate system, it

can be checked that eqn (10a)–(10c) automatically imply that the

fraction {O} of oxygens given by the stoichiometry ({O} = {M}/

2 + 3x/2 + 5(1 2 x)/2) equals the one calculated from the

units ðfOg~2fB 2ð Þgz3fB 3ð Þg
.

2z2fB 4ð Þgz
P3

n~0 4{n=2ð ÞfP nð ÞgÞ.
Accordingly, this condition could by used as an equivalent

alternative to the requirement of charge neutrality. Eqn (10a)–(10c)

are three determining equations for the seven unknown NFU

fractions. To proceed, we thus need to include additional informa-

tion in the theoretical modelling.

Corresponding additional information can be included by

considering the rank order by which the NFU types are favoured

with respect to charge compensation of the alkali ions. We

assume that the relevant parameter controlling this rank order is

the charge delocalisation, where higher delocalisation makes an

NFU type more favourable. As a measure of the delocalisation,

we take |qa|/ka, where qa and ka denote the charge and the

number of ‘‘charge carrying oxygens’’ of NFU a, respectively.

For the NFUs B(2), P(2), P(1), and P(0), ka equals the number of

nbOs. Note that this implies that the delocalisation of electrons

belonging to the double bond in the charged P(n) units is taken

into account. This means that the nbOs of the P(n) units are

considered to be equivalent, which is in agreement with results

from ab initio molecular orbital calculations30,31 and diffraction

studies.32,33 For the B(4) unit, the charge (21) is shared equally

between all four bOs. Hence we find |qa|/ka = 1/4, 1/2, 2/3, 3/4,

and 1 for the B(4), P(2), P(1), P(0), and B(2) unit, respectively, giving

the corresponding rank order for charge compensation.

How far this rank order is pivotal for the preferred selection of

the charged NFUs depends upon what extent the charge

delocalisation is reflected in certain differences between forma-

tion energies of these NFUs (see the Appendix for a further

discussion of this point). In the following we first assume that the

relevant differences between the formation energies are large

compared to the thermal energy (with exceptions to be discussed
§ Since we are not considering {B(0)} and {B(1)} units here, the validity of
the treatment is restricted {M} ¡ 1, see the comment above.

Fig. 3 Sketch of the phosphate NFUs with their charge numbers. The

charges are considered to be equally spread over the nbOs.
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further below). This leads to the occurrence of different

x-regimes, where one particular NFU is replaced by another

one and only a limited number of the NFU types need to be

considered. As long as this number is small, the three eqn (10a)–

(10c) are sufficient to predict the NFU concentrations.

In the alkali phosphate glass (x = 0), P(2) units are the most

favourable NFUs for charge compensation and the network is

formed by these units with fraction {P(2)} = {M} and the neutral

P(3) units with fraction {P(3)} = 1 2 {M}. When some phosphate

is partially substituted by borate, B(4) units become more

favourable for the charge compensation. Accordingly, P(2) are

replaced by B(4) units rather than P(3) by B(3) units (more precisely,

the free energy change for P(3) by B(3) substitution has to be larger

than the free energy change for P(2) by B(4) substitution, see the

Appendix). For small x we thus need to consider only the NFUs

P(2), P(3), and B(4). Eqn (10a)–(10c) then yield

{B(4)} = x (11a)

{P(2)} = {M} 2 x (11b)

{P(3)} = 1 2 {M} (11c)

The question is, at which x = x1 value does this simple

behaviour terminate? Since {P(2)} must be positive, we find

x1 = {M} (12)

from eqn (11b). However, for large {M} this would imply that

{B(4)} can become large in contrast to what we know from the

alkali borate glasses, where the B(4) units are reluctant to become

mutually linked. If we assume, as in the Beekenkamp model, that

B(4)–B(4) linkages are forbidden, we should add the constraint

4{B(4)} ¡ 3{P(3)} + 2{P(2)}, i.e. 4x ¡ 3 2 {M} 2 2x. This

becomes violated at x = x1 if {M} . {M}* with

Mf g�~
3

7
(13)

That the same critical value {M}* is obtained here as in the

Beekenkamp model is due to the fact that the number of bOs in

the P(2) and P(3) units equals those in the B(2) and B(3) units.

When {M} ¡ {M}* and phosphate is replaced by borate

beyond x = x1, a second x-regime is entered. Since all alkali

charges are now compensated by the most favourable B(4) units,

{B(4)} stays constant at the value {B(4)}* = x1 = {M}, while

the neutral B(3) replace the neutral P(3) units. According to

eqn (10a)–(10b) we hence obtain for x ¢ x1

{B(4)} = {B(4)}* = {M} (14a)

{P(3)} = 1 2 x (14b)

{B(3)} = x 2 {B(4)}* = x 2 {M} (14c)

There is no further x-regime, since the replacement of P(3) by

B(3) terminates at x = 1, when {P(3)} = 0.

Eqn (11), (12), and(14) describe the NFU concentrations for

low alkali contents {M} ¡ {M}* with {M}* given in eqn (13). A

plot of these NFU fractions as a function of x is shown in

Fig. 4a. This predicted behaviour has to be considered with some

care though, since in alkali borophosphate glasses with a small

alkali content, it is also possible that a positively charged P(4)

unit is built into the network structure.16 These units are known

to occur in pure borophosphate crystals.34 In the presence of P(4)

units the analysis needs to be modified, but we will not pursue

this further here.

When {M} exceeds {M}*, as in the sodium borophosphate

glasses studied by Zielniok et al.,3 where {M} = 2/3, the

theoretical treatment becomes more complicated, since we have

to address the question how to deal with the B(4)–B(4) linkages.

Similar to section 2, we start in section 3.1 by introducing a

constant (x independent) fraction f of B–O bonds belonging to

B(4) units that are part of B(4)–B(4) linkages. In addition we

assume that the appearance of the charged NFUs units is solely

controlled by the rank order. As shown below, this leads to

different x-regimes, where one particular NFU is replaced by

another one. When comparing to the experimental results

reported by Zielniok et al.,3 there is already an overall agreement

for f $ 1/10 (see Fig. 5), but finer details are not reproduced.

In a next step of the modelling presented in section 3.2 we let

the fractions of different phosphate units partially balance

each other and this leads to a good agreement with the

experimental data.

From a theoretical point of view, it is, however, not fully

satisfactory to use a constant fraction f. It can be conjectured

that f is in fact weakly dependent on x, since in the only known

Fig. 4 Theoretical NFU fractions as a function of x in alkali boropho-

sphate glasses yM2O–(1 2 y)[xB2O3–(1 2 x)P2O5] for (a) low alkali

content {M} = 1/3 (y = 0.25) as predicted by eqn (11)–(14), and (b) large

alkali content {M} = 2/3 (y = 0.4) as predicted by eqn (11), eqn (20)–(26).

The open symbols in (b) refer to f = 0 and the full symbols to f = 1/4.
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sodium borophosphate crystal with composition Na5B2P3O15,

the structure exhibits B(4)–B(4) linkages.16,35 This suggests that

local network configurations resembling this crystalline structure

are more likely to occur in the glass at higher phosphate

contents. In fact, guided by the crystalline structure one can

refine the analysis further and constrain the B(4) fraction to the

P(2) fraction. This refined modelling presented in section 3.3

provides a theory for the NFU concentrations, where there is no

need to specify an f parameter, at least in those cases where the

Beekenkamp model is considered to be a valid description of the

pure borate system (forbidden B(4)–B(4) linkages at x = 1).

3.1 {M} ¢ {M}*: Constant fraction of B(4)–B(4) linkages

With the fraction f, the general relation constraining the B(4)–B(4)

linkages is

4 1{fð ÞfB 4ð Þgƒ3ðfB 3ð ÞgzfP 3ð ÞgÞ

z2ðfB 2ð ÞgzfP 2ð ÞgÞzfP 1ð Þg
(15)

This implies that the analysis on the termination of regime 1

given by the set of eqn (11) has to be repeated with the result that

{M}* from eqn (13) is modified to

Mf g�~
3

7{4f
(16)

and that x1 from eqn (12) is modified to

x1~
3{ Mf g

6{4f
(17)

The NFU fractions in regime 1 are given by eqn (11) and the

P(2) fraction reached at x = x1 is {P(2)} = {M} 2 x1 = (7 2 4f)

(6 2 4f)21({M} 2 {M}*) . 0.

Since B(4) is the most favourable NFU for charge compensa-

tion, as much as possible B(4) should be kept upon further

replacement of phosphate by borate. Relation (15) hence

becomes an equation for x ¢ x1. When expressing the fractions

{P(3)} and {B(3)} of the neutral NFUs by the fractions of the

charged NFUs via eqn (10a), (10b), and inserting these into

eqn (15), the charged NFUs in the resulting equation appear

only in a linear combination that is identical to the left hand side

of eqn (10c). This means that with eqn (10a)–(10c), eqn (15)

becomes a closed equation for {B(4)} with solution

fB 4ð Þg~fB 4ð Þg�~
3{ Mf g

6{4f
~x1, x§x1 (18)

As a consequence, we can, in the following further discussion

of the regimes for x ¢ x1, disregard relation (15) and set {B(4)} =

{B(4)}* in eqn (10a)–(10c).

Moreover, when defining the subsequent second regime x1 ¡

x ¡ x2 as the one, where the least favourable B(2) unit is still not

needed for charge compensation ({B(2)} = 0), we obtain from

eqn (10a)

{B(3)} = x 2 {B(4)}* (19)

in this second regime. The reason for defining regime 2 in this

way becomes clear below.

Regime 2 (x1 ¡ x ¡ x2): Replacements of the P(3), P(2), and P(1)

units. When the appearance of the charged NFUs is solely

determined by their rank order with respect to charge com-

pensation, the regime 2 is divided into three subregimes I–III

with a simple one-to-one replacement of NFUs.

Subregime I x1ƒxƒxI
2

� �
: Replacement of P(3) by B(3). Since

{B(4)} has saturated and B(2) is the least favourable NFU for charge

compensation, B(3) are replacing P(3) units and the network is formed

by the B(3), B(4), P(2), and P(3) units. Eqn (10b) and (10c) provide a

closed pair for the left unknown {P(2)} and {P(3)} with solution

{P(2)} = {M} 2 {B(4)}* (20a)

{P(3)} = (1 2 {M} + {B(4)}*) 2 x (20b)

The replacement of P(3) by B(3) terminates when P(3) is no longer

available, i.e. at

xI
2~1{ Mf gzfB 4ð Þg� (21)

Subregime II xI
2ƒxƒxII

2

� �
Replacement of P(2) by P(1). According

to the rank order, P(2) are replaced by P(1) units with further

increasing x and the network is formed by the B(3), B(4), P(1), and P(2)

units. Eqn (10b) and (10c) yield

{P(1)} = x 2 (1 2 {M} + {B(4)}*) (22a)

{P(2)} = (2 2 {M} + {B(4)}*) 2 2x (22b)

The replacement of P(2) by P(1) terminates when P(2) is no

longer available, i.e. at

xII
2 ~1{

Mf g{fB 4ð Þg�
2

(23)

Fig. 5 NFU concentrations in the glass 0.4Na2O–0.6[xB2O3–(1 2 x)

P2O5]. The symbols mark MAS-NMR results from Zielniok et al.3 and

the open symbols at x = 1 correspond to the MAS-NMR measurements

by Michaelis et al.24 The lines mark the results from the modelling in

section 3.1 with f = 1/10 [eqn (11), eqn (20)–(26)].
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Subregime III xII
2 ƒxƒx2

� �
: Replacement of P(1) by P(0). P(1) are

replaced by P(0) units and the network is formed by the B(3) and B(4)

units, and the P(0) and P(1) units with fractions

{P(0)} = 2x 2 (2 2 {M} + {B(4)}*) (24a)

{P(1)} = (3 2 {M} + {B(4)}*) 2 3x (24b)

The replacement terminates when {P(1)} = 0, i.e. at

x2~1{
Mf g{fB 4ð Þg�

3
(25)

Regime 3 (x2 ¡ x ¡ 1): Replacement of P(0) by B(2).

Eventually, when the charges of the alkali ions can no longer

be compensated by the B(4) and charged phosphate units, the

least favourable B(2) substitute the P(0) units. The network is

formed by the B(2), B(3), B(4), and P(0) units and eqn (10a)–(10c)

yield

{B(2)} = 3x 2 (3 2 {M} + {B(4)}*) (26a)

{B(3)} = (3 2 {M}) 2 2x (26b)

{P(0)} = 1 2 x (26c)

The NFU fractions as a function of x, as predicted by

eqn (11), (17)–(26) for high alkali contents {M} . {M}* with

{M}* given by eqn (16), are shown in Fig. 4b for two different

fractions f = 0 and 1/4. By its definition f controls the saturation

value {B(4)}* [eqn (18)], and with a change of f goes along a small

shift of the regimes [cf. eqn (17), (21), (23), (25)]. The slopes of

the one-to-one replacement lines in the various regimes are not

affected by f [cf. eqn (11), (20), (22), (24), (26)], since these are

fixed by the condition of charge neutrality (or, equivalently, by

the oxygen content).

We thus have found that the behaviour of the NFU

concentrations becomes quite simple also for large alkali

contents, once f is fixed and the rank order of the charged

NFUs for charge compensation is known. In principle there is no

freedom to choose f, when fixing it by its value in the pure alkali

borate glass (x = 1), see section 2. However, as discussed above,

we should expect f to be only approximately constant in the

borophosphate glass and for comparison with experiments it can

be more practical to determine f from the (mean) value of {B(4)}

measured on the boron rich side (e.g. for x . 0.5).

Fig. 5 shows such comparison with the MAS-NMR measure-

ments3 on sodium borophosphate glasses with composition

0.4Na2O–0.6[xB2O3–(1 2 x)P2O5], where we find f = 1/10,

corresponding to {B(4)}* = 5/12 $ 0.417, to give a good account

of the indeed almost constant B(4) fraction on the boron rich side

for x in the range 0.5–0.9. For x = 1, the value for {B(4)} reported

in Zielniok et al.3 is much smaller than {B(4)}* but in view of the

analysis of the alkali borate glasses in section 2, we believe that

this discrepancy is due to a measurement error or a consequence

of some peculiarity in the glass preparation. In fact, MAS-NMR

measurements for sodium borate glasses reported by Michaelis

et al.24 give {B(4)} = 0.40 for {M} = 0.53 and {B(4)} = 0.39 for

{M} = 0.7 (see Fig. 3), from which we can estimate {B(4)} = 0.39

for {M} = 2/3 = 0.66 in the system investigated by Zielniok et al.3

The corresponding NFU fractions are marked by the open

symbols in Fig. 5, which are in agreement with the general

behaviour discussed in section 2. For x = 1 we will use these data

for further comparison in the following. Note that the

unexpected low value of {B(4)} at x = 1 reported in Zielniok

et al.,3 necessarily affects also the B(2) and B(3) fractions.

While the overall behaviour of the measured NFU fractions in

Fig. 5 is captured by the modelling (with the values at x = 1

taken as those reported by Michaelis et al.24), the following

deviations can be identified:

(i) In the experimental data, P(1) units start to emerge between

x = 0.6 and 0.7, that means at a significantly lower value than

xI
2~3=4 predicted by eqn (21) for {M} = 2/3 and f = 1/10 ({B(4)}* =

5/12 $ 0.417). Correlated with this behaviour is a corresponding

decrease of {P(2)} when approaching the end of subregime I. This is

in contrast to eqn (20a) that predicts {P(2)} = 1/4 to stay constant in

this regime.

