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Reviewing the literature published up to October 2024.

Sesterterpenoids are one of the most chemically diverse and biologically promising subgroup of terpenoids,
the largest family of secondary metabolites. The present review article summarizes more than seven decades
of studies on isolation and characterization of more than 1600 structurally novel sesterterpenoids,
supplemented by biological, pharmacological, ecological, and geographic distribution data. All the
information have been implemented in eight tables available on the web and a relational database https://
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1 Introduction

Despite originating from a single biosynthetic pentaprenyl
linear precursor, sesterterpenoids'® epitomize the astounding
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strive of nature towards molecular diversity and complexity. The
incredibly vast chemical space covered by sesterterpenoids
embodies a myriad of forms, skeletal architectures, and
substitution patterns. To date, over 1600 structures have been
reported, with tens of unique hetero- and carbocyclic ring
systems.

Since the isolation of the first members, in the late fifties and
early sixties,® it has been clear that sesterterpenoids were
widespread in several phyletic groups, including marine
sponges, nudibranchs, bacteria, lichens, fungi, higher plants
and insects (Fig. 1).7'**2 Although only a few macrocategories of
sesterterpenoids are known for some taxa, most phyla can
synthesize a considerable variety of compounds, from the
simplest, such as the acyclic linear (AlI), to the most complex,
such as the hexacarbocyclic (HC). In general, several evolu-
tionary mechanisms have been described that can lead to
biosynthetic diversity and cause biosynthetic pathways to
converge or diverge within or between different groups of
organisms. These include gene duplication (and gene loss),
horizontal and endosymbiotic gene transfer, and gene fusion.*
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With regard to sesterterpenoids, the picture of possible co-
evolution of biosynthetic pathways is still unclear, and this is
certainly a gap worth exploring.

Among the natural sources, the Porifera phylum (sponges) is
the most prolific."*"” The original producers of most natural
products, including sesterterpenoids, in sponges, but also in
other pluricellular holobionts, are often suspected to be their
associated microbes, with larger metabolic capabilities.'®>*
This widely approved hypothesis has been at the moment
scarcely proved.'*'®" Nonetheless, technological advances in
omics and biological spatial approaches, single cell analyses,
and cultivation procedures may soon provide suitable tools to
demonstrate a symbiotic implication in the synthesis or
biotransformation of secondary metabolites.> In the intricate
interactions between microbes and their hosts and within
microbial communities, sesterterpenoids act as chemical
defence and communication systems to enhance beneficial
associations,” and thus they can be considered allelochemicals
mediating species interactions.'*'®'” Marine sponges, algae,
and terrestrial plants produce sesterterpenoids to disrupt
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Fig.1 Circular plots showing the relationships among referred compound categories and groups of organisms at phylum level. The dimension of
color bands is proportional to the number of compounds found in each category. Abbreviations are as follow, for phyla: ARTHR = Arthropoda;
CNID = Cnidaria; MOLL = Mollusca; PORIF = Porifera; ACTINO = Actinobacteria; CYANO = Cyanobacteria; BACIL = Bacillariophyta; PROT =
Proteobacteria; OCHRO = Ochrophyta; ASCO = Ascomycota; BASID = Basidiomycota; MUCOR = Mucoromycota; TRACH = Tracheophyta. For
sesterterpenes categories: Al = acyclic, linear; MC = monocarbocyclic; MH = monoheterocyclic; DC = dicarbocyclic; DH = diheterocyclic; TrC
= tricarbocyclic; TeC = tetracarbocyclic; TH = triheterocyclic; PC = pentacarbocyclic; HC = hexacarbocyclic.
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microbial membranes or ignite reactive species inside bacterial
and fungal predators, whereas, in some plant-microbe inter-
actions, sesterterpenoids produced by the plant can attract
beneficial microbes that promote plant health and growth.>¢
Certain spongivore molluscs are known to specifically feed on
sesterterpenoid rich prey, in order to bioaccumulate or bio-
transform them for their own defence.?” In other instances,
molluscs and cnidarians seem to produce these bioactive
molecules de novo."***'”*” In microbial communities, microbes
produce sesterterpenoids to inhibit the growth of competing
species, thereby securing their niche or influence quorum
sensing, a mechanism that bacteria use to coordinate their
behaviour and eventually control biofilm formation, virulence,
and metabolism.?®

In other groups of organisms, such as insects and plants, the
function of sesterterpenoids has been less well investigated.
Future studies should ascertain the involvement of these
compounds in mediating the relationships between organism
and their environment.

The driving force behind sesterterpenoids research, besides
the purely structural, and synthetic studies, has been the wide
range of biological and pharmacological properties they often
exhibit (i.e.: anticancer, antimicrobial, anti-inflammatory,
antifeedant, and antiviral activities). Sesterterpenoids also
play a key role in the modulation of neurodegenerative
processes, they have been studied for the treatment of type-II
diabetes, hypercholesterolemia and obesity and as potential
immunosuppressive agents.

With their rich oxidation patterns and three-dimensional
complexity, these pentaprenyl terpenoids constitute a vast
chemical library that can be easily morphed in new chemical
entities (via ingenious semisynthetic or synthetic approaches).
However, no synthetic study is reported in this review (unless
for structural/stereochemical confirmation of the isolated
secondary metabolites).

This review considers the extensive literature on ses-
terterpenoids to identify the state of the art on the subject and
to highlight gaps in knowledge that need to be addressed in
future studies. Specifically, the review is structured as follows:
Section 2 presents a database that collects and organises the
available information on the over 1600 sesterterpenoids.
Sections 3 and 4 review the main compounds found in the
different organism groups, while Section 5 outlines the bio-
logical and pharmacological properties already tested for these
compounds.

2 Information infrastructure

2.1 Conceptual model

Since the 1970s, the Entity-Relationship (ER) diagram has
played a fundamental role in the initial phases of data model-
ling projects. In this project, the conceptual model based on ER
diagrams played a crucial role in defining the common design
of the project's information support. The diagrams' graphic
nature facilitated effective collaboration among the project's
experts, enabling the proper exchange of individual collabora-
tors’ skills.

This journal is © The Royal Society of Chemistry 2025
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The diagrams depict compounds, organisms, and biblio-
graphic resources as the primary entities, with production,
biological activity, and corresponding bibliography descriptions
as the primary relationships connecting them.

2.2 Logical model

To ensure a reliable and efficient database, we translated the ER
diagram into a logical scheme using the well-known relational
model. This allowed us to transfer the agreed-upon knowledge
organization of all project participants and experts. The logical
scheme was implemented in a relational database management
system (DBMS). The Microsoft SQL Server 2022 DBMS* was
chosen and mounted on a server running the Windows Server
2022 operating system.** The server is hosted within the IT
structure of Genoa University, which is backed up daily. In this
project, specific measures were applied in addition to the
standard rules of the relational model. Among these measures,
we included an identification code for the compounds specific
to this project. This is necessary because different bibliographic
sources do not refer to a common nomenclature standard.
Additionally, translating the graphic peculiarities (such as the
use of italics, superscripts, and subscripts) typical of the
nomenclature rules of both compounds and organisms into
HTML is necessary. Unicode coding was used to name the
compounds to ensure the letters of the Greek alphabet are
essential for their correct naming.

However, when it comes to organisms, scientific names that
follow well-established taxonomic rules are used in the litera-
ture. These names have been stored in the database as they
appear in the bibliographic resources used for this project. It is
important to note that the taxonomy of many organisms can
rapidly change, rendering some nomenclatures obsolete and
introducing new names that are recognized internationally. All
names listed in international standard nomenclators are stored
in the database. For each organism, all taxonomic levels are
stored in the database using a normalized relational structure.
This allows for quick provision of descriptive statistics of the
database contents.

2.3 Data presentation

Although the DBMS allows for adequate and efficient manage-
ment of data storage, excessive normalization results in a high
number of tables connected by numerical indexes. This can
make table management difficult for non-experts and irrelevant
to ordinary people. To address this issue, a web interface was
developed, divided into two sections. The initial section is
publicly accessible and read-only and is structured for easy
navigation among the data collected for this research. It can be
explored based on the three major entities listed above:
compounds, organisms, and bibliographic resources. The
second section is restricted to authorized personnel and
requires first-level authentication. It enables regular mainte-
nance of the database content. The need to feed the database
during its development suggested implementing the possibility
of feeding data stored in batch mode through a set of Ms Excel
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files. The format of these files is based on the results of the
conceptual analysis explained above.

2.4 External connections

The working group frequently updates the database, but the
taxonomies of the organisms involved in the research can
frequently change, which can quickly render the stored data
obsolete. To address this issue, automatic query mechanisms
have been planned for the main global databases in the sector,
often providing access via web services. The system enables
interested users to access updated data on a particular
organism by requesting the same interface used in this project
to query the relevant services. The updated data is then pre-
sented on a page that is appropriately formatted for the
purpose. This allows non-expert users to access the most recent
data on the subject. The sources of the updates are clearly
indicated on the page.

3 Sesterterpenoids isolated from
marine and terrestrial organisms

The current review categorises sesterterpenoids into ten
subgroups (Table S1, ESI,¥ Sections 1.1-1.10), based on their
structural features and increasing molecular complexity,
ranging from linear to hexacarbocyclic backbones. All previous
reviews on the subject in Natural Product Reports have fol-
lowed, directly or indirectly, this subdivision criterion.'**3!3*
However, due to the large number of linear sesterterpenoids
reported, a further partition has been implemented based on
the growing number of heterocyclic nuclei present in the

View Article Online
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terpenoid backbone (Table S1, ESI,} Sections 1.1-1.4). Accord-
ingly, Section 1.1 of Table S1f presents the structures of the
simplest linear acyclic (AI) sesterterpenoids decorated with
various functional groups (i.e.: AI-11 from Oryza sativa,* Fig. 2);
in Section 1.2 linear sesterterpenoids incorporating a single
heterocyclic nucleus are collected and labelled as linear mon-
oheterocyclic (MH) sesterterpenoids (i.e.: granuloside, MH-52
from Charcotia granulosa, Fig. 2);** Section 1.3 includes the
structures of linear diheterocyclic (DH) sesterterpenoids (i.e.:
hippolide A, DH-80 from Hippospongia lachne, Fig. 2);** Section
1.4 reports the structures of linear triheterocyclic (TH) ses-
terterpenoids (ie.: ircinialactam F, TH-24 from Ircinia oros,
Fig. 2)** and their possible dimeric counterparts. From Sections
1.5 to 1.10 a variety of structurally diverse and morphologically
complex sesterterpenoids including carbocyclic moieties have
been reported. In particular, Section 1.5 reports mono-
carbocyclic (MC) sesterterpenoids (i.e.: manoalide, MC-13, from
Luffariella variabilis, Fig. 3);*” Section 1.6 includes dicarbocyclic
(DC) sesterterpenoids (i.e.: terpestacin, DC-104, from Arthrinium
sp.);*® Section 1.7 reports tricarbocyclic (TrC) sesterterpenoids
(i.e.: ophiobolin A, TrC-2 from Ophiobolus miyabeanus);*
Section 1.8 comprehends tetracarbocyclic (TeC) sesterterpe-
noids (i.e.: bipolarolide A, TeC-1 from Bipolaris sp.);** Section
1.9, pentacarbocyclic (PC) sesterterpenoids [i.e.: phyllofenone
D, PC-13 from Carteriospongia (syn. of Phyllospongia folias-
cens)];** and Section 1.10, hexacarbocyclic (HC) sesterterpenoids
(i.e.: niduterpenoid A, HC-1 from Aspergillus nidulans).** For
Table S1 (ESIf) consultation, it is important to consider the
following relevant information: (1) the sesterterpenoids
included in each of the ten sections have been listed without

any specific structural, biogenetic, phylogenetic, or

S J

MH-52

¢} TH-24

TH-25

TeC-362

Fig. 2 Representative structures of formally linear sesterterpenoids incorporating no heterocycles (Al-11), or incorporating one (MH-52), two
(DH-80), and three heterocyclic rings (TH-24), as reported in Sections 1.1-1.4, respectively, of Table S1.f Sulawesin C (TH-25) and molliorin-B

(TeC-362) represent rare dimeric sesterterpenoids.
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HC-1

Fig. 3 Representative structures of sesterterpenoids incorporating one (MC-13), two (DC-104), three (TrC-2), four (TeC-1), five (PC-13), and six
carbocyclic rings (HC-1), as reported in Sections 1.5-1.10, respectively, of Table S1.1

chronological order. The only criterion followed is that they
belong to the structural class indicated by the denomination of
the section; (2) where a revision or a new stereochemical
assignment has been published, the correct structures and
configurations are given; (3) carbocycles are counted as single
independent units, even if they have a different biogenetic
origin (i.e.: see phenyl rings in sesterterpenoids MC-85,* TrC-
112,* HC-3 (ref. 45)); (4) dimeric structures are always reported
in the section of the corresponding monomeric counterparts
(i.e.: sulawesin C, TH-25, from Psammocinia sp. in Section 1.4,*
and molliorin-B, TeC-362, from Cacospongia mollior in Section
1.8, Fig. 2);*” (5) heterocyclic and carbocyclic rings are counted
as single independent units even when they are present as
bridged units (two rings share more than two atoms: i.e.: DH-
99, DC-205," TrC-177, PC-9 (ref. 51)); (6) Table S1 (ESI)t
includes the sesterterpenoids isolated from natural sources and
by biosynthetic experiments and reported since the sixties of the
last century. In some cases, meroterpenoid derivatives have
been included when the pentaprenyl co-substrate is easily rec-
ognisable in the structure. Unfortunately, in most of the cases,
meroterpenoids are difficult to be classified and lack of proper
biogenetic studies. This hampers proper skeleton recognition
and structural sorting.

4 Distribution of sesterterpenoids
4.1 Sesterterpenoids in animals

Most soft-bodied and sessile marine organisms, lacking phys-
ical or other mechanical means of protection or locomotion for
escape, have evolved chemical defences for survival. Often these
defensive compounds are noxious to potential predators, toxic,
or have some type of bioactivity that directly or indirectly
interferes with the behaviour or biology of co-occurring
competing species.'®” Among these allelochemicals, terpe-
noids are the most abundant and important compounds of
marine origin. In this large family, the sesterterpenoids form

This journal is © The Royal Society of Chemistry 2025

a relatively narrow group of molecules, found mainly in
sponges, and to lesser extent in molluscs and cnidarians, as well
as in a reduced group of terrestrial producers, as soft scales
insects (Fig. 4a).

4.1.1. Sesterterpenoids in Porifera. Sponges, belonging to
the phylum Porifera, are the oldest multicellular animals on
Earth. This large taxon has been able to colonise all latitudes of
the world's oceans and freshwater systems, thriving in tropical,
temperate, and polar regions, including extensive depth ranges,
from the intertidal to the deep sea. In all these habitats, sponges
play critical functional roles in three-dimensional habitat
formation, nutrient recycling, space competition, water clear-
ance, symbiotic interactions, microbial shelters and secondary
metabolite production, among other.>” The ubiquitous occur-
rence of these organisms makes them prominent members of
the benthic fauna, comprising 9650 recognised species (source:
World Porifera Database,” and over 20000 taxon names),
distributed in four classes - Calcarea, Hexactinellida, Homo-
scleromorpha, and Demospongiae.*® Sponges have simple
bodied anatomy, consisting of a diploblastic cellular organiza-
tion with an intraepithelial mesenchyme called mesophyl,
composed by collagen, amoeboid cells, and skeletal elements.
Their body plan lacks true tissues and consists of a system of
branched canals and choanocyte chambers, that produce
a water flow for feeding, respiration, excretion, and reproduc-
tion. The majority of sponges are heterotrophic filter feeders,
with some exceptions that are partially (mixotrophic) or
completely (phototropic, chemotrophic) dependent on photo-
synthetic symbionts trophic exchange, and a few carnivorous
species that feed on small invertebrates.'®>>

Sponges form intimate associations with a wide range of
microorganisms, including bacteria, archaea, fungi, protists,
and viruses, which are essential for their health and survival.
The meta-organismal systems formed by sponge hosts and their
microbiota should be considered as the minimal functional

Nat. Prod. Rep., 2025, 42, 443-481 | 447
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Fig. 4 Circular plots showing the relationships among referred compound categories and taxonomic categories in 4 groups: (A) animalia, (B)
fungi, (C) bacteria, (D) plants. The dimension of color bands is proportional to the number of compounds found in each category. Abbreviations
are as follow: animalia. Arthropoda: COCC = Coccidae. Cnidaria: CLADO = Cladocoridae. Mollusca: CHAL = Chalinidae; CHROM = Chro-
modorididae; CURN = Curnonidae. Porifera: AGEL = Agelasidae; ANCO = Ancorinidae; APLY = Aplysinellidae; CHAL = Chalinidae; CRAM =
Crambeidae; DARW = Darwinellidae; DICT = Dictyodendrillidae; DISY = Dysideidae; HALI = Halichondriidae; HYME = Hymedesmiidae; IRCI =
Irciniidae; LATR = Latrunculiidae; MICR = Microcionidae; MYCA = Mycalidae; OSCA = Oscarellidae; PACH = Pachastrellidae; PETR = Petrosiidae;
PODO = Podospongiidae; SPON = Spongiidae; SUBE = Suberitidae; THOR = Thorectidae. Fungi: Ascomycota: APIO = Apiosporaceae; APLO =
Aplosporellaceae; ASPE = Aspergillaceae; BOTR = Botryosphaeriaceae; CHAE = Chaetosphaeriaceae; DIAP = Diaporthaceae; DIDY = Didy-
mellaceae; GYPS = Gypsoplacaceae; HYPO = Hypocreaceae; LEPR = Leprocaulaceae; LOPH = Lophiostomataceae; MASS = Massarinaceae;
MOLL = Mollisiaceae; NECT = Nectriaceae; NEOC = Neocamarosporiaceae; OPHI = Ophiocordycipitaceae; PARM = Parmeliaceae; PELT =
Peltigeraceae; PLEO = Pleosporaceae; Pleosporineae: SACC = Saccharomycetaceae; TRIC = Trichocomaceae; VALS = Valsaceae; XYLA =
Xylariaceae. Basidiomycota: HERIC = Hericiaceae. OMPH = Omphalotaceae; PLEUR = Pleurotaceae; STERE = Stereaceae. Mucoromycota:
CUNN = Cunninghamellaceae. Bacteria and chromista: Actinobacteria: PSEU = Pseudonocardiaceae; STRE = Streptomycetaceae. Cyano-
bacteria: NOST = Nostocaceae; SCYT = Scytonemataceae. Proteobacteria: ENTE = Enterobacteriaceae; PSEUD = Pseudomonadaceae; RHIZ =
Rhizobiaceae. Bacillariophyta: RHIZO = Rhizosoleniaceae; NAVI = Naviculaceae. Plants: Tracheophyta: APOC = Apocynaceae; ASPL =
Aspleniaceae; ASTE = Asteraceae; BRAS = Brassicaceae; CHLO = Chloranthaceae; CUCU = Cucurbitaceae; EUPH = Euphorbiaceae; FABA =
Fabaceae; GENT = Gentianaceae; HYPE = Hypericaceae; LAMI = Lamiaceae; LAUR = Lauraceae; MALV = Malvaceae; NART = Nartheciaceae;
POAC = Poaceae; PTER = Pteridaceae; ROSA = Rosaceae; RUTA = Rutaceae; SAPI = Sapindaceae; SIMA = Simaroubaceae; SOLA = Solanaceae;
ZING = Zingiberaceae. For sesterterpenes categories: Al = acyclic, linear; MC = monocarbocyclic; MH = monoheterocyclic; DC = dicarbocyclic;
DH = diheterocyclic; TrC = tricarbocyclic; TeC = tetracarbocyclic; TH = triheterocyclic; PC = pentacarbocyclic; HC = hexacarbocyclic.

biological units.'”** Microbial symbionts provide their hosts within benthic communities, through the exchange of certain
with nutrients, process waste products, and appear to be bioactive molecules and precursors. In certain sponges, the
involved in nutrient recycling processes.**** Moreover, sponge accumulation of microbial-derived natural products has been
microbiomes may enhance growth and competitive ability shown to provide various chemical defence strategies, such as

448 | Nat. Prod. Rep., 2025, 42, 443-48] This journal is © The Royal Society of Chemistry 2025
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deterrence of predatory fish from feeding, anti-fouling to
prevent overgrowth and suffocation, or growth inhibition
against competing or pathogenic microbes.” Much of the
repertoire of secondary metabolites in eukaryotic organisms,
particularly sponges, is thought to be derived from associated
microorganisms.®**® These compounds include mostly
terpenes, sterols, cyclic peptides, unusual nucleosides, alka-
loids, fatty acids, peroxides, and amino acid derivatives. Many
of these products show promising therapeutic potential due to
their anti-inflammatory, anticancer, antimicrobial, anti-
atherosclerotic and antiherpetic properties (as seen in
previous reviews of the series).'*'**"5® However, apart from their
biotechnological applicability, the presence of these molecules
in the sponge host should primarily respond to ecological
means in the first place, which in most cases have yet to be
revealed. Although there is much evidence suggesting the
symbiotic production of many sponge secondary metabolites,
few studies have empirically demonstrated the microbial
synthesis of these compounds, including the sesterterpenoid
family.***>3¢ Recently, the discovery of type I terpene synthases
in the sponge holobiomes may call into question the absolute
production of secondary metabolites by microbiome associates,
implying the involvement of the animal host in several terpe-
noid biosynthetic pathways.*® In the following lines, we will
illustrate some examples of sesterterpenoids occurrence in
Porifera (Table S2, ESIt). Tropical and temperate shallow-water
Porifera provide most of the known bioactive molecules. The
reason is probably due to the intense allelochemical interac-
tions in the highly biodiverse tropical ecosystems (as seen in
previous review of the series).'®*'” The order Dictyoceratida
represents the most prolific taxon of known secondary metab-
olites, while the scalarane tetracarbocyclic sesterterpenoids
form by far the broadest structural group of the terpene family*®
(and this review). Scalaranes are mainly found in sponges, but

DC-22

DC-179
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also in nudibranchs, largely due to trophic transfer (see below).
In both organisms, they exert a deterrent effect against gener-
alist consumers, serving as an efficient antipredator or multi-
purpose defence mechanism." These products further exhibit
a wide array of pharmacological activities (anti-cancer, anti-
inflammatory and antimicrobial being the most frequently
described).®* Scalarin (TeC-156, Fig. 5) was the pioneering
compound giving name to this large group of sesterterpeneoids.
It was originally elucidated from the Mediterranean sponge
Scalarispongia scalaris.®* Since the first discovery, TeC-156 has
been recurrently found in Dictyoceratida sponges from diverse
geographic locations (e.g., Scalarispongia sp. from Korea, Hyrtios
erectus from South China, Ircinia sp. and Dysidea sp. from China
and New Zealand, Spongia (Spongia) matamata from Palau,
Spongia (Spongia) tubulifera from Mexico, Spongia (Spongia)
virgultosa from Spain, Hyattella intestinalis from Mexico).®*™*’
Subsequently, many other scalarane-type compounds have been
unveiled. The widespread species Hyrtios erectus seems to be the
most productive in tetracarbocyclic sesterterpenoids, revealing
scalaradial (TeC-75), heteronemin (TeC-326) and numerous
derivatives, together with hyrtial (TeC-48) products, hyrtiosins
(TeC-305-TeC-309) or salmahyrtisols (TeC-123, TeC-373, TeC-
342, and TeC-504), in specimens from various regions,
including China, Japan, Egypt, Saudi Arabia, the Maldives, New
Guinea, New Caledonia, and Tonga.*®®*® Congeneric Hyrtios
species from Fiji, Thailand, Paracel Islands, and New Caledonia
contained scalaranes and other molecules such as thorectolide
(DH-76), erectusolide (DH-79), sesterstamide (TeC-345).%% At
the same time, monocarbocyclic thorectidaeolides (MC-5-MC-
8), acantholide A (MC-12) and luffariellolide (MC-70) were
documented from H. communis from Palau.®® Similarly, Indo-
pacific Phyllospongia foliascens collected in several areas (e.g.,
South China, Japan, Indonesia, New Guinea, Australia, and
India) revealed an extensive array of scalarane-related products

TeC-156

TrC-206 TrC-221

Fig. 5 Representative structures of sesterterpenoids isolated from sponges.
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in addition to other metabolites.”’** These included rare
scalarane-derived pentacarbocyclic sesterterpenoids with an
additional cyclobutene, like carteriofenones A-D (TeC-37-TeC-
40) and E-K (TeC-247, PC-11, PC-20-PC-23, and TeC-258),° and
other sesterterpenes like foliaspongin (TeC-33) and derivatives
as dehydrofoliaspongin (TeC-412), phyllofoliaspongin (TeC-
413),°°® phyllactones F-G (TeC-217-TeC-218) and phyllofo-
lactones A-D and M (TeC-246, TeC-206-TeC-208).”>"*°> Phyllo-
folactones and scalaranes additionally found in
congeneric sponges Phyllospongia sp., P. lamellosa, P.
vermicularis.'*'%” Phyllactones were found in P. papyracea from
specimens coming from Egypt, Madagascar, Indonesia, New
Guinea and China.'*®*™° Indian Hyattella cribriformis and
a Korean Hyattella sp. were found to produce scalaranes,
together with H. intestinalis from Australia and Mexico, which
reported in addition to the repertoire of TeC-156 and TeC-326
relative metabolites, also norscalarals hyatolides (TrC-171, TrC-
172 and TeC-299-TeC-301), mooloolabenes (TeC-66-TeC-70 and
TeC-248-TeC-257), furoscalarol (TeC-329), and hyatelactam
(TeC-344).5>'"*11% Sponges Hyattella sp. from Indonesia were
found to possess hyattellactones (TeC-239 and TeC-240) and
phyllofolactones (TeC-246, TeC-205-TeC-214, TeC-302, TeC-303,
TeC-492)."* Lendenfeldia sponges represent another taxon with
an extended presence of scalaranes, homoscalaranes and
related molecules, including furodendins, homoscalarates and
homoscalaralactone from L. chondrodes from Palau, Australian
L. dendyi and L. frondosa from the Salomon Islands and New
Guinea, as well as sesterterpenes like lendenfeldaranes, felixins
(TeC-100) or furanolipids, in Lendenfeldia sp. from
Madagascar.'"**** The genus Spongia has afforded another
notable repertoire of scalaranes, including the original TeC-156,
TeC-75 and derivatives, as well as numerous other tetracyclic
sesterterpenoids and different sesterterpene type molecules like
scalalactams, furospongins, hyrtiosal (TrC-130), igernellin (MC-
71), hipposulfates, ircinins, cometins, petrosaspongiolides, and
plenty of others. These compounds were obtained from diverse
species and locations such as Spongia (Spongia) agaricina, S. (S.)
nintens and S. (S.) officinalis from Mediterranean, S. (S.) hispida
and S. (S.) matamata from Papua New Guinea, S. (S.) oceanica
from Hawaii, and from a number of unidentified Spongia sp.
from the USA, Australia, Borneo, Japan, and Korea.®*¢*124140
Other genera of sponge typically containing scalarane-related
products include Smenospongia specimens from Korea,"*"'** or
the only species in the Collospongia genus, C. auris from Aus-
tralia, containing TeC-326 and terpene derivatives.'*® Strep-
sichordaia lendenfeldi from Australia revealed scalarane
derivatives,'** whereas Indonesian Strepsichordaia aliena yiel-
ded honulactones, phyllofenone C (TeC-287) and phyllofo-
lactones.'* Older investigations frequently described scalarane
compound series in sponges whose terminology has changed
after taxonomic revisions. TeC-75 and related scalardysins and
scalarherbacins were described from Lamellodysidea herbacea
from Gulf of Suez,** and TeC-326, scalarolide (TeC-173), sca-
larafuran (TeC-331), furospinosulin-1 (MH-18), idiadione (MH-
28) among others in Leiosella idia from USA.**” TeC-75 and
scalarane-type molliorins were isolated from Mediterranean
Cacospongia mollior,*”'***%> and Pacific Cacospongia sp. unveiled
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cacolic acid (MH-53) and several cacolides, which are mainly
linear sesterterpene compounds.”® Scalarane-type including
TeC-326 and manoalide-type product (MC-27) were recovered
from Thai Brachiaster sp. sponges.*> Tetracyclic scalarane-types
and pentacyclic sesterterpenoids are commonly found in Dysi-
dea genus. Scalarane compounds have been reported in Dysidea
sp. from China,*” and in D. gumminae from Thailand, in addi-
tion to similan A, hyrtiolide, TeC-173 and scalafuran.”® Chinese
D. granulosa produced various tetracyclic and pentacyclic ses-
terterpenoids.'* Bilosespenes were elucidated from Eritrean D.
cinerea'®® and dysidiolide (DC-22, Fig. 5) from D. etheria from
USA,*** while halisulfates 1, 3, and 5 (TrC-115, DC-38, and DC-
40), dysideapalaunic acid (DC-23) and coscinoquinol (TrC-112)
were found in Dysidea sp. from Palau and Micronesia.'®*»'*
Psammocinia sp. sponges have been reported to produce vari-
able suites of sesterterpenoids. For example, some specimens
from Korea yielded scalarane-type products,'®*'*> or psammo-
cinins A;, A,, and B (DH-30, DH-31, and DH-69) and variabilin
(DH-16)."*° Meanwhile, Australian relatives were found to
contain bicarbocyclic sesterterpenoids such as ircinianin (DC-
159), ircinianin sulfate (DC-179, Fig. 5), ircinianin sulfate lac-
tam (DC-177) and derivatives, as well as isopalinurin (DH-4),"*
and linear sesterterpenes ircinins 1-2 (TH-8 and TH-9) and
sulawesins A-C (MC-9, MC-10, and TH-25) were also isolated
from Psammocinia sp. in Indonesia.*® Hippospongide A (TeC-
385), hippospongide B (TeC-172) and other scalaranes were
isolated from Taiwanese Hippospongia sp.'*® Other unidentified
Hippospongia provided furanoterpene hippospongins (TH-26-
TH-31) from Australian specimens,'® or TrC-115 and DC-40
from Micronesia collections.”® Linear and bicyclic hippolides
A-] (DH-80, DH-81, MH-11-MH-16, DC-216, DC-217) and mon-
ocarbocyclic manoalides (MC-16 and MC-17) were isolated from
H. lachne collected in South China.?**$7

Disparate tetracarbocyclic sesterterpenoids toxistylides A-B
were identified in Mediterranean Clathria (Clathria) toxistyla,'”
and in C. (C.) gombawuiensis from Korea, including ansellone C
(TrC-206, Fig. 5), gombaspiroketals A-C (DC-195-DC-197) and
phorone B (TeC-389).'”* Related phorones A (TeC-386) and C
(TeC-481) were also identified in Korean Phorbas sp. Anvilones A
(TeC-390) and B (TeC-391), phorbadione (TrC-199), ansellones
C-K (TrC-207-TrC-211 and TrC-323-TrC-326), and monocyclic
phorbaketals A-C and L-M (MC-119-MC-121 and MC-130-MC-
132) purified from congenerics from British
Columbia.'”**%* The antarctic collections of P. areolatus, in its
place, revealed suberitenones (TeC-23-TeC-25, TeC-30) and
suberitane derivatives, including isosuberitenone B (TeC-394),
19-epi-suberitenone (TeC-25), and isoxaspirosuberitenone (TeC-
395)."®> Furthermore, monocyclic spirocyclic MC-119-MC-129
and phorbin A (MC-4) were also obtained from Korean Monan-
chora sp. sponges.”® A number of norsesterterpene peroxides
have been reported in genus Diacarnus. Tasnemoxides A-C (MC-
40-MC-42), muqubilin (MC-36-MC-37) and derivatives were
found in D. erythraeanus from the Red Sea.'®*'*> Aikupikoxide A
(MH-30) and sigmosceptrellin B (DC-17) were also identified in
the same species. Sigmosceptrellins A-C (DC-60, DC-17, and
DC-63) and diacarnoxides A-D (MC-49-MC-52) were respectively
identified in D. laevis and D. levii both from Papua New
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Guinea.'®® Diacarperoxides and MC-36 were recovered in Indo-
nesian D. megaspinorhabdosa.*® Additionally, muqubilin rela-
tive products were also found in D. spinipoculum from Solomon
Islands.™® Other cyclic norsesterterpenes, known as mycaper-
oxides A-B (DC-15 and DC-16), were retrieved from Thai Mycale
sp."®#1° Tricarbocyclic sesterterpenoids called coscinolactams
A-G (TrC-200, TrC-154, TrC-201-TrC-205), including suvanine
(TrC-143) derivatives, were isolated from Coscinoderma sp. from
Micronesia,” " and from C. mathewsi coming from Solomon
Islands, along with coscinalactone (TeC-402) and coscinafuran
(TeC-403).194-1%¢

The genus Ircinia probably comprises one of the most
diversified in sesterterpene series, reporting a vast range of
molecules including cyclic and linear furanosesterterpenoids,
scalaranes, 24-homoscalaranes, tetronic acid related
compounds, cheilanthane sesterterpenoids or
C22-trinorsesterterpenoids, among others. Felixin scalaranes
(TeC-100, TeC-101, TeC-165-TeC-169) were described from I
felix in Taiwan, ircinins (TH-8-TH-11) were detected in IL
oros,***” and a numerous group of irciformonins (DH-10, DH-
13, TH-19-TH-21) and ircinialactams (DH-96-DH-98, TH-24,
TH-32) were isolated from Ircinia sp. from Taiwan and Aus-
tralia.’*®'%® Moreover, strobilinins, felixinins and variabilins are
frequently found in several congeneric species and regions: e.g.,
I oros and I variabilis from Mediterranean, I. campana from
Colombia, I strobilina from Brazil, and Ircinia sp. from several
Pacific areas. DC-159 and wistarin (DC-160) were isolated from
the Australian species I wistarii.******>°> Chinese collections of
Dactylospongia elegans provided y-oxygenated butenolides, the
dactylospenes A-E (MH-57, DC-224-DC-227).2° Jaspis sponges
from New Guinea (Jaspis cf. johnstoni), China (Jaspis sp.), and
Japan (J. stellifera) yielded jaspic acid (TrC-110), jaspolide F
(TrC-135), and  jaspiferals C-F  (TrC-131-TrC-134),
respectively.?’2*® Acantholides C-E (MH-10, MC-1 and MC-2)
were recorded from Pacific Acanthodendrilla sp.,*'° while age-
lisamines A and B (DC-29 and DC-30) and aplysinoplides A-C
(MC-30, MC-33, and MC-34) were obtained from Agelas maur-
itiana; and Aplysinopsis elegans and Aplysinopsis sp. respectively
all from Japanese collections.”*** New Caledonian Petrosas-
pongia nigra were found to possess numerous petrosaspongio-
lides, A-L (TrC-212-TrC-221, Fig. 5 and TrC-222), M-P (TrC-178-
TrC-180), Q and R (TrC-182 and TrC-183),>** and Petrosaspongia
sp. from Fiji revealed several petrosaspongiolactams.*"® Auro-
rals 1-4 (TrC-255-TrC-258) and globostelletins C-G (TrC-264-
TrC-267) were isolated from Rhabdastrella globostellata from
New Caledonia and South China, respectively.”** Rhopaloic
acids A-C (MH-7, MH-1-MH-3) were found in Rhopaloeides sp.
from Japan.*'7*'®

Luffariella representatives produce specific bicyclic, mono-
cyclic, and acyclic sesterterpenoids, including luffarins A-O
(DC-43-DC-57), P (MC-65), Q (MH-8), R (DH-58), S (DH-106), T
and U (DH-59) and DH-60) from Australian L. geometrica,**
luffariolides A-G (MC-77-MC-83, MC-70, luffalides A-F (MC-57-
MC-62) or luffolide (TrC-280) from Luffariella sp. from several
Pacific collections (e.g., Australia, Micronesia, Japan, Taiwan,
Palau). Additionally, Luffariella sp. produces a variable suite of
product series from L. variabilis according to the collection site.

This journal is © The Royal Society of Chemistry 2025
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For example, specimens from Australia produce luffariellin A
(MC-53), 25-acetoxyluffariellin (MC-55), 25-acetoxyluffariellin B
(MC-69), and manoalide-type products (MC-13-MC-15, MC-28),
while Palau sponges produce luffariellin B (MC-56), luffalactone
(DC-162), several manoalides (MC-13-MC-16, MC-19, MC-21,
MC-28) in Malaysian samples, or oshimalides A and B (MC-146
and MC-147) from deep sea populations.*”?**2*° Sarcotragus sp.
sponges are similarly sources of norsesterterpenoids, linear
sesterterpenes and other secondary metabolites. Collections
from Korea have revealed a notable number of bioactive
compounds, including a list of sarcotins A-C (DH-36-DH-38), D
and E (TH-6 and TH-7), F (DH-74), G and H (TH-22-TH-22), I
and J (MH-46 and MH-47), M (DH-40), O and P (MH-20 and MH-
21), sarcotrines (DH-87-DH-91), sarcotragins A-C (MC-85, MH-
42, and MH-54).*****>* Unidentified congenerics from New
Zealand or Australia have yielded ircinialactams (DH-96, MH-
32-MH-34, MH-55-MH-56) ircinialactone A (DH-62), DH-16 or
MH-18.*>*%¢ Antarctic Suberites sp. demonstrated to possess
a series of suberitenones (TeC-23, TeC-24, TeC-27, and TeC-28,
Fig. 5)7**® and S. caminatus also from Southern Polar waters
contained suberitenones derivatives (TeC-26 and TeC-30),
together with caminatal (TrC-250).>*° Pacific Thorectandra sp.
from Palau unveiled the presence of thorectandrols (DC-8, DC-
9, DC-11-DC-13), palauolol (DC-2) and DH-58.>*° Thorectolide
monoacetate (DH-77) was reported in Australian T. excavatus.”*'
Among the few linear sesterterpene products known in marine
habitats, a group of the so-called balibalosides and derivatives
(MH-4-MH-6, and MH-9) were described in the Mediterranean
Oscarella balibaloi from France.***

4.1.2. Sesterterpenoids in Mollusca. For the purposes of
this review, a specific group of marine gastropod molluscs
belonging to the subclass Opisthobranchia (from the Greek
opisten = posterior and branchion = gills) were also considered
(Table S3, ESIt). The classification of this relatively small group
of molluscs, estimated to range from 5000 to 6000 species, is
still widely debated.?***** Opisthobranchia are characterized for
having detorsioned nervous system and modified respiratory
organs. Determining diagnostic traits further comprise notable
shell reduction remaining vestigial in some cases, or only
maintained during larval stages, as well as internal shell forms
overgrown by soft tissue. These modified shell forms serve
majorly as skeletal mechanical support, rather than for physical
protection of the slugs. The Nudibranchia, the largest opistho-
branch order with approximately 3000 species, lacks a shell and
relies on chemical means for defence, often accompanied by
shimmering or confusing colourations. This taxon exhibits
significant diversification in shape and ecological traits related
to trophic habits, reproduction, and protective strategies.>**>*

Nudibranchs have a diverse diet, consuming various food
items, including Chlorophyta, Ochrophyta, Rhodophyta (green,
brown, and red algae, respectively), Porifera, Cnidaria, Bryozoa,
Chordata (tunicates), and other Mollusca. However, their
feeding behaviour is highly specialized, and almost each species
predates on one or few prey.>*® Such pattern is correlated with
the ecological competence and defensive tactics of these
animals, due to their ability to “steal” functional structures
(cleptoplasty) or chemical products (cleptochemistry) from their
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prey. For example, they can incorporate chloroplasts or
zooxanthellae from algae to obtain energy and camouflage,***>°
or nematocysts from cnidarian prey to use as protective
weapons.”®* Cleptochemistry is the process of sequestrating
natural products derived from food items, and then the usage
for self-defence. Some nudibranchs can biotransform the die-
tary metabolites into less toxic compounds to allow bio-
accumulation, or to more effective noxious products to deter
predators. While a few species can uptake simple precursors
and de novo biosynthesize defensive molecules, most rely on
sequestering compounds from their diet.>”****** For efficient
energetic and protective purposes, the resulting bioactive
compounds are often translocated to susceptible anatomical
sites, glands, or exposed parts, or they may be exhausted within
mucous secretions.?”**>?**2% Moreover, in synchrony with alle-
lochemistry warning (aposematic) colorations frequently advise
the presence of chemical defences or toxicity towards putative
predators in exposed habitats. Consumers learn the connection
between bright colorations and bad taste.?”**>2%¢

It has been hypothesized that the reduction of the shell in
the evolution of Opisthobranchia was facilitated by modifica-
tions in the foraging habits towards food items containing
secondary metabolites, which would have been sequestered and
used as chemical defences. This also suggests that the protec-
tion based on dietary allelochemicals would have preceded de
novo synthesized defensive mechanisms.””*** Dietary ses-
terterpenoids are common in dorids, particularly in family
Chromodorididae. Most of these compounds are bioactive tet-
racyclic sesterterpenoid products, which are assimilated from
sponge prey.””**” The scalarane compounds of dietary acquisi-
tion, specifically TeC-75 (a potent anti-inflammatory metabo-
lite) and other related bioactive molecules present in
demosponge prey are of particular relevance.>*® Once trophically
incorporated, these metabolites are usually further bio trans-
formed into derivatives by in chromodorid slugs as part of
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detoxification processes. They are frequently allocated towards
the mantle border and dermal formation-like structures for the
purpose of antipredation protection. Glossodoris sedna from
Costa Rica besides reporting sponge scalaranes,”® it was
previously described to possess sednolide (TeC-365).>*° Simi-
larly, luffariellin C (MC-63) and D (MC-64) were detected along
scalarane derivatives (TeC-164, TeC-281, and TeC-432) in C.
funerea from Palau.*®* TeC-326 is a recurrent scalarane-type
sesterterpene trophically transferred from sponges (e.g. Heter-
onema erecta, several Spongia sp.) to nudibranch slugs [e.g
Glossodoris (syn. of Doriprismatica) atromarginata, atromargi-
nata).** This compound with antimycobacterial properties®*
was allocated in the viscera of the Australian slugs G. hikuerensis
and G. vespa, in contrast with TeC-75, 12-deacetyl-12-
oxoscalaradial (TeC-46, Fig. 6), and 12-deacetoxy-12-oxo-
deoxoscalarin (TeC-141), which were detected in the mantle.”**
Ten norscalaranes mooloolabenes D-O (TeC-69, TeC-70, TeC-
248-TeC-257), along with scalaranes (TeC-141 and TeC-433)
were isolated from Australian D. atromarginata from diverse
locations, indicating varied sponge diet and/or diversified
enzymatic detoxification mechanisms in these slugs.>*® Other
dietary tetracyclic sesterterpenoids found in sea slugs include
ansellone A (TrC-192, Fig. 6) from Cadlina luteomarginata from
Canada and its prey Phorbas sp.,"”” as well as MH-28 and luteone
(TrC-232)."*7** Hamiltonin E (TrC-142) was isolated from South
African Chromodoris hamiltoni.>* Inorolides A, B and C (TeC-
368, TeC-369, and TrC-281) were found in Japanese Chromodoris
inornata,**® along with TeC-156 or scalaradial derivatives (TeC-
428-TeC-431). Variabilin derivatives (DH-22 Fig. 6, DH-49, DH-
107, and DH-109) were obtained from the South African Hyp-
selodoris capensis and its demosponge prey Fasciospongia sp.>*
Finally, a unique example of a non-dietary linear sesterterpe-
noid is granuloside (MH-52), isolated from the Antarctic cla-
dobranch Charcotia granulosa.®**”°

TrC-173 TrC-174

DH-22

Fig. 6 Representative structures of sesterterpenoids isolated from Mollusca, Cnidaria and insects.
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4.1.3. Sesterterpenoids in Cnidaria. Within the phylum
Cnidaria (Table S4, ESIt), the anthozoan order Scleractinia
includes the “true corals” or “stony corals”, which are repre-
sented by ~1500 extant species. Scleractinian corals exist as
solitary (single polyps), or clonal as colonies comprised of many
individual polyps. The polyps' tentacles are covered with
nematocysts or cnidocysts that are used to capture prey. As the
polyp grows the aragonite skeleton deposition begins. Many
corals living in the photic zone establish trophic obligate
symbiotic relationships with dinoflagellate algae belonging to
the family Symbiodiniaceae, known as zooxanthellae.””* These
zooxanthellae provide the coral host with the majority of the
energetic boost from photosynthesis and nutrient exchanges,
while receiving protection within the stinging coral's tissues.*”
Scleractinians have been reef-building organisms for the past
240 million years, making them crucial benthic habitat bio-
constructors. They form the coral reef frameworks in the
tropics, as well as important bioconstructions in temperate and
deep-sea bottoms, where other organisms find shelter and
food.2737275

In the Mediterranean, the most significant bioconstructing
zooxanthellate scleractinid coral is the madreporaria Cladocora
caespitosa,”* which was found to contain bioactive ses-
terterpenes called cladocoranes A and B (DC-6, Fig. 6, and DC-
7). These products revealed biologcal properties in the treat-
ment of various diseases, including cancer, together with
potential antitubercular and antibacterial activities inhibiting
the growth of Gram-positive strains.””®

4.1.4. Sesterterpenoids in insects. The Coccidae is a family
of Insecta Hemiptera Sternorrhyncha commonly known as wax
scales, soft scales or tortoise scales (Table S5, ESIT). The females
are wingless and flat, with an oval body that is often heavily
sclerotized and covered with wax, while the males may be
winged or wingless. Members of the family are known to feed on
a variety of plants belonging to different plant orders. Some are
polyphagous, but most are oligophagous or monophagous.
Host plants are mainly perennial plants and often woody. Many
Coccidae species are important and serious pest in agriculture,
horticulture, and forestry. Some taxa have been introduced to
new regions through the movement of plant material, resulting
in their cosmopolitan distribution. The Coccidae family
includes around 170 genera and 1100 species. The genus Cer-
oplastes, described by Gray in 1828, includes more than 130
species. From Ceroplastes, a little group of sesterterpenoids has
been isolated so far. It has been hypothesized that the signifi-
cance of the presence of sesterterpenoids in the external waxy
cover of insects could be related to their activity as kairomones.
Specifically, cerorubenic acids I and II (TrC-173 and TrC-174,
Fig. 6) and cerorubenols I and II (TrC-175 and TrC-176), could
be responsible for the ovipositional behaviour of the parasitic
wasp Anicetus beneficus (Encyrtidae) towards C. rubens.>” Linear,
monocyclic, bicyclic, and tricyclic sesterterpenoids have been
isolated from the external waxy cover of female of the Mexican
species C. albolineatus. The linear acyclic geranylfarnesol (AI-
1)>® was isomeric with geranylnerolidol (AI-3) isolated by the

fungus  Cochliobolus  heterostrophus.>®  w-Hydroxygerany
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Ifarnesol (AI-2)*** has been also isolated from the sponge Fas-
ciospongia fovea.®* Albocerol (MC-103)*** was a monocarbocyclic
sesterterpenoid also isolated from C. albolineatus. Its structure
belongs to ceriferene sesterterpenoids, macrocyclic compounds
containing a 14-membered ring (1,14-cyclogeranylfarnesase
scaffold).? Similar compounds were isolated from C. ceriferus,
aworldwide distributed species (MC-100-MC-102, MC-104-MC-
111),>%2%* and from C. pseudoceriferus (MC-112, MC-113, MC-
138, MC-139).>* Albolineol (DC-103) was the only bicyclic
compound isolated from C. albolineatus, and described together
with the tricyclic ceroplastanes ceroplastol-I (TrC-98, Fig. 6) and
ceroplastol-II (TrC-99).>*¢ Ceroplastanes belong to the ophio-
bolane type sesterpenoids. The junction between rings A and B
and between B and C in ceroplasteric acid (TrC-97) and TrC-98,
are both trans, while ophiobolins TrC-2, TrC-8, and TrC-13 show
a cis-trans disposition.?®**® Other analogous, all isolated from
C. albolineatus, were albolic acid (TrC-100),>*° ceroplastodiol
(TrC-101), ceralbic acids I and II (TrC-103 and TrC-104)*° and
ceralbol (TrC-105).>* The wax of C. madagascariensis afforded
the tricarbocyclic gascardic acid (TrC-1),>*7° one of the first
described sesterterpenoids. Other tricarbocyclic sesterterpe-
noids were isolated from C. floridensis, a pest insect which
infests orchards as persimmon, and tangerine. These
compounds (TrC-123-TrC-126) show an 11-membered ring,
derive and biogenetically from a head-to-tail cyclization of 2-(2)-
geranylfarnesylpyrophosphate.***

4.2 Sesterterpenoids in microrganisms

Fungi and bacteria represent significant sources of natural ses-
terterpenoids (Table S6, ESI,T and Fig. 4b). In the microbiological
world, sesterterpenoids are metabolites endowed with different
physiological effects. They drive interactions (ie., symbiosis,
competition, or proliferation) with neighbouring commensal or
invader organisms, and some are endowed with anti-inflammatory
and anticancer activities.”” This section will examine the signifi-
cance of sesterterpenoids in the ecological setting of microbes.
4.2.1. Sesterterpenoids in fungi. The kingdom of fungi
includes highly diverse lineages of microbial eukaryotes clas-
sified basing on phenotype identifications, physiological
profiling, and DNA barcoding. It is estimated that there are
approximately 5.1 million of fungi species worldwide, but up to
date, only 2% of them have been classified. Environmental
sequencing analysis is filling the gap. However, there is an
increasing rate of ecologically cryptic groups, which are species
known for their DNA sequence but lack morphological and
cultural characterization and do not have an accepted name.
This generates dark taxa that cannot be formally described
under the current nomenclature of fungal taxonomy rules, thus
complicating the classification process.”*®***® Nevertheless,
fungi are all characterized by chitinous cell walls, membrane-
bound organelles, and clearly defined nuclei. They are exclu-
sively osmotrophic, taking up organic matter externally and
digesting it at the external hyphae before absorbing it in the
mycelia. For this reason, many fungi form parasitic or symbiotic
relationships with bacteria, plants, or animals, even if others
are free-living organisms.*®**® Fungi display an array of
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ecological functions due to their metabolic potential. They act
as principal decomposers in ecological systems, detect envi-
ronmental cues for the biological quorum, and produce
biochemicals for defence, allelopathy, or maintenance of
symbiosis.*** Sesterterpenoids primarily participate in fungal-
mediated ecological functions. Dai and colleagues calculated
that, at the intracellular level, 21% of all produced ses-
terterpenoids inhibit enzymes, thus controlling fungal metab-
olism. Most sesterterpenoids (Table S6, ESIT) act extracellularly,
with 19% of them exhibiting antimicrobial activity against other
fungi, bacteria, or viruses.** Indeed, ophiobolin derivative 3-
anhydro-6-hydroxyophiobolin A (TrC-6, Fig. 7) produced by the
phytopathogenic fungus Bipolaris oryzae and ophiobolin T (TrC-
56) produced by endolichenic fungus Ulocladium sp. reported
significant bacteriostatic effects against Bacillus subtilis, Staph-
ylococcus aureus, and methicillin-resistant S. aureus (MRSA).
Ophiobolins, tricarbocyclic sesterterpenoids with a 5/8/5-fused
carbocyclic skeleton, were first described in the last ‘50s’ and
early ‘60s’ of the last century.** Ophiobolin A (TrC-2) was firstly
isolated from Bipolaris species, as B. leersiae,** B. maydis,>**>%*
B. oryzae*?%** B. panici-miliacei,**® B. setariae,** B. sor-
ghicola.****** 1t was subsequently isolated by a large number of
organisms, including Cochliobolus heterostrophus,>>3* C.
miyabeanus,*” Drechslera gigantea,*®** D. zizaniae,*®***' Hel-
minthosporium turcicum,** Helminthosporium spp.**

Bipolaris species are known to produce ophiobolins. 6-epi-
Ophiobolin A (TrC-3), 3-anhydroophiobolin A (TrC-4),** and 3-
anhydro-6-epi-ophiobolin A (TrC-5),>** as well ophiobolin F (TrC-
17),77%3** 25-hydroxyophiobolin I (TrC-34)*** has been firstly
isolated from B. maydis, TrC-6,*° ophiobolin B (TrC-8),**’
ophiobolin I (TrC-32),**>**® 6-epi-ophiobolin I (TrC-33),**°
ophiobolin J (TrC-35),** and 8-deoxyophiobolin J (TrC-37)**°
have been isolated from B. oryzae. Bipolarolides, ophiobolin
derived sesterterpenoids have been isolated from Bipolaris sp.
(TJ403-B1).* Bipolarolides A and B (TeC-1 and TeC-2) are
characterized by a multicyclic caged oxapentacyclo[9.3.0.0 (ref.
1 and 6).0 (ref. 5 and 9).1 (ref. 8 and 12)]pentadecane-bridged
system. Bipolarolides C and D (TeC-3 and TeC-4) show a 5/5/5/

DC-1 DC-237

TrC-108

TrC-122

Fig. 7
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5-fused core skeleton, and bipolarolide C also contains a C-3-
C-14 oxygen bridge to construct the caged architecture. Bipo-
larolides E-G (DC-1, TrC-107, and TrC-108, Fig. 7) are highly
modified pentacyclic oxaspiro[4.4]nonane-containing
sesterterpene-alkaloid hybrids.” From the same strain,
growing on fermented rice medium, others ophiobolin-type
metabolites, bipolaricins A-1 (TrC-87-TrC-95),**° and bipolar-
ins A-H (TrC-79-TrC-86), tetracyclic ophiobolin-type ses-
terterpenes characterized by an oxaspiro[4.4]nonane moiety,
together with ophiobotriol (TrC-78) have been characterized.**
Ophiobolin-type sesterterpenoids maydispenoid A (TrC-306)
with a decahydro-3-oxacycloocta[cd]|pentalene moiety, and
maydispenoid B (and TrC-307), have been isolated from B.
maydis collected from Anoectochilus roxburghii (Wall.) Lindl
leaves.?*

Ophiobolins are also commonly found in the genus Asper-
gillus 36331333331 A Jarge number of compounds have been first
obtained from the crude extracts of the liquid and solid cultures
of the mangrove fungus A. ustus, namely ophiobolins G and H
(TrC-18 and TrC-28),*** ophiobolin K (TrC-38),**¢ ophiobolin O
(TrC-49), ophiobolin P (TrC-52) ophiobolins U-Z (TrC-57, TrC-
60-TrC-64),*7*** 21-epi-ophiobolin O (TrC-51),>” 21-dehy-
droophiobolin U (TrC-59),**” 21-epi-ophiobolin Z (TrC-65),*" 21-
deoxyophiobolin K (TrC-42),**” 6-epi-ophiobolin K (TrC-39),>*¢
(601)-18,19,21,21-O-tetrahydro-18,19-dihydroxyophiobolin G
(TrC-24),**® (6a)-21-deoxyophiobolin G (TrC-26),>** (60)-16,17-
dihydro-21-deoxyophiobolin G (TrC-27),*** (5a,60)-ophiobolin H
(TrC-29),>*° (50,60)-5-O-methylophiobolin H (TrC-30),**° 5-O-
methylophiobolin H (TrC-31),>*® and (6a)-21,21-O-dihy-
droophiobolin G (TrC-25).*** The marine fungus A. flocculosus
afforded 14,15-dehydro-6-epi-ophiobolin K (TrC-41), 14,15-
dehydro-ophiobolin K (TrC-40),**° 14,15-dehydro-6-epi-ophio-
bolin G (TrC-23),**° 14,15-dehydroophiobolin G (TrC-22),** and
14,15-dehydro-(Z)-14-ophiobolin G (TrC-21),>*° and
ophiobolin N (TrC-47).>*° 6-epi-Ophiobolin N (TrC-48) has been
obtained from A. insuetus.>*

Other ophiobolins and congeners have been isolated firstly
from other fungi. Ophiobolin C (zizanin A) (TrC-13) has been

Trc-107

TeC-440

Representative structures of sesterterpenoids isolated from fungi.
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obtained from Drechslera zizaniae (as Helminthosporium ziza-
niae),**® ophiobolin D (cephalonic acid) (TrC-15) from Cepha-
losporium caerulens,*>3** ophiobolin E (TrC-16) and 8-epi-
ophiobolin J (TrC-36) from D. gigantea,**** and 6-epi-ophio-
bolin G (TrC-19) from Emericella variecolor obtained from
a marine sediment.**>*'® Cochliobolus heterostrophus yielded
ophiobolin L (TrC-43),>** ophiobolin M (TrC-45),**" 6-epi-
ophiobolin M (TrC-46),>"” the degradation products 3-anhydro-
6-epi-A' ) ophiobolin B and the dimer di-3-anhydro-6-epi-
ophiobolin B (TrC-10 and TrC-11).>*

Variculanol (TrC-122, Fig. 7), a sesterterpenoid having a 5/12/
5 ring system has been isolated from A. variecolor.>*® This
compound is probably produced from geranylfarnesylpyr-
ophosphate after a requisite folding and cyclizations followed
by a 1,5-hydride shift to the carbocation.**® Spectanoids A-G
(TrC-311-TrC-317), showing the same ring system, have been
later isolated from A. spectabilis.**® This unusual 5/12/5 ring
system is also present in nitiol (TrC-184), isolated from Gen-
tianella nitida** Spectanoid H (TeC-461), with a 5/8/6/5 ring
system, and a different biosynthetic pathway compared to other
spectanoids, has been isolated from A. spectabilis.>* Terretonin
(TrC-160), a meroterpenoid with a heavily oxidized 25-carbon
skeleton, produced from polyketide and terpenoid precur-
sors,*' was firstly isolated from A. terreus in 1979.%** Further
congeners terretonins A-D (TrC-161-TrC-164),**® terretonin G
(TrC-168),*** and terretonins E and F (TrC-165 and TrC-166)**
have been subsequently isolated from the same species, form
another Aspergillus sp. strain OPMF00272, and from A. insuetus,
respectively. Terretonins H and I (TrC-169 and TrC-170)*** and
1,2-dihydroterretonin F (TrC-167)**® have been isolated from A.
ustus. Halorosellinic acid (TrC-96) and 17-dehydroxyhalor-
osellinic acid (TrC-333) have been isolated from the culture
broth of the marine fungus Halorosellinia oceanica.**”**® Clav-
aphyllene (DC-230), a byciclic hydrocarbon sesterterpenoid
structurally distinct from the ophiobolanes, has been isolated
from A. clavatus.** Another byciclic sesterterpenoid, terpestacin
(DC-104), was firstly isolated from the marine fungal strain
Arthrinium sp.*® Oxidative derivatives of terpestacin have been
isolated later from the same fungus, 21-hydroxyterpestacin (DC-
107), terpestacin B (DC-109).>*° 11-epi-Terpestacin (siccanol)
(DC-105)*** and 11-epi-terpestacin glycoside (DC-106)*®* have
been isolated from D. siccans and B. sorokiniana, respectively.
Bipolarenic acid (DC-210) has been obtained from a marine
isolated of the fungus Lophiostoma bipolare (BCC25910).>¢
Variecolin (TeC-5), a tetracyclic sesterterpenoid with a 5/8/6/5
ring system, was firstly isolated from A. variecolor.*** This
compound was later isolated from other fungi, Emericella pur-
purea,*® E. aurantiobrunnea®**** and Phoma sp.**® TeC-5
congeners, variecolol (TeC-6, Fig. 7) and variecolactone (TeC-
11), were isolated from the mycelium of E. purpurea,® and
emericolins A-D (TeC-7-TeC-10) have been isolated from E.
aurantiobrunnea,**® as well as variecoacetals A and B (TeC-12
and TeC-13).>*” The asperanes are hydroxylated 7/6/6/5 tetracy-
clic sesterterpenoids featuring with a hydroxylated skeleton
isolated from Aspergillus fungi. The first asperane-type ses-
terterpenoid aspergilloxide (TeC-22) was discovered in 2002,
from Aspergillus sp.>”° Later, six other asperane, asperunguisin

This journal is © The Royal Society of Chemistry 2025

View Article Online

Natural Product Reports

A-F (TeC-396-TeC-399 and TeC-353), were found in A. unguis,
which inhabits the lichen Xanthoria sp.*”* Aspergstressin (DC-
253) hybrid polyketide sesterterpenoid, was discovered from A.
sp. WU 243.%” Niduterpenoids A and B (HC-1 and HC-2), char-
acterized by a highly congested hexacyclic 5/5/5/5/3/5 carbon
skeleton, have been isolated from A. nidulans.*> The involve-
ment of a cyclopropane in the ring system makes this skeleton
uncommon. A hypothetical biosynthetic pathway from GFPP
has been proposed, including a series of cyclization and Wag-
ner-Meerwein hydride and alkyl shift reactions, to the forma-
tion of an intermediate with a hexacyclic 5/5/5/5/3/5 ring
system, which after oxidation reactions forms HC-1 and HC-2.*>
Several species of the diverged fungal classes Dothideomycetes
(Bipolaris, Alternaria, Aplosporella, Pyrenophora) and Sordar-
iomycetes (Arthrinium) are now known to possess highly
conserved gene clusters that are mandatory for the ses-
terterpenoids biosynthesis.’”® Co-evolution with host plants,
however, has forced pathogenic fungi to acquire novel gene
functions and pathways mining terpene scaffolds with new
biological potential to overcome competitors or acquire novel
physiological functions.*”*

The fungal terpene biosynthesis has been studied from the
last decades of twentieth century. Sesterterpene synthases in
fungi are all chimeric proteins consisting of a prenyltransferase
(PT) domain at the C-terminus and a terpene cyclase (TC)
domain at the N-terminus.*?””*”> Genome mining and heterolo-
gous expression of fungal bifunctional sesterterpene synthases
have led to the discovery of new sesterpenoids.*”**® The first
sesterterpene synthase, Aspergillus clavatus ophiobolin synthase
(AcOS), responsible for the biosynthesis of TrC-17 was identified
from the genome of A. clavatus in 2013. Two catalytically inde-
pendent domains (prenyltransferase/terpene cyclase), homolo-
gous to those of diterpene synthase, fusicoccadiene synthase,
were identified.*®" A single transformant with the ACLA_76850
gene from A. clavatus produced TrC-17 and three minor ses-
terterpene  hydrocarbons, namely DC-230, 3,20-anhy-
droophiobolin F (ophiobolane 2) (TrC-297), and ophiobola-
1,7,18-triene (ophiobolane 1) (TrC-298).>"**° Heterologous
expression of bifunctional sesterfisherol synthase gene (NfSS)
and cytochrome P450 monooxygenase (NfP450) from Neo-
sartorya fischeri in A. oryzae system afforded the nitidasane
sesterterpenoid sesterfisherol (TeC-20), containing a character-
istic 5/6/8/5 tetracyclic ring system. TeC-20 is next modified by
cytochrome P450 monooxygenase (NfP450) to sesterfisheric
acid (TeC-21).*> An unified biogenesis for sesterterpenes
branching from bicyclic (5/15), tricyclic (5/12/5), and tetracyclic
(5/6/8/5) cation intermediates, distinct from that of separate
class of sesterterpenes including ophiobolins, has been
proposed.®*

The bifunctional sesterterpene synthase Stl-SS in the
genome of E. variecolor has been identified as responsible for
the biosynthesis of the tricyclic sesterterpenoid stellata-2,6,19-
triene (TrC-299)*”® with a 11/6/5 fused ring system. Investiga-
tion of the Stl-SS gene revealed a gene encoding a cytochrome
P450 monooxygenase located next to the StI-SS gene, that cata-
lyzes three successive oxidation reactions on the C-20 methyl
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group to generate the carboxylic acid stellatic acid (TrC-121),**
previously identified in A. stellatus.*”®

The sesterterpene synthase EvQS, obtained from E. variecolor
NBRC 32302, heterologously expressed in A. oryzae NSAR1,
afforded quiannulatene (PC-1), further oxidized to quiannulatic
acid (PC-2) by the cytochrome P450 Qnn-P450.* Genome
mining of bifunctional terpene synthase PbTS1 (BtcAPb) against
two phytopathogens, Phoma betae and Colletotrichum orbiculare
resulted in the production of betaestacins I-IV, Va-c, and VI
(TrC-224-TrC-231).>** Functional expression of a terpene syn-
thase (EvAS) from E. variecolor NBRC 32302 in A. oryzae led to
the production of astellifadiene (TeC-16), showing a 6/8/6/5 ring
system.*”” Heterologous expression of four clade-A bifunctional
terpene synthases (BFTSs), BmTS1, BmTS2, and BmTS3 from B.
maydis ATCC48331 and PbTS1 from Phoma betae PS-13 giving
di/sesterterpenes with unique polycyclic carbon skeletons such
as sesterfisherol, enabled the isolation of the sesterterpene 5/
12/5 tricyclic hydrocarbons Bm1 (TrC-308) and betaestacin I
(Pb1, TrC-224), the 5/6/8/5-tetracyclic hydrocarbon Bm2 (TeC-
505), and of the sesterterpene 5/15 bicyclic alcohol Bm3 (DC-
235).%%

Based on the initial carbocation formation strategy, the
cyclization mechanisms of terpene synthase have been classi-
fied into two types, namely A and B. Type A cyclization (C1-IV-V)
is initiated between the C1-C15/C14-C18 of geranylfarnesyl
diphosphate (GFPP) to yield a 5/15 ring system. Type B cycli-
zation (C1-III-IV) is initiated between the C1-C11/C10-C14 of
GFPP/geranylgeranyl diphosphate (GGPP) to yield a 5/11 ring
system.**® Cyclization-based classification reflects the phyloge-
netic relationships among bifunctional terpene synthases. The
known enzymes catalysing types A and B cyclization have been
classified into two clades, namely clade I, catalysing type A (C1-
IV-V) cyclization, and containing terpene synthase genes from
five lineages, and clade II, catalysing type B (C1-III-IV) cycliza-
tion and containing terpene synthase genes from seven lineages
of fungi.®®*® NfSS is a clade A enzyme, while PaFS and AcOS
belong to clade B.*** Anyway, more than 90% of the chimeric
terpene synthase genes is still functionally unknown.**¢
Systematic search of sequenced fungal genomes among diverse
taxa revealed that chimeric terpene synthase genes were
restricted to Dikarya subkingdom.**® Phylogenetic analysis led
to the discovery of a sub-clade involved in the biosynthesis of
a 5-15 trans-fused bicyclic sesterterpene, namely preterpestacin
I (DC-245). A bifunctional terpene synthase, preterpestacin I
synthase (BmTS3), from B. maydis, that catalyses a chain elon-
gation and a cyclization to afford preterpestacin I, was identi-
fied. Oxidative modifications from DC-245 to DC-104 are
catalysed by enzymes encoded by genes adjacent to BmTS3
(renamed as tpcA), two cytochrome P450 genes (tpcB and tpcC)
and a single flavin-dependent oxidase gene (tpcD). The total
biosynthesis of DC-104 was then obtained by artificial recon-
stitution of the biosynthetic machinery in A. oryzae. Heterolo-
gous expression in A. oryzae was applied to characterize the
function of the putative modification enzyme genes tpcBCD,
and this led to the isolation of two biosynthetic intermediates,
preterpestacin II and preterpestacin III, and the natural product
DC-104.%%
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Recently, a genomic organization analysis revealed a unique
glycosyltransferase gene cluster in the graminaceous pathogen
B. sorokiniana. This has resulted in the identification of two new
metabolites, sestersorokinicin A (DC-237, Fig. 7) and ses-
tersorokiniside A (DC-238), featuring glucosyl moieties that can
enhance the pathogenic effects of bacterial
lipopolysaccharide.’”

In 2022, Yan and colleagues elegantly demonstrated that the
oxidase ObIC,, of A. ustus catalyzes dehydrogenation at the C16
and C17 sites of TrC-17 and TrC-13 which are intermediates of
TrC-38. Subsequently, TrC-38 is transported and stored in
a space between the cell wall and membrane. Feedback mech-
anisms regulate the production of TrC-38 and its precursors, as
their excessive accumulation is closely related to cell toxicity.**®

Genome analysis of Penicillium brasilianum NBRC 6234 and
Penicillium verruculosum TPU1311 revealed the presence of two
bifunctional StTPS genes with prenyl transferase (PT) and
terpene synthase (TPS) domains, P. brasilianum sesterbrasilia-
triene synthase (PbSS) and P. verruculosum preasperterpenoid A
synthase (PvPS), that were heterologously expressed in A. oryzae
NSAR1 affording sesterbrasiliatriene (Trc-293) and pre-
asperterpenoid A (PC-79).*”° Phylogenetic analysis of the TC
domain of protein JNUA3651 from Talaromyces wortmannii
ATCC 26942 with those derived from known sesterterpene
synthases revealed that its closest neighbor was PvPS, suggest-
ing that JNUA3651 is likely to play the same role as PvPS to
synthesize PC-79. Stepwise reconstitution of this gene cluster in
A. oryzae NSAR1 revealed that the terpene synthase AstC
encodes a sesterterpene cyclase to synthesize PC-79. The P450
enzyme AstB oxidizes PC-79 to give PC-31 along with the minor
product asperterpenoid B (PC-64). Subsequently another P450
enzyme AstA oxidizes PC-31 to asperterpenoid C (PC-65).°*
Probable pathways catalyzed by AstB were then proposed, the
oxidation order of C-19 and C-21 was revealed by quantum
chemistry calculations and HPLC-MS analysis, and the inter-
mediates, the three new asperterpenoids D-F (PC-66-PC-68)
were obtained.*° Finally, other ten new asperterpenoids,
namely asperterpenoids G-P (PC-69-PC-78), featuring a 5/7/3/6/
5 skeleton, were obtained from two A. oryzae transformants with
heterologous expression of a terpene cyclase gene AstC with one
or two P450 genes AstB and AstA, by using a molecular
networking approach.*** Heterologous expression of chimeric
enzymes PTTS010 (ZbSS), isolated from Zymoseptoria brevis, and
Colletotrichum orbiculare sesterorbiculene synthase (CoSS) in
Saccharomyces cerevisiae afforded sesterorbiculene (DC-249) and
the 5/8/6/5 tetracyclic sesterevisene (TeC-440, Fig. 7).>%

In fungi, the in vitro production of ophiobolins changes with
the conditions of the culture. For example, B. maydis produces
TrC-2, 3-anhydroophiobolin A (TrC-4), ophiobolin B (TrC-8),
and ophiobolin L (TrC-43) in liquid broth, whereas it generates
ophiobolin M (TrC-45), 6-epi-ophiobolin M (TrC-46), TrC-13, 6-
epi-ophiobolin C (TrC-14), TrC-38, and 6-epi-ophiobolin K (TrC-
39), when grown in agar media. Ophiobola-7,19-dien-25-oic acid
(14,18(R)-epoxy-3,5-dihydroxy-y-lactone) (TrC-66) is produced
by Cochliobolus miyabeanus under modified fermentation
conditions.** More importantly, adding specific substrates,
such as methionine, to the culture media of Bipolaris spp.

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4np00041b

Open Access Article. Published on 20 January 2025. Downloaded on 1/13/2026 11:16:32 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

increases the production of TrC-2 precursor.**>*"” Generally,
sesterterpenoid production increases with the culture time of
fermentation in liquid broth. Production of sclareol peaks in
old-stage cultures of Fusarium spp., Rhizopus spp., and Asper-
gillus spp. cultured for more than six days in standard media,
indicating that fungal conidia are mainly involved in ses-
terterpenoids biosynthesis.??%%*

Given the broad spectrum of biological activities of ophio-
bolins, against nematodes, fungi, and bacteria, studies have
been done to predict the metabolic pathway of these
compounds. Transformations of TrC-3 with Polyangium cellu-
losum produced TrC-32 and ophiobolin A lactone (TrC-7), while
Pseudomonas aeruginosa produced ophiobolin B lactone (TrC-
12). Resting-cell preparations of Penicillium patulum afforded
TrC-3, and 6-epi-ophiobolin L (TrC-44).>*

The in vitro standardized production of sesterterpenoids
yielded the possibility of better understanding their biological
role in the ecology of fungi. Most of the research has been
focused on the phytotoxic properties of ophiobolins produced
by Bipolaris spp. and Alternaria spp. as they have been impli-
cated in significant plant disease epidemics (the Bengal rice
famine in India, 1943 and the spotted leaf blight).****** When
applied to plants, ophiobolins cause detrimental effects, such
as growth inhibition of roots and coleoptiles, reduced seed
germination, and decreased photosynthesis. The effects of
ophiobolins depend on proton extrusion alterations and
membrane permeability changes. Indeed, TrC-2 alters the
permeability of the plasma membrane to potassium and
impairs transport processes resulting in the leakage of electro-
lytes and glucose from roots and the impaired synthesis of the
primary cell wall in plants.>*® The phytotoxic effects of ophio-
bolins require concentrations of approximately 100 uM, which
are typically only reached during epidemics. However, during
endophytic relationships, fungi produce ophiobolins at
concentrations that allow them to obtain ions and sugars from
the host without causing significant plant damage.*”

4.2.2. Sesterterpenoids in bacteria. Genes involved in
terpene, sesquiterpene, and sesterterpene synthase expression
have also been identified in bacteria (Table S6, ESIT), which
therefore represent promising sources for the discovery new

PC-34 TeC-360

TrC-145

DC-239
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natural sesterterpenoids (Fig. 4c). Bacterial genome sequencing
and bioinformatic analysis have recently revealed over 250
terpene synthase genes. However, most of these genes appear to
be silent, which explains the relatively small fraction of ses-
terterpenoids isolated from bacteria compared to fungi, marine
organisms, and plants. Environmental cues, symbiotic associ-
ations, or competition could activate signalling pathways or
repress control circuits to increase sesterterpenoids production
in prokaryotic cells.**® Indeed, volatile terpenes can be
frequently recognized in odoriferous cultures of Actino-
mycetales, filamentous Cyanobacteria, Myxobacteria, and Strep-
tomyces albidoflavus. In contrast, sesterterpenoids are
uncommon in prokaryotes. Bacterial terpene synthases do not
share significant amino acid sequences with those from plants
and fungi, thus representing a challenge for the studies and
sequence identification.**®

In Streptomyces spp., cosmopolitan soil bacteria providing
valuable secondary metabolites, especially antibiotics,** a syn-
thase with sesqui-, di-, and sesterterpene synthase activity,
coupled with the cyclase StsC, catalyses the formation of a new
dicarbocyclic sesterterpenoid, somaliensene A (DC-239, Fig. 8),
and of one monocarbocyclic (—)-somaliensene B (MC-149,
Fig. 8) from geranylfarnesyl pyrophosphate.**®

Yang and colleagues reported that StsC is a membrane-
bound sesterterpene cyclase belonging to the UbiA super-
family of proteins in bacteria. DC-239 and MC-149 were ob-
tained by expressing the corresponding gene in an engineered
Escherichia coli strain. Among the 990 homologues of the UbiA
family proteins reported in nature, 28 homologues have been
identified in the Streptomyces genus However, the sts operon in
Streptomyces flanks specific repressors that make StsC and the
related products unstable, at least in vitro.*”* Sequence analysis
revealed that the Bacillus clausii genome contains a promