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Introduction

Epoxides are key building blocks in organic synthesis’
exploited for the construction of natural bioactive chemical
frameworks,> of benzo-fused heterocycles,® of polycyclic ethers
via a cascade-ring opening reaction,* as well as in the prepa-
ration of 1,2-difunctionalized compounds.® As an example, the
ring opening of epoxides with alcohols® provides access to
B-alkoxyalcohols which structural motif has found wide appli-
cations in immunosuppressive and anti-tumoral pharmaceuti-
cals.” Moreover, the hydrolysis of epoxides is adopted to syn-
thesize 1,2-diols, which in turn find applications as coolants
and as co-monomers in the production of polyester fibres and
resins.® In particular, the synthesis of ethylene glycol from
ethylene oxide is performed industrially in the presence of
high excess of water, for the sake of chemoselectivity,” and the
final product must be recovered from the aqueous crude
mixture by distillation. In this context, the use of metal-based
Lewis acids, such as cobalt'® or tin'* can be helpful to lower
the water/ethylene oxide ratio in the procedure. At any rate, the
ring opening of epoxides by weak nucleophiles preferably
takes place under catalytic conditions, and metal catalysis is
the preferred option'® (even making use of expensive catalysts
with a rather limited availability, such as molybdenium,?"/
erbium'* and gallium derivatives'?’), along with the use of
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sulfonic acids to promote the ring opening of epoxides in benign media (DMC/water mixtures) or under
neat conditions. Water, alcohols, azide and thiocyanate anions, as well as electron-rich aromatics were
used in the role of the nucleophile. The resulting 1,2-disubstituted adducts were formed mostly in >99%
yield in a high regioselective fashion.

metal porphyrins'>” or other organometallic species'>"?

(Scheme 1). A particular case is the homolytic ring opening of
epoxides by the Nugent-RajanBabu Reagent (Cp,TiCl)."?
Nonetheless, chemists have proposed several metal-free
approaches to trigger the ring-opening reaction of epoxides,'*
including, among others, the use of cyclodextrins,'® metal-free
boron-based frustrated Lewis pairs,'® N-heterocyclic carbenes””
or graphene oxide as the catalysts'® (Scheme 1). The pro-
cedures have been performed in different media, including
ionic liquids,” hot water®® or under continuous flow con-
ditions.”" Given the impressive range of chemical structures
accessible from epoxides, the design and the development of
increasingly sustainable, versatile and efficient approaches for
their opening is still a challenge.

Recently, there is a growing interest in the development of
PhotoAcid Generators (PAG) known to release an acid species
upon irradiation. These derivatives (whether non-ionic or
ionic) may be used as an acid surrogate since their slow
release in solution could be beneficial for the reaction to cata-
lyze.”> We recently used arylazo sulfones due to their sulfonic
acid photorelease (under aerated conditions) to promote the
protection of alcohols,?** ketones®*” and the functionalization
of indoles.”**? We then envisaged that the visible light photo-
reactivity of these sulfones,>*** may be helpful to induce the
mild ring opening of epoxides (Scheme 1).

Results and discussion

The feasibility of our proposal was tested on the ring opening
of styrene oxide 2a (1 mmol) by using methanol (2.5 mmol, 2.5
equiv.) in the presence of arylazo sulfone 1a (5 mol%, precur-
sor of methanesulfonic acid, MSA) in an air-equilibrated neat
conditions upon visible light irradiation (for the spectrum in
the visible range of 1a see Fig. S2f). To our delight, methoxy
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Scheme 1 Different protocols for the nucleophilic ring-opening reaction of epoxides.

alcohol 3 was obtained quantitatively with a complete regio-
selectivity by irradiation with a 427 nm lamp for 16 h (Table 1,
entry 1). Several conditions were tested (for instance nucleo-
phile-epoxide ratio, solvents, irradiation wavelengths etc., see
Table S1} for further details). Decreasing the amount of 1a
(2.5 mol%) or of MeOH (1.5 equiv.) caused a yield drop
(entries 2 and 3). The effect of a cosolvent (mandatory when
the nucleophile is not soluble in the reaction mixture) was
tested. Thus, the presence of MeCN affected the outcome of

the reaction (46% yield, entry 4), contrary to DMC (a benign
cosolvent®®) where compound 3 was again formed in quantitat-
ive yield (entry 5). When arylazo sulfone 1b (5 mol%) was
tested as alternative PAG (as a photochemical precursor of
PTSA) by maintaining DMC as the solvent, compound 3 was
obtained in a slightly lower yield (81%, entry 6). Finally, some
control experiments were carried out (entries 7-10). The pres-
ence of an inorganic (NaHCOj;, 0.15 equiv., entry 7) or an
organic base (pyridine, 0.15 equiv., entry 8) completely sup-

