Issue 23, 2011

Environmental effects on mechanochemical activation of spiropyran in linear PMMA

Abstract

Mechanophore-linked linear poly(methyl methacrylate) (PMMA) was synthesized using bisfunctionalized spiropyran (SP) as an atom transfer radical polymerization initiator. The resulting polymer had a Tg of 127 °C and molecular weight greater than 250 kDa. SP-cleavage experiments confirmed the incorporation of SP molecules approximately into the center of the polymer chain. Force-induced reaction of the SP species into a colored, fluorescent merocyanine (MC) form was investigated over a range of environmental conditions by monitoring color change or full field fluorescence during tensile loading. Activation of this glassy polymer was observed in a temperature range of 90–105 °C. At higher temperatures, approaching Tg, deformation was dominated by viscous flow at very low applied stress with no activation. At lower temperatures, brittle failure preceded activation unless the polymer was plasticized by exposure to methanol. Mechanically induced activation of SP in plasticized PMMA at room temperature (22 °C) was achieved at a critical strain (ca. 10%) substantially below that required in previous systems.

Graphical abstract: Environmental effects on mechanochemical activation of spiropyran in linear PMMA

Supplementary files

Article information

Article type
Paper
Submitted
17 Nov 2010
Accepted
12 Jan 2011
First published
11 Feb 2011

J. Mater. Chem., 2011,21, 8443-8447

Environmental effects on mechanochemical activation of spiropyran in linear PMMA

B. A. Beiermann, D. A. Davis, S. L. B. Kramer, J. S. Moore, N. R. Sottos and S. R. White, J. Mater. Chem., 2011, 21, 8443 DOI: 10.1039/C0JM03967E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements