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Two new d–f cyanido-bridged 1D assemblies [RE(pzam)3(H2O)Mo(CN)8]·H2O (RE = Sm(III), Er(III))
were synthesized and their magneto-structural properties have been studied by field-dependent
magnetization and specific heat measurements at low temperatures (≥0.3 K). Below ª 10 K the ground
state of both the Sm(III) and Er(III) ions is found to be a Kramers doublet with effective spin S = 1/2.
From analyses of the low-temperature magnetic specific heat and magnetization the exchange coupling
between these RE(III) effective spins and the Mo(V) spins S = 1/2 along the structural chains has been
determined. It is found to be antiferromagnetic, with J‖/kB = -2.6 K and Ising–Heisenberg symmetry
of the interaction (J‖/J^ = 0.3) for RE = Sm(III), whereas the compound with RE = Er(III) behaves as a
pure XY chain, with J^/kB = -1.0 K. For the compound [Sm(pzam)3(H2O)Mo(CN)8]·H2O a small
l-type anomaly in the specific heat is observed at about 0.6 K, which is ascribed to a transition to
long-range magnetic ordering induced by weak interchain interactions of dipolar origin. No evidence
for 3D interchain magnetic ordering is found in the Er(III) analogue.

Introduction

Heterobimetallic d–f metal complexes provide a rich source for
the study of the magnetic interactions between d and f metal
ions.1–17 It has been predicted theoretically that the magnetic
exchange interactions of 4fn ions with other paramagnetic species
will be ferromagnetic for n > 7 and antiferromagnetic for n <

7.18 However, the studies reported so far do not fully corroborate
this prediction. The magnetic exchange interactions involving
the f electrons are weak, and often masked by the crystal field
effects on the magnetic susceptibility. Therefore, the analysis of
the experimental data often proves to be difficult. To ascertain
the nature of the magnetic exchange interaction between rare-
earth(III) ions and transition metal ions in cyanido-bridged
assemblies derived from hexacyanidometallate building-blocks,
an experimental methodology has been developed in which the
intrinsic rare-earth(III) ion magnetic properties are determined
separately by comparing the cMT vs.T curves for two isostructural
analogues (i.e. RE-M and RE-M¢ where RE is a rare-earth ion M
and M¢ represent a paramagnetic and a diamagnetic transition
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metal ion).19–22 However, in several cases, this approach has
likewise failed in correctly determining the strength and/or type
of the d–f exchange interaction. Consequently, a more precise
estimate of the d–f exchange interaction should preferably include
measurements of other thermodynamic properties besides the
magnetic susceptibility, in order to more reliably separate the
effects of the ligand field splittings from the contributions arising
from the (anisotropic) exchange coupling. In this respect, the
experimental study of the low-temperature magnetic specific heat
of heterobimetallic d–f assemblies has proven to be a useful tool
since it provides a direct determination of the magnetic ground
state of the f metal ion16 resulting from the ligand field splittings,
as well as a valuable estimate of the strength and type of the d–f
exchange interaction.

As a part of a detailed study of cyanido-bridged complexes with
low-dimensional magnetic networks, we have previously shown
that a combination of magnetic and low-temperature specific heat
measurements advantageously allows a rigorous determination of
the exchange interactions between neighbouring metal ions and
their correlation to the structure.23–25 In this paper, we extend
these studies to two new RE members of this series, namely
[RE(pzam)3(H2O)Mo(CN)8]·H2O (RE(III) = Sm 1, Er 2).

Structural and experimental details

The synthesis and complete crystallographic studies of the com-
plexes of general formula [RE(pzam)3(H2O)Mo(CN)8]·H2O have
been reported earlier.23–25 They crystallize in the space group Pna21
and their crystal structure is formed by chains of cyanido-bridged
alternating arrays of [Mo(CN)8]3- and [RE(pzam)3(H2O)]3+
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fragments running along the b crystallographic axis. Each chain
is surrounded by six other equivalent chains through hydro-
gen bonding interactions, giving rise to a three-dimensional
network.