Table 1 Conditions chosen for the photoinduced nucleophilic ring opening of 2a

[ NX

o /hv 427 nm
1a (5 mol%) OH |
CH30H (2.5 mmol) OCH, @ 12, X: Ms |
2a (1.0 mmol) neat, airfg#ilibrated 3 CHsz qp X Ts
Entry Deviation from standard conditions Yield”
1 None >99%
2 2a (1 mmol), 1a \j?,v.? mol%), CH;OH (2.5 mmol, 2.5 equiv.), v 427 nm 72%
3 2a (1 mmol), 1a (5 mol%), CH;OH (1.5 mmol, 1.5 equiv.), iv 427 nm 92%
4 2a (1 mmol, 2 M), 1a (5 mol%), CH;OH (2.5 mmol, 2.5 equiv.), CH;CN, hv 427 nm 46%
5 Za (1 mmol, 2 M), 1a (5 mol%), CH;OH (2.5 mmol, 2.5 equiv.), DMC, Av 427 nm 99%
6 2a (1 mmol, 2 M). 1b (5 mol% J;, CH,;O0H (2.5 mmol 2.5 equ1v) DMC, hv 427 nm 81%
7 2a (1 mmol, 2 M), 1a (5 mol%), CH;OH (2.5 mmol, 2.5 equlv ), NaHCO; (0.15 mmol, 0.15 equlv ), hv 427 nm 0%
8 2a (1 mmol, 2 M), 1a (5 mol%). CH3OH (2.5 mmol, 2.5 equiv.), pyridine (0.15 mmol, 0.15 equiv.), zv 427 nm 0%
9 2a (1 mmol), CH3OH (2 5 mmol, 2.5 equiv.), ~v 427 nm 0%
10 Solution covered with an aluminum foil 0%
11 2a (1 mmol, 2 M), MSA (5 mol%), CH;OH (2.5 mmol, 2.5 equiv.), DMC 24%

“Yields determined by GC analysis.
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pressed the reaction (the epoxide was recovered unaltered).
The presence of an arylazo sulfone (entry 9), as well as of the
light (entry 10), was required to promote the ring opening.
Moreover, the addition of MSA (5 mol%) in one time to the
starting reaction mixture again formed 3, but unsatisfactorily
(ca. 24% yield, entry 11). Kinetic analysis of the reaction
(Fig. S71) showed that the product was formed very fast at the
initial stage of the reaction (60% yield after 1 h), but the com-
plete conversion of the epoxide required 16 h irradiation. With
the optimised conditions in our hand, we explored the scope
of the protocol by using a series of alcohols in the role of the
nucleophile (Scheme 2). The reaction has been performed
mostly under neat conditions or, in alternative, by adopting
DMC or in DMC/water mixtures as reaction media. The reac-
tion with unbranched primary alcohols such as ethanol, pro-
panol or butanol afforded the desired products 4-6 in satisfac-
tory yields (>70%). Branched alcohols, such as iso-propanol,

hv (427 nm)
, Nu (2.5 equiv.) OH

Nucleophile scope:
Solvent-free, air-equilibrated,

2a
16 h

3, R: Me >99%
4,R: Et >99% 7, 77% 8,87% 9, 76%
5,R: (CH,),CH; 70%
6, R: (CH,)sCH; 88% H\
S w0 9
0 r /
CFy FC™ Ch 2 OH
10, 64% 11, 81%* 12, 38%4 13, 81%° 14,67%
15, 99%°, 99%>¢ 16, 86% ,99%"C 17, 85%°, 99%>¢

SO

R
g
OR oy ° O
18,R: Ph  32% X 0

19, R: Bn >99%

H,CO O OCH3 H3CO OCH3

OCH;,4
27, 88%7

20, X: Cl 74% 22,R: Me 78%
21, X: Br 51% 23, R: Et 72%
24, R: (CH,),CH; 80%
25, R: Allyl 56%

26, R: Propargyl 54%

CH3
<

28, 78% 29 60%

Scheme 2 Nucleophile scope on the visible-light ring-opening reac-
tion of 2a catalyzed by 1a. Reaction conditions: 2a (0.5-1 mmol, 1
equiv.), the chosen nucleophile (2.5 equiv.), 1a (5 mol%) irradiated at
427 nm for 16 h under air-equilibrated conditions. Isolated yields. ° NMR
analyses revealed the presence (<5%) of a minor regioisomer. © Reaction
performed in DMC/water 1: 1.  Reaction performed on a 5 mmol scale.
9 Reaction performed in DMC.
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cyclohexanol, iso-pentanol or even tert-butanol served likewise
as suitable nucleophiles (>64% yield, compounds 7-10). Less
nucleophilic fluorinated alcohols gave, however, products 11
(81% yield) and 12 (38% yield) from 2,2,2-trifluoroethanol
(TFE) and hexafluoroisopropanol (HFIP), respectively.
Unsaturated alcohols (propargyl alcohol and pent-4-en-1-ol)
yielded 13 and 14 in a satisfying yield (81% and 67%).

Testing other types of nucleophiles (e.g. water, sodium
azide or potassium thiocyanate) led to the quantitative for-
mation of the corresponding glycol 15, the azido alcohol 16, or
the thiirane 17 (Scheme 2). The latter reactions were carried
out in DMC/water 1:1 and have been repeated on a 5 mmol
scale maintaining the same excellent results (Fig. S47).

More complex nucleophiles having an aromatic ring were
then investigated and the reaction with phenol, benzylic
alcohol, and substituted thiols gave the 1,2-disubstituted pro-
ducts 18-21 in variable yields. Finally, some electron-rich aro-
matics were explored to mimic a Friedel Crafts-like reaction.
To our pleasure, our protocol proved to be robust and afforded
the regioselective arylation of N-substituted indoles (products
22-26) and of electron-rich benzenes (products 27-29) in good
yields (Scheme 2).

Other epoxides were employed to investigate the versatility
of this protocol, starting from cyclohexene oxide (2b,
Scheme 3). The organocatalyzed reaction of 2b with selected
alcohols gave trans-derivatives 30-32 in almost quantitative
yields. The formation of glycol 33 was quantitative in batch, as
well even on a 5 mmol scale 2b and under flow conditions
(Fig. S5 and S67), where 20 mmol of epoxide were processed
after 6 h reaction, reaching a 9.3 g day™* productivity of 33 (see
ESI, section 41). Compound 2b was found an excellent starting
material for the conversion into azido alcohol 34 and thiirane
35. We then tested related epoxides of terminal alkenes.
Propylene glycol 36 (extensively used as solvent carrier in
e-cigarettes liquids and in various industrial applications®’)
was easily formed from propylene oxide 2¢ in up to 5 mmol
scale in batch or in 20 mmol scale in flow (productivity of
6.1 g day™"). The reaction of 2¢ with azide anion led to the
regioselective formation of 37 (>99% yields on 5 mmol scale).
Good results have been obtained from 1,2-hexene oxide 2d,
(compounds 38-40). The reaction is still regioselective, leading
to the more substituted alcohol (e.g. in compound 39). In the
ring-opening of 1,2-octene oxide 2e, a single product was
obtained, except from the reaction with MeOH that afforded
two regioisomers (41 and 41) in a 93% overall yield.
Interestingly, when the irradiation was carried out by using 1b
(a caged PTSA), the yield increased to quantitative, along with
the change of the regioisomeric ratio (41 became by far the
more abundant isomer, 70% instead of 50%). The ring
opening reaction was also performed using isobutene oxide 2f.
The addition of n-butanol onto this epoxide caused the quanti-
tative formation of the 1,2-adducts 45 and 45’ in a 1:1 ratio. A
single product was however formed, when using water and
azide anion as the nucleophiles (compounds 46 and 47, quan-
titative yield) by using a DMC/water mixture as the reaction
media. 2-((Benzyloxy)methyl)oxirane 2g was next investigated

Green Chem., 2024, 26, 9833-9839 | 9835
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OH 55, >99% 56, >99%
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Scheme 3 Epoxide scope of the nucleophilic ring-opening reaction
catalyzed by la as PAG and triggered by visible-light. Reaction con-
ditions: 2b-2i (0.5-1 mmol, 1 equiv.), the chosen nucleophile (2.5
equiv.), 1a (5 mol%) irradiated in DMC/water 1:1 at 427 nm for 16 h
under air-equilibrated conditions. ?Neat conditions. °Reaction per-
formed on a 5 mmol scale. € Flow conditions (20 mmol, 6 h irradiation).
9 Reaction performed by using 1b in place of 1a. ¢ Compounds 45 and
45’ formed in a 1:1 ratio. "1 : 1 mixture of diastereomers.

and the functionalization with methanol and ethanol afforded
48 and 49 quantitatively, as in the synthesis of glycol 50, azido
alcohol 51 and thiirane 52 (Scheme 3). The reaction on elec-
tron-poor epoxides such as methyl 3-phenyloxirane-2-carboxy-
late 2h, proved to be less efficient. Glycol 53 was obtained as a
mixture of diastereoisomers (1 :1 ratio) with an overall yield of
51%, meanwhile the azido alcohol 54 was obtained in only
19% yield as the trans isomer.