(ii) In the experimental data, P(2), P(1) and P(0) units occur

simultaneously in subregimes II and III (no strict rank order of

their appearance).

3.2 {M} ¢ {M}*: Mutual balancing of phosphate unit fractions

The simultaneous appearance of charged phosphate units

suggests that the relevant differences in the formation energies

of these units are not much larger than the thermal energy." To

account for this effect we can consider, as earlier suggested in

polyphosphate glasses,36,37 the disproportionation reactions

2P 2ð Þ<P 1ð ÞzP 3ð Þ (27a)

2P 1ð Þ<P 0ð ÞzP 2ð Þ (27b)

which imply a balancing of the NFU fractions by the

corresponding reaction constants

K1~
fP 1ð ÞgfP 3ð Þg
fP 2ð Þg2

(28a)

K2~
fP 0ð ÞgfP 2ð Þg
fP 1ð Þg2

(28b)

Note that the charge and the oxygen number are conserved in

the reactions (27a) and (27b). In general, both K1 and K2 will

depend on the composition (x and {M}) but we may assume that

this dependence is weak and can be neglected.

" Note that the charge delocalisations |qa|/ka discussed above differ by
1/6 = 0.167 between the P(1) and P(2) units and by 1/12 = 0.083 between
the P(0) and P(1) units, while there is a larger difference 1/4 = 0.25 both
between the P(2) and B(4) units and between the B(2) and P(0) units. Hence
one could argue that the phosphate NFUs should more likely occur
simultaneously in the network formation than the charged borate and
phosphate NFUs in regimes 1 and 3. This view is supported by the
behaviour observed in the sodium borophosphate glasses. However,
whether the charge delocalisation discussed above can be really used also
for a quantitative estimate of differences between relevant formation
energies, see the Appendix, is not clear. It would be interesting to conduct
electronic structure calculations for small clusters to get more insight into
the correlation between charge delocalisation and formation energies.
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Reaction (27a) implies that, if P(2) and P(3) are present in the

network, P(1) units are also present. For consistency we hence

should include this reaction in regime 1 as well. However, if K1 is

very small, {P(1)} = K1{P(2)}2/{P(3)} will become negligible as

long as {P(3)} does not become small too. Hence, for K1 , 1, we

can ignore the influence of (27a) in regime 1. In an approxima-

tion where K1 is set to zero, subregime I would be left unchanged

and only subregimes II and III were modified according to

reaction (27b), without change of the terminal points xI
2 and x2

given in eqn (21), (25).

Eqn (28a) and (28b) together with eqn (10b) and (10c), form a

complete set of determining equations for the fractions {P(0)},

{P(1)}, {P(2)}, and {P(3)} in regime 2. Due to the two coupled

quadratic eqn (28a) and (28b), the analytical solution becomes

unhelpful and it is more convenient to use a numerical root

finding procedure. Fig. 6 shows results for K1 = 0.01 and

K2 = 0.29 (dashed lines) in comparison with the experimental

data for the sodium borophosphate glass. As can be seen from

the figure, the measured fractions for the phosphate units in the

regime 0.6 , x , 0.9 are now better accounted for than by the

model with a strict rank order. It would be interesting to check if

a temperature dependence of these fractions can be observed

because of a temperature dependence of the reaction constants

K1 and K2. Whether the reactions (27a) and (27b) are taking

place in the glassy phase is, however, not clear. We note that the

non-equilibrium glassy state does not preclude this, since local

structural configurations may rearrange, while long-range

structural disorder is frozen on all accessible time scales. It is

on the other hand possible that the reactions (27a) and (27b) are

only relevant during the glass formation. Then we except them

to be reflected in a cooling rate dependence of the respective

NFU fractions.

3.3 {M} ¢ {M}*: B(4)–B(4) linkages constrained by P(2) units

So far f has to be taken as an a priori unknown parameter,

although it can be estimated from its value in the pure borate

glass (x = 1) or, for closer description of the experimental data, it

can be determined from the mean B(4) fraction for x . 0.5. A

further refinement of the modelling allows us to avoid the use of

f. The idea is to assume that the B(4)–B(4) linkages are, as in the

crystal with composition Na5B2P3O15, associated with the

diborate configuration shown in Fig. 7.I To include this rule

in the modelling, we denote, as in section 2, by B̃
4ð Þ

a B(4) unit

that is linked to another B(4), i.e. in the present case one that is part

of a diborate configuration. As discussed above in connection

with eqn (11)–(13), B(4)–B(4) linkages can be avoided for all x,

when {M} ¡ {M}* = 3/7. For {M} . {M}*, the formation of such

linkages is now constrained to the condition

3fB̃ 4ð Þgƒ2fP 2ð Þg (29)

since 3 bOs of each B̃
4ð Þ

unit must be linked to P(2) units, cf. Fig. 7.

B(4) units can replace P(2) units in regime 1 [eqn (11)] until all P(2)

units are used for the formation of B̃
4ð Þ

in diborate configurations

and the maximal fraction fB̃ 4ð Þg~2fP 2ð Þg
.

3 is reached. At this

point x = x1, the other B(4) units are all linked to P(3) units, yielding

4ðfB 4ð Þg{fB̃ 4ð ÞgÞ~4ðfB 4ð Þg{8fP 2ð ÞgÞ
.

3~3fP 3ð Þg. With the

NFU fractions from eqn (11), this gives

x1~
9

20
{

1

20
Mf g (30)

for the termination point of regime 1.

For x . x1, relation (29) becomes an equation to generate the

maximal B(4) fraction for charge compensation, and inserting

this into 4ðfB 4ð Þg{fB̃ 4ð ÞgÞ~3ðfB 3ð ÞgzfP 3ð ÞgÞz2fB 2ð ÞgzfP 1ð Þg
(condition for linkages of B(4) not connected to other B(4) if all P(2) are

linked to B̃
4ð Þ

), we obtain

4fB 4ð Þg~3ðfB 3ð ÞgzfP 3ð ÞgÞz2fB 2ð Þg

z
8

3
fP 2ð ÞgzfP 1ð Þg, xwx1

(31)

Note that this implies that the B(4) fraction for x A 1 is

approaching the result of the Beekenkamp model discussed in

section 2. If necessary, one can include in the modelling also the

Fig. 6 NFU concentrations in the glass 0.4Na2O–0.6[xB2O3–(1 2 x)

P2O5]. The symbols mark MAS-NMR results3,24 and the lines indicate

results from the theoretical modelling. The dashed lines refer to the first

refinement in section 3.2 and the solid lines to the second refinement in

section 3.3.

Fig. 7 Schematic view of a diborate superstructural unit in

Na5B2P3O13-crystals.

I The Na5B2P3O13 system is the most prominent crystalline alkali ion
borophosphate structure. Crystals with compositions Na3BP2O8 and
Na3B6PO13 where one-dimensional borophosphate chains are hold
together by sodium ions were reported more recently by Xiong et al.38

With respect to alkali types other than sodium, crystalline structures were
obtained for a few borophosphate-hydroxide compounds,39 as, for
example, Li[B3PO6(OH)2] or K[B6PO10(OH)4].
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refinements discussed there with respect to the {B(2)}–{B(4)}

balancing.

Eqn (31) replaces eqn (15) for x . x1 and one can proceed as

in section 3.1 or section 3.2 to determine the NFU concentra-

tions. We refrain from giving here the explicit formulas

corresponding to eqn (20)–(26). For comparison with experi-

ment, we have included in Fig. 6 the results (solid line), when

using the approach in section 3.2 with the same reaction

constants K1 and K2 used before to fit the experimental data.

The measured B(4) fraction is well reproduced now without

parameter adjustment. Otherwise, there are only small changes

of the NFU fractions compared to the model considered before

in section 3.2.

Conceptually the theoretical modelling presented in this

section relies on a rank order of the NFUs for compensating

the charges of the alkali ions and simple constraints given by the

stoichiometry and with respect to B(4)–B(4) linkages. The

simultaneous appearance of certain NFUs can be taken into

account by a balancing of their concentrations via reactions. It

would be interesting to clarify whether the assumed balancing

can occur in the glassy phase or whether it is taking place in the

melt during the cooling process.

The same underlying concepts can be introduced into a

statistical mechanics approach, which we present in the

Appendix. An advantage of this approach is that it starts out with

the formation energies as parameters and that it allows one to

include interactions in a systematic manner. Future experiments

on the temperature dependence or cooling rate dependence of

the NFU concentrations could give access to corresponding

energy parameters. Particular values of the formation energies,

however, become irrelevant if certain differences between them

become much larger than the thermal energy.

4 Modelling of the effect of different NFU types on the
activation energy

Next we show how one can, based on the information on the

NFU concentrations, successfully model long-range ionic trans-

port properties. To this end we developed a model, which we call

the Network Unit Trapping (NUT) model. It relies on the

following idea: the nbOs create localised Coulomb traps for the

mobile ions, while delocalised charges, as those of the B(4) units,

give a partial Coulomb contribution to several neighbouring ion

sites. In this way the structural energy landscape for the ionic

pathways is modified with the mixing concentration x and this

effect can be conjectured to govern the change of the activation

energy Ea(x) for the long-range ionic transport.

To test this model we randomly distribute the NFUs with their

concentrations from the model in section 3.3 on the sites of a

simple cubic lattice, see Fig. 8. These sites are called NFU sites.

The mobile ions are considered to perform a hopping motion

between the centres of the lattice cells, which represent the

ion sites.

An NFU a with ka . 0 nbOs and charge qa adds a Coulomb

contribution 3 qa/ka to ka distinct and randomly selected

neighbouring ion sites, as illustrated in Fig. 8. The delocalised

charge of a B(4) unit is spread equally among the neighbouring

ion sites, which implies k = 8 for this unit. The neutral B(3) and

P(3) units give no Coulomb contribution. Finally, Gaussian

fluctuations are added to the site energies in order to take into

account the disorder in the glassy network.40 In summary we can

write for the energy of ion site i

Ei~{E0

X

a,j

qa

ka
ja

i,jzgi

" #

(32)

where the sum over j runs over all neighbouring NFU sites of ion

site i. The occupation number ja
i,j is equal to one, if an NFU a on

site j contributes a Coulomb contribution 3 qa/ka to ion site i;

otherwise it is equal to zero. The gi are independent Gaussian

random numbers with zero mean and standard deviation D. The

parameter E0 . 0 sets an energy scale and is irrelevant if we are

interested in the relative change of the activation energy with

the mixing, i.e. the normalised activation energy Ea(x)/Ea(0). The

standard deviation D is then the only tunable parameter in the

modelling.

To determine Ea(x) we have chosen a lattice with 643 sites,41

occupied all NFU sites according to the occupation probabilities

derived in section 3.3, and the ion sites randomly with

concentration {M} = y/(1 2 y). The mobile ions can jump to

vacant nearest neighbour sites and the energetic barriers for these

jumps are following from eqn (32) by calculating the total energy

difference DE between the (attempted) target configuration after

a jump and the initial configuration before this jump. To model

the jump motion, kinetic Monte Carlo simulations with periodic

boundary conditions and Metropolis transition rates are

performed, as described, for example, in Porto et al.42 Since

the ion concentration is high, it is, for the technical implementa-

tion, advantageous here to use a vacancy algorithm. In this

algorithm, one of the vacancies is picked randomly in each

elementary step and attempted to move to a randomly selected

neighbouring ion site. If this site is empty, the attempt is rejected.

If the site is occupied by an ion, the attempt is accepted with a

probability min[1,exp(2DE/kBT)]. After each attempt, the time is

incrementally increased by (nNV)21, where v $ 1012 s21 is an

attempt frequency and NV is the number of vacancies. After

thermalisation the time-dependent mean-square displacement

R2(t) of the mobile ions and the diffusion coefficient D =

limtA‘R2(t)/6t are determined. Averages are performed over

typically 10 realisations of the disorder.

The diffusion coefficient is shown for D = 0.25 and various x

in an Arrhenius plot in Fig. 9a. From the slopes of the straight

lines we calculated the activation energy Ea(x), and the behavior

of the normalized activation energy Ea(x)/Ea(0) is compared with

Fig. 8 Two-dimensional sketch of the NUT model. The arrows indicate

charge transfer to ion sites as described in the text.
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the experimental results from Zielniok et al.3 in Fig. 9b. The

overall agreement between the theoretical (open squares, solid

line) and the experimental data (full squares) is surprisingly

good. Note that we needed to fit only the parameter D to achieve

this agreement. A significant difference between the theoretical

and experimental curve can be seen for x A 1: while the

theoretical Ea(x) decreases, the experimental Ea(x) finally rises to

a higher value in the sodium borate glass at x = 1. Interestingly,

this rise is reproduced by the NUT model (dashed line), if instead

of the NFU concentrations shown in Fig. 6, the NFU

concentrations reported by Zielniok et al.3 are used. On the

other hand, a much smaller experimental value Ea = 0.54 eV for

the sodium borate glass has been reported by Doweidar et al.,43

corresponding to a ratio Ea(1)/Ea(0) = 0.6. The differing

measured Ea values likely result from varying NFU concentra-

tions as a consequence of different glass preparation processes.

It is obvious that the model presented here does not take into

account important aspects of ion motion in glasses. In this

respect we should in particular address the following questions:

(i) Why should a hopping between regular sites of a simple

cubic lattice be appropriate for a modelling of the ionic jump

motion between irregularly distributed sites in a disordered

glassy network?

(ii) How can one reason that the energy barriers, or ‘‘door-

ways’’, between the ionic sites should not be considered in more

detail?

(iii) Why should it be allowed to neglect the long-range

Coulomb interaction between the mobile ions?

The answer to the question (i) is twofold. Firstly, we are

interested in the long-range ionic motion, where the chosen regular

lattice structure for ionic sites becomes of minor importance.

Secondly, by the random distribution of the NFUs and the

additional Gaussian energy fluctuations in eqn (32) the sites are in

fact not equivalent so that, dependent on the realization of the

disorder, favorable pathways without regular structure are formed.

Question (ii) is answered by noting that the Gaussian energy

fluctuations are in effect generating disorder in the jump barriers.

One could, in addition to the Gaussian fluctuations in eqn (32),

also add a random barrier distribution for the jumps. As long as

the width of these distributions is sufficiently small compared to

the site energy fluctuations induced by the NFU charges, the

behavior of Ea is dominated by the latter. We note that the

assumption of a dominant role of the trapping effect by the NFU

charges is the actual starting point of our approach as we

discussed in the Introduction when considering the two different

situations I and II as possible origins for the MGFE.

The answer to question (iii) is more subtle. One could argue

that the Coulomb interaction can, due to its long range nature,

be treated in a mean-field approximation as a weakly varying,

almost constant contribution to the energy of the alkali ions.44

However, results from molecular dynamics (MD) simulations

suggest that the Coulomb part has a decisive influence on the

differences between the energies of the mobile ions on their sites.

The interesting point on the other hand is, that in the same MD

simulations it was also found that in a vacancy (hole) description

the structural energy part (i.e., the part without Coulomb

interactions between the mobile ions) is indeed largely determin-

ing the energy of the vacancies.45

The fraction of vacancies found in molecular dynamics

simulations, with respect to all available ion sites, is smaller

than 10%.45–47 This result is in line with the picture that a glass

constitutes a dense system with a low free energy and hence

should not exhibit too many empty sites.48–50 It is also supported

by a theoretical explanation of the occurrence of surprisingly

large internal friction peaks in some mixed alkali glasses upon

small exchanges of one type of alkali ion by another.51 In our

lattice modelling described above, we have occupied two-thirds

of the ionic sites (cell centers between the NFUs) with the ions in

order to ensure the overall charge neutrality for the stoichio-

metry of our experimental reference system. The other one-third

of ionic sites, however, were left empty, implying that the

vacancy concentration is indeed too large compared to the ones

found in MD simulations.

Fig. 9 (a) Arrhenius plot of the simulated Na+ diffusion coefficients D

in 0.4Na2O–0.6[xB2O3–(1 2 x)P2O5] for various x and D = 0.25 in the

case, where no ionic sites were blocked. D is given in units of na2, where n

is the attempt frequency of the ion jumps and a is the lattice constant

(mean jump distance). The slope of the regression lines yields the

activation energies. (b) Comparison of simulated activation energies

(open symbols) with the measured conductivity activation energy from

Zielniok et al.3 (full squares). The open squares and open triangles refer

to the results for the modelling without and with blocked sites,

respectively, and the solid and dotted lines are least square fits of sixth

order polynomials to these data. For the system without blocked sites

D = 0.25, and for the system with blocked sites D = 0.3. The open circle

at x = 1 (connected with the dashed line) corresponds to the simulated

Ea without blocked sites, if the NFU concentrations from Zielniok et al.3

are taken.
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In order to see how the results of our modelling change when

decreasing the vacancy fraction to a typical value of 7% found in

MD simulations, we have performed additional kinetic Monte

Carlo simulations, in which 26% of the ionic sites are randomly

blocked. This blocking of the cell centers is done before the

NFUs are distributed among the lattice sites. Thereafter the

NFUs are randomly placed on their sites as before, but their

charges are distributed randomly among the neighboring non-

blocked sites only. Hence, if an NFU a with ka nBOs on site i is

surrounded by mi non-blocked ion sites, ka of these sites are now

randomly selected and the Coulomb contribution 3 qa/ka added

to them.** The delocalized charge of a B(4) unit on site i is spread

equally among the mi neighboring nonblocked ion sites, implying

that a Coulomb contribution 3 (21/mi) is added to them.

Finally, the Gaussian fluctuations from eqn (32) are added to the

site energies resulting from this procedure.

In the same way as described above, the activation energy Ea for

this refined model with 7% vacancy fraction was determined from

the temperature dependence of the long-time diffusion coefficients

of the mobile ions at different x. Interestingly, this activation

energy shows almost the same behavior as the model with 33%

vacancies, when the parameter D is increased from D = 0.25 to

D = 0.3, see Fig. 10. This finding thus gives us some confidence in

our modelling with neglect of the Coulomb interaction between the

mobile ions. It also demonstrates, as discussed above, that with

respect to long-range transport properties the parameter D

effectively takes into account modifications of the randomness

(more irregular topology of ionic sites here).

5 Summary

In summary we have presented a theoretical approach for the

mixed glass former effect in borophosphate glasses. This

approach is based on a consideration of the properties of the

different NFUs building the network structure with respect to

total charge and charge delocalization. In addition we showed

how NFU concentrations can be successfully modelled.

We believe that our approach is applicable also to other mixed

glass former systems, where concentrations of different types of

NFUs associated with the glass formers vary with the mixing

ratio. Due to its generality, the basic concept may have even

wider applicability for describing other compositional effects, as,

for example, changes of ionic mobilities with the content of the

network modifier.

We would like to thank H. Eckert and S. W. Martin for very

valuable discussions and gratefully acknowledge financial support

of this work by the Deutsche Forschungsgemeinschaft in the

Materials World Network (DFG Grant number MA 1636/3-1).

Appendix: Statistical mechanics approach to NFU

concentrations

Without detailed consideration of the network topology, the

NFUs can be considered to occupy N sites i in the glass, where

N = NB + NP is the total number of boron and phosphorous

atoms. To specify the distribution of the NFUs among the sites,

we introduce the occupation numbers na
i , where na

i ~1 if an NFU

of type a (a = B(2), B(3), etc.) is occupying site i and zero otherwise.

Using a coarse-grained Landau-type description, we introduce a free

energy F(n) as a function of the set n~ na
i

� �
of occupation numbers,

F nð Þ~
X

i,a

f að Þna
i zF 0 nð Þ (33)

where the first term on the right hand side describes an ideal non-

interacting part with f(a) specifying a formation energy of NFU type

a and the second term F ’(n) accounts for interactions between the

NFUs. For example, for sites i and j being neighbours one could

include a term !nB 4ð Þ

i nB 4ð Þ

j to describe the unlikelihood of B(4)–B(4)

linkages. The formation energies f(a) depend in general on the

composition (x and {M}) and they are expected to depend also on

the cooling rate. One can question whether an equilibrium type

description underlying this coarse-grained approach can at all be

appropriate for glasses whose structures are frozen into a non-

equilibrium state. The hope is that on small length scales the

glass structure has found sufficient time to equilibrate during the

cooling process and that this equilibration can be accounted for

by an effective temperature T9. The structural disorder on large

length scales should have no significant influence on the NFU

concentrations.

If only the ideal part in eqn (33) is kept, the NFU fractions

can be calculated under the constraints eqn (10a)–(10c). These

constraints can be rewritten in the form

X

a

fB að Þ
X

i

na
i ~xN (34a)

X

a

fP að Þ
X

i

na
i ~ 1{xð ÞN (34b)

X

a

fM að Þ
X

i

na
i ~ Mf gN (34c)

** In the rare case, where the number mi of surrounding non-blocked
sites is smaller than ka, an attempt is made to exchange the NFU a on site
i with another randomly selected NFU a9 on site i9. If, after the attempted
exchange, the numbers ka and ka9 of nbOs should be still smaller than the
number of surrounding non-blocked sites, another attempt is started
until all partial charges carried by the nBOs can be assigned to
neighboring non-blocked ion sites.

Fig. 10 NFU concentrations from the statistical mechanics approach

with f = 1/10 (lines) for the glass 0.4Na2O–0.6[xB2O3–(1 2 x)P2O5] in

comparison with MAS-NMR results3,24 (symbols).
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where fX(a) (X = B, P, M) are the integers appearing in

eqn (10a)–(10c), e.g. fB(B(3)) = 1, fB(P(n)) = 0 for n = 0, 1, 2 and 3,

fM(P(0)) = 3, etc. Assigning Lagrangian multipliers (generalised

chemical potentials) mB, mP, mM to the constraints eqn (34a)–

(34c), the grand canonical potential becomes

W~{
1

b0
log
X

n

exp {b0
X

a

u að Þ
X

i

na
i

 !

~{
N

b0
X

a

log 1z exp {b0u að Þ½ �ð Þ,
(35)

u(a) = g(a) 2 fB(a)mB 2 fP(a)mP 2 fM(a)mM (36)

where b9 = 1/(kBT9). If interactions were included in the

description, an excess part had to be added to the ideal part in

eqn (35). For the NFU fractions we obtain the Fermi

distributions

af g~ 1

N

LW
Lu að Þ~

1

exp b0u að Þ½ �z1
(37)

The generalised chemical potentials entering the u(a) [see

eqn (36)] are to be determined from the constraints eqn (34a)–(34c).

With respect to the appearance of the NFUs at a given

composition only certain differences between the formation

energies are relevant. If these are much larger than kBT9, the

change of the NFU concentrations with x can be inferred from a

T9 A 0 limit.

To demonstrate the procedure, we consider a situation similar

to the one addressed in section 3.2. The rank order of the NFUs

with respect to charge compensation introduced in section 3

implies f(B(4)) , f(P(2)), 2f(P(2)) , f(P(1)), 3f(P(2)) , f(P(0)),

3f(P(1)) , 2f(P(0)), and f(P(0)) , 3f(B(2)). In order that the P(2) are

replaced by the B(4) units rather than the P(3) by the B(3) units for

small x, it should hold [f(B(4)) 2 f(P(2))] , [f(B(3)) 2 f(P(3))]. All

these conditions can be fulfilled by introducing just one energy

parameter d and by setting

f(B(3)) = f(P(3)) = f(B(4)) = 0 (38a)

f(P(2)) = d, f(B(2)) = 3d (38b)

f(P(1)) = 3d, f(P(0)) = 5d (38c)

The parameter d is just a convenient tool to evaluate the low

temperature limit T9 A 0 under the chosen conditions and does

not have any physical meaning.

For determining the NFU fractions {a} we insert the f(a) from

eqn (38a)–(38c) into eqn (37) and calculate the chemical

potentials numerically from eqn (34a)–(34c). To extract the

values in the limit (b9d) A ‘, the calculations are performed for

successively increasing (b9d) until changes in the NFU fractions

become negligible. In order to include the additional constraint

(15) into the description, it is checked if the resulting B(4) fraction

fulfils relation (15). If it does, the solution is taken. Otherwise,

{B(4)} is set equal to [4(1 2 f)]21 times the right hand side of (15)

[the calculations have to be done self-consistently by using

thecorresponding expressions for the determination of mB in

eqn(34a)].

The NFU fractions calculated in this way for f = 1/10 are

compared to the experimental data for the sodium boropho-

sphate glass in Fig. 10. Note that, different from the situation

shown in Fig. 5, the P(0) units occur before the P(2) units have

disappeared. The simultaneous appearance of P(0), P(1), and P(2)

units in an interval around x = 0.8 is caused by the fact that, for

the parameters in eqn (38b), (38), the compensation of 4 charges

by either two P(1) units or by one P(0) and one P(2) unit are

energetically equivalent. Since the same basic ingredients have

been included in the theoretical description as in section 3, the

agreement between model and experiment is of comparable

quality as in Fig. 6.

The formulation by the statistical mechanics approach is

valuable to our view, since it gives additional insight into the

underlying assumptions and indicates a way how to access

energy parameters. Knowledge of these parameters would allow

one to make contact to another theoretical modelling, which has

been successfully applied to predict thermodynamic (and some

other) properties of borate, silicate, and borosilicate glasses.52,53
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