Temperature dependent magnetic susceptibility and magneti-
zation measurements were performed with a Quantum Design
MPMS-5 5T SQUID magnetometer in the temperature range 1.8–
300 K and up to 5 T. Data were corrected for the magnetization of
the sample holder and for diamagnetic contributions as estimated
from the Pascal constants. The presence of next-nearest neighbour
magnetic interactions, i.e. RE(III)–RE(III) or Mo(V)–Mo(V) within
the chains has been verified by studying the magnetic properties
of the lanthanum diamagnetic derivative.24 In that case, we have
found no evidence for a magnetic interaction between the 4d Mo(V)
ions via the La(III) ion. It may then also be safely assumed that the
magnetic interaction between the 4f RE(III) ions mediated through
the Mo(V) ion can be neglected.24

Heat capacity measurements in different magnetic fields were
carried out in the range 0.3 K to 25 K with a commercial 3He set-
up (PPMS), using the relaxation method. The investigated samples
were in the form of polycrystalline powders. The measured specific
heat of both complexes has been analyzed in terms of two additive
contributions, namely the lattice (phonon) contribution (C l) and
the magnetic contribution (Cm). The phonon contribution can be
deduced from the zero-field measurements, in combination with
the field-independent part of the high-temperature in-field data
(the data for T > 10 K). As explained previously,25 C l is given
by a polynomial function above 8 K of which the lowest order
(T 3) can be interpreted in terms of the Debye model, yielding an
estimate of the Debye temperature. By numerical integration of
the magnetic heat capacity the magnetic entropy can be obtained,
giving a direct determination of the number of spin states involved
in the magnetic ordering process and thus the magnetic ground
states of the RE(III) ion involved.

Results and discussion

Temperature and field dependent magnetizations above 1.8 K

As alluded to in the above, it is often not straightforward to
determine the nature of the interaction between a RE(III) ion with
a first-order orbital momentum and a paramagnetic transition
metal ion without ambiguity. This is because the free-ion states
of the RE(III) ions having the same J but arising from different
2S+1CJ terms may mix through spin–orbit coupling. In addition,
the resulting states are split further and mixed by the ligand field,
such that the spectrum of the low-lying states that determine
the magnetic properties at low temperature may become rather
complicated. The presence of excited states further up in energy
above the ground state may also add a significant temperature-
independent contribution to the magnetic susceptibility. However,
for small magnetic interactions a first analysis of the magnetic data
can be done using an approximate approach26 where the RE(III)
ions are considered as non-interacting, as discussed below.

The 4f5 electronic configuration of Sm(III) gives 6HJ as the
ground term, which splits into six J-multiplets under the spin–
orbit interaction and yields the multiplet with J = 5/2 as the
ground state. Crystal fields lift the degeneracy of the J-manifolds,
giving rise to Kramers doublets, and within the process also states

belonging to different J-multiplets become mixed (the so-called
crystal field J–J mixing). Since for Sm(III) the J-multiplets are
closely spaced (103 cm-1) as compared to other rare-earth(III) ions,
the crystal field J–J mixing is quite appreciable and thus its effect
on the magnetic properties can be profound. As seen in Fig. 1a, the
cMT value of 1 measured at 300 K is 1.04 cm3 K mol-1, considerably
higher than the theoretical value of 0.46 cm3 K mol-1 calculated on
the basis of the free ion approximation taking only the 6H5/2ground
state into consideration (J = 5/2, gJ = 2/7 for Sm(III) and S = 1/2
and g = 2 for Mo(V)). It seems likely that the admixtures from
the 6H7/2 excited multiplet within the 6H5/2 ground state multiplet
are responsible for the observed difference. In fact, spin-relaxation
studies performed on several Sm(III) compounds have shown that
even small admixtures from the 6H7/2 level produce large effects, i.e.
increases in the gSm factors.27,28 When lowering the temperature, the
cMT value is seen to decrease smoothly, reaching a minimum value
of 0.76 cm3 K mol-1 at ca. 20 K followed by a sharp increase to a
value of 1.31 cm3 K mol-1 at 1.8 K. On the basis of literature data,
one may expect the J = 5/2 multiplet to be split into three Kramers
doublets, the distance of the two excited doublets being of the order
of 100 K above the ground doublet. Lowering of the temperature

Fig. 1 (a) Temperature dependence of cMT for 1 (�) and cM (∑) as
measured in a field of 0.1 T. Blue circles represent the calculated product
cSmT as a function of l = 210 cm-1. (b) The temperature dependence of
cMT for 2 (�) and cM (∑) as measured in a field of 0.1 T.
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will therefore produce a progressive depopulation of the excited
levels and thus a temperature dependence of the cMT product.
Based on the specific heat data presented below, we find indeed
that at temperatures below ca. 20 K only the lowest Kramers
doublet remains thermally populated. In addition, the already
mentioned presence of the excited states arising from the J = 7/2
multiplet will entail a temperature-independent contribution to
the magnetic susceptibility, i.e. an upward shift of the cMT vs. T
curve. The need for including such an additional contribution can
be seen when comparing the experimental cMT vs. T curve with
the theoretical one based on the expression of cSm as a function of
l reported previously,26 assuming a spin–orbit coupling parameter
l = 210 cm-1, as typical for Sm(III), and the expectedcMT value of
0.38 cm3 K mol-1 for Mo(V) (Fig. 1a). Finally, the abrupt increase
in the cMT vs. T curve at low temperature can be attributed to the
magnetic exchange interaction between Sm(III) and Mo(V), as will
be further discussed below.

Temperature-dependent magnetic susceptibility data of 2 are
shown in Fig. 1b, likewise as plots of cMT vs. T and cM vs. T . The
cMT product measured at 300 K is 11.7 cm3 K mol-1, equal within
errors to the expected value of 11.8 cm3 K mol-1 based on the non-
interacting free-ion approximations (J = 15/2, gJ = 1/5 for Er(III)
and S = 1/2 and g = 2 for Mo(V)). When the temperature is lowered,
the cMT product gradually decreases and reaches the value
of 6.55 cm3 K mol-1 at 1.8 K. The Er(III) ion with its electron con-
figuration 4f11 has the 4I15/2 ground multiplet. The first excited state
4I13/2 is located at about 6470 cm-1 above the ground state and there-
fore its contribution to the magnetic susceptibility is only about 1%
at room temperature and can be neglected.29,30 In crystal fields of
low symmetry, the 16-fold degeneracy of the free ion is removed by
the splitting of the ground multiplet in eight Kramers doublets over
an energy range of the order of 500 K.31 Consequently, the gradual
depopulation of the excited doublets can be held responsible for
the observed variation in the cMT product with temperature. When
fitting the cM data in the paramagnetic region (T > 50 K) to the
Curie–Weiss law, the Curie constant and Curie–Weiss temperature
are obtained as 12.2 cm3 K mol-1 and -13.7 K, respectively. The
large Curie–Weiss temperature is clearly a result of the strong
crystal field effects and should not be attributed to exchange
interactions.

To get more insight in the type of magnetic interactions in 1
and 2, the field dependence of the magnetization was recorded at
different temperatures in the range 1.8–8 K, as shown in Fig. 2
and 3. For 1, the measured curves are compared to the Brillouin
function calculated for the non-interacting ions, with the expected
spin S = 1/2 for Mo(V) and an effective spin of S = 1/2 for
Sm(III) in view of the specific heat data to be discussed below.
In agreement with the field-dependence observed for the magnetic
specific heat, we have adopted a powder gSm value of 0.6, which
is in the range observed for Sm(III) in sites of low-symmetry.32

The ground multiplet of Sm(III), 6H5/2, is split by a cubic crystal
field into a doublet C7 and a quartet C8.33 In crystal fields of
lower symmetry, the quartet C8 splits into two Kramer doublets C6

and C7.33 Experimental determinations of the g-values for Sm(III)
compounds have shown that the C6 doublet is the ground state
for the axial symmetry whilst for lower symmetry, i.e. monoclinic,
the ground state is the C7 doublet. In most cases, the average g-
value is close to 0.6.32 As seen in the Fig. 2, the non-interacting
limit describes the data at 8 K rather well. The data at 2 and 4 K

Fig. 2 Field dependence of the magnetization of 1 as measured at 2, 4
and 8 K. Solid lines represent the Brillouin function for non-interacting
Sm(III) and Mo(V) ions assuming SSm = 1/2, gSm = 0.6, SMo =1/2, gMo = 2,
as calculated for the same temperatures.

Fig. 3 (a) Field dependence of the magnetization of 2 as measured at 1.8,
2, 4 and 8 K. (b) Field dependence of the magnetization as measured at
2 K with the contribution above 4 T from excited levels (inset) removed.
The solid line represents the calculated Brillouin curve for non-interacting
Er(III) and Mo(V) ions assuming SEr = 1/2, gEr = 6.7, SMo =1/2, gMo = 2.

show deviations attributable to weak magnetic interactions, to be
further discussed below.

This journal is © The Royal Society of Chemistry 2011 Dalton Trans., 2011, 40, 8407–8413 | 8409
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In the case of complex 2, from the magnetization curve taken at
1.8 K it appears that a field of ca. 3 T is sufficient to reach saturation
of the magnetic moment of the Er(III) ground state, since the
subsequent slow and nearly linear increase of the magnetization
can be attributed to the contributions from the excited levels (Fig.
3a). Indeed, the slope of this high-field part gives c ª 0.28 cm3

mol-1, about equal to the value measured in low fields at T ª 30 K.
By extrapolating the magnetization M(B) measured at the higher
fields (B > 4 T) to B = 0 we obtain the intercept Mtotal ª 4.4 Nb
(Fig. 3b). Since Mtotal = MEr + MMo and MMo = 1 Nb, we obtain
an effective powder g value of gp

Er ª 6.8 for the Er(III) ion when
assuming only a lowest Kramers doublet with an effective spin S =
1/2 to be populated at 2 K for Er(III) ion (see the specific heat data
below). This value agrees well with the presence of Er(III) in sites
of low symmetry.34,35

In Fig. 3b, we show the calculated Brillouin function for non-
interacting Er(III) and Mo(V) ions at 1.8 K. The origin of the small
deviations observed for the magnetization data measured at 1.8 K
(with the high-field contribution of the excited levels subtracted)
can likewise be ascribed to weak exchange effects, in this case
between Er(III) and Mo(V) ions.

Specific heat at very low temperatures

Fig. 4a and 5a show the measured temperature dependence of
the specific heat of 1 and 2 in the temperature range 0.3–25 K in
zero field and in various applied magnetic fields. From the (field-
independent) data above about 10 K and the zero-field curve down
to about 7 K, the lattice contribution C l could be estimated and
fitted to the simple Debye model, yielding a Debye temperature,
qD, of 51 ± 2 K for 1 and 49 ± 2 K for 2, respectively. Fig. 4b and 5b
display the magnetic specific heat curves obtained by subtracting
C l from the total specific heat. By integrating the Cm data, we have
calculated the magnetic entropies of 1 and 2, which are plotted as
insets in Fig. 4b and 5b. As can be seen, the magnetic entropy,
DS/R, reaches the value of 1.36 J mol-1 K-1 for both. This value
is equal, within the errors, to the theoretical value of DS/R =
2ln2 = 1.38 J mol-1 K-1 expected for two spins S = 1/2, implying
that the ground state of both Sm(III) and Er(III) ions is a doublet
with effective spin S = 1/2.

As can be seen from the temperature range of the zero-field
Cm data in Fig. 4b and 5b, the magnetic exchange interactions
(J) between Sm(III) or Er(III) with Mo(V) are rather weak, in
particular for Er(III). Nevertheless, they are clearly discernable
in the specific heat, leading to broad anomalies with maxima at
1.4 K and 0.7 K for 1 and 2, respectively. In view of the chain-
like crystal packing, these broad anomalies can be ascribed to
short-range magnetic correlations along the chains, as typically
observed for 1D magnetic systems. In addition, compound 1
is found to display a l-type peak at TC = 0.60 K under zero-
field, which can be attributed to a cooperative transition to a
3D ordered magnetic arrangement resulting from weak interchain
interactions. Since no direct superexchange paths connecting
magnetic ions in neighbouring chains can be discerned in the
crystal structure, such interchain interactions are most likely of
dipolar origin and thus quite weak.

The specific type of magnetic exchange interaction (J/kB) along
the 1D chains in 1 and 2 is governed by the intrinsic anisotropic
properties of the Sm(III) and Er(III) magnetic ground states.

Fig. 4 (a) Molar heat capacity of 1 as measured in zero field and in
constant magnetic fields up to 7 T. Solid curve shows the estimated
(field-independent) lattice contribution. (b) Magnetic heat capacity of 1 as
obtained by subtracting the lattice contribution (Inset: magnetic entropy
curves obtained by integration of the magnetic heat capacity).

Since the shape and the height of the specific heat maximum
(Cmax/R) are sensitive to the type of anisotropy, a determination
of the type of 1D chain can be done by comparison of the
magnetic specific heat anomalies as measured in zero field with
theoretical predictions for the various model Hamiltonians (Ising,
XY, Heisenberg and intermediate symmetries).36 The observed
heights of the specific heat maxima for 1 and 2 are equal to
0.80 R and 0.64 R, respectively, occurring at Tmax ª 1.33 K and
0.65 K, respectively. When comparing with the calculations of
Blöte36 for magnetic chain models with different symmetry of
interaction, it appears that the antiferromagnetic chain model
with S = 1/2 and intermediate Ising–Heisenberg symmetry of the
interaction provides the best description of the observed anomaly
of compound 1 (Fig. 6a). The appropriate spin-Hamiltonian
reads:

H = -2 R [J^{SixSjx + SiySjy} + J‖SizSjz] (1)

The ratio of the exchange constants J^ and J‖ found from the
fit is J^/J‖ = 0.3. From this comparison we estimate a value of the
antiferromagnetic exchange interaction of J‖/kB = -2.6 K. On the
other hand, as shown in Fig. 6b, the magnetic specific heat of 2 can
be fitted quite well to the theoretical prediction36 for the (pure) XY
linear chain model (J^ π 0, J‖ = 0), leading to |J^|/kB = 1.0 K. This
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Fig. 5 (a) Molar heat capacity of 2 as measured in zero field and in
constant magnetic fields up to 5 T. Solid curve shows the estimated
(field-independent) lattice contribution. (b) Magnetic heat capacity of 2 as
obtained by subtracting the lattice contribution (Inset: magnetic entropy
curves obtained by integration of the magnetic heat capacity).

planar anisotropy agrees with the symmetry of the g-tensor often
observed for Er(III). For instance, EPR studies on different Er(III)
compounds have shown that the g-values are highly anisotropic
with mostly g‖<g^ and an average g-value equal to 7.37–40 Since
the symmetry of the interaction can be roughly related to that of
the g-tensor by the expression: J///J^ ª (g///g^)2, the strong XY
symmetry demonstrated by the specific heat anomaly would be
well explained. We remind that for the pure XY model the specific
heat is the same for ferro- or antiferromagnetic J^ so that the sign
of J^ remains to be determined.

With regards to the in-field data, a detailed quantitative analysis
in terms of these theoretical models is not possible since in the
experiment we are not dealing with equal magnetic moments
(gS) at all chain sites but with ferrimagnetic chains due to the
non-equivalent RE(III) and Mo(V) g-values. In addition, only
powder data are available, so that the experimental field-dependent
properties are averages over non-equivalent crystallographic di-
rections. Nevertheless, a rough qualitative analysis can be done
for the case of the Er(III)–Mo(V) (compound 2), for which the
Zeeman energies corresponding to the applied fields of 3 T and
5 T are (relatively) large compared to the exchange interaction.
As described previously,25 we can then try to analyze the in-field
specific heat data in terms of a mean-field model, in which the total

Fig. 6 a) Comparison of the zero-field magnetic specific heat anomaly of 1
(taking J‖/kB = -2.6 K) with the prediction for the specific heat of the anti-
ferromagnetic chain model with S = 1/2 and intermediate Ising-Heisenberg
symmetry of the interaction (J^/J‖ = 0.3). (b) Comparison of the zero-field
specific heat maximum of 2 (taking J^/kB = 1 K) with the prediction for
the specific heat of the magnetic XY chain model with S = 1

2
(and J‖ = 0).

splitting Dtot of each doublet is the addition of the Zeeman splitting,
DZ = gbBappl due to the applied field Bappl, and the exchange splitting
Dex = 2zS|J| due to the exchange interaction J/kBinterpreted in
terms of an exchange field:

Bex = 2zS|J^|/gb = Dex/gb (2)

Since for all ions involved S = 1/2, the number of magnetic
neighbours along the chain is z = 2 and b/kB ª 2/3 ¥ K/T , these
formulae reduce to

DZ/kB = 2/3 ¥ gBappl (3)

and

Dex/kB = 2|J^|/kB (4)

Each split doublet will contribute a two-level Schottky anomaly
to the specific heat, with different splitting factors gRE and gMo

for the DZ/kB of RE(III) and Mo(V), whereas Dex/kB ª 2 K for
|J^|/kB ª 1 K, independent of the g-value. We show in Fig. 7
the fit for compound 2 for the data collected at 5 T obtained
by subtracting an exchange field Bex = -Dex/gb from the applied
field values, corresponding to - 3/7 T for Er(III) taking gEr = 7,

This journal is © The Royal Society of Chemistry 2011 Dalton Trans., 2011, 40, 8407–8413 | 8411
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Fig. 7 Magnetic specific data at 5 T applied field compared to the (sums of
the) calculated Schottky anomalies corresponding to the Zeeman splittings
DEr/kB and DMo/kB of the Er(III) and Mo(V) doublets, taking gMo = 2.0,
gEr = 7 and applying a correction for the exchange splitting of Dex/kB = 2
K (subtracted from the calculated Zeeman splittings).

i.e. close to the value determined above from the magnetization
fit, and to - 3/2 T for Mo(V) (gMo = 2). Keeping in mind that
powder data are involved, the agreement obtained appears to be
reasonable. The negative sign of Bex implies that the interaction J^

is likewise antiferromagnetic for RE = Er(III). A similar analysis for
the Sm(III)–Mo(V) (compound 1) is not useful since the condition
DZ � Dex needed for applying the model is not reached even in
highest field due to the larger value of J/kB.

Finally, in order to estimate the effects of the weak interchain
coupling (J¢), we will assume that, similar as for the previously
studied RE(III)–Mo(V) chains, it is of dipolar origin, correspond-
ing to an interaction of strength J¢/kB ª 0.02 K. To estimate the
3D ordering temperature Tc

3d resulting from such an interaction,
we adopt the well known36 mean-field formula:

kBTc
3d ª x1d(Tc)J¢S2 (5)

where x1d(T) is the magnetic correlation length along the individual
magnetic chains. The argument basically equates the thermal
energy at the transition temperature with the interaction energy
at T = Tc of a reference spin with a correlated spin segment in
the adjacent chain. In the case of compound 1, with its Ising-like
character, we take for the intrachain correlation length the Ising
prediction:

x1d(T) = (1/kBT)exp(J/kBT) (6)

Taking J‖/kB = 2.6 K and S = 1/2 one obtains TC
3D ª 0.6 K, just

equal to the experimental value. For the XY chain compound 2,
we use instead the prediction for the pure XY chain: x1d(T) =J/kBT
(again for S = 1/2), leading with |J^|/kB = 1 K to the estimate
TC

3D ª 0.07 K, i.e. far below the lowest temperature reached
in our specific heat measurements. The fact that the TC

3D is so
much higher for compound 1 can thus be clearly attributed to
the exponential temperature dependence of x1d(T) characteristic
for an Ising-type chain. This simple argument clearly explains
why the presence of 3D ordering was only observed in the case
of compound 1, in spite of the close similarities between the two
materials in other respects.

Conclusions

We have synthesized two new 1D cyanido-bridged coordination
polymers based on [Re(pzam)3(H2O)]3+ (RE = Sm(III), Er(III))
and [Mo(CN)8]3- fragments and studied their magnetic properties
in detail. The field-dependent magnetization and specific heat
measurements at low temperatures reveal the presence of antifer-
romagnetic superexchange interactions between the RE(III) and
Mo(V) ions, of magnitude J‖/kB = -2.6 K and Ising–Heisenberg
symmetry of the interaction (J‖/J^ = 0.3) for RE = Sm and J^/kB =
-1.0 K and a strong XY-type (planar) anisotropy for RE = Er(III).
Further work on the investigation of the magnetic properties of
isostructural compounds in this series containing W(V) is currently
in progress.
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