Finally, the reactivity on epichlorohydrin 2i was tested
making use of water and sodium azide as nucleophiles. In the
first case, chlorine containing glycol 55 was formed, whereas
in the latter 1,3-diazidopropan-2-ol 56 (resulting from the
nucleophilic substitution on the C-Cl bond and by the nucleo-
philic ring opening reaction) was prepared both in quantitative
fashion.
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Scheme 4 Telescopic post-transformations.

The appeal of our protocol was further highlighted by per-
forming selected telescopic reactions involving the present
ring opening procedure. Propylene oxide 2¢ (5.0 mmol) was
opened to form the corresponding glycol 36 that it was con-
verted into acetal 57 by reaction with benzaldehyde, exploiting
again arylazo sulfone 1a as PAG (90% yield, dr 4:3)
(Scheme 4a).?*” In another case, adipic acid 58 was obtained
in two steps, starting from cyclohexene oxide by the Ni(u)-cata-
lyzed oxidation of glycol 33 (Scheme 4b).?® The adduct formed
between 2d and sodium azide was successfully converted into
1,2,3-triazole 59, following a green procedure in glycerol in just
1.5 h (Scheme 4c).”° Noteworthy, all of these telescopic reac-
tions were carried out with no need to purify the ring-opened
products and diacid 58 was isolated upon a simple recrystalli-
zation of the crude product. Finally, epoxide 2a was prepared
starting from styrene®® and then photochemically opened to
diol 15.

The mild ring-opening of epoxides described herein occurs
at room temperature under neat conditions or in an eco-sus-
tainable solvent mixture (DMC/water or neat DMC>®). The pro-
tocol exploits the tuneable release of methanesulfonic acid
from a readily prepared PAG (compound 1a) that leaves only
traces of toluene as byproduct in the reaction mixture.”® In
some cases, a simple work-up consisting in the addition of
MgS0,, removal of the drying agent and the solvent afforded
the desired product in high yield and satisfactory purity. The
low values of PMI calculated for the preparation of compounds
16 and 33 (2.86 and 3.53 kg kg™, respectively) is an indication
of the tiny amounts of waste produced in the reaction (see ESI,
section 471 for further details). In the synthesis of 33, a further
reduction of the PMI value (from 3.53 to 1.86 kg kg™ ") resulted,
when the process was scaled up to a 20 mmol scale in flow
(irradiation time 6 h vs. 16 h). With our method, uncharged
weak nucleophiles, such as water and alcohols, were easily
added to epoxides. In the first case, 1,2-diols, including the

This journal is © The Royal Society of Chemistry 2024
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wide used propylene glycol 36, were formed, while in the latter
case valuable 1,2-alkoxyalcohols are accessed, despite a low
regioselectivity was observed in selected cases (see for instance
products 41 and 41'). The addition of SCN™ to epoxide is
efficiently catalyzed by 1a (see compounds 17, 35, 40, 44, 52 in
Schemes 2 and 3). This reaction led to the formation of the
corresponding thiiranes via the oxathiolan-2-imine intermedi-
ate®! as previously observed under catalyzed conditions!?*32%?
and under catalyst-free conditions®* using PEG**? or ionic
liquids®*® as the reaction media.

Conclusions

Summing up, we would point out that the simplicity of the
method presented herein well met most of the photo-click
chemistry criteria,®® since it allows a process with a signifi-
cantly high thermodynamic driving force,** it is wide in scope
and affords the desired products in very high yields.
Furthermore, in several cases, isolation of the end products
took place with no need of separation upon column chromato-
graphy and products were obtained (at least starting from 2b
and 2h) in a satisfactory diasteroselectivity.>? The ring-opening
of epoxides may be easily included in telescopic transform-
ations as illustrated in Scheme 4. Noteworthy, the synthesis of
57 was carried out by two consecutive acid catalyzed reactions
promoted by the same arylazo sulfone as PAG.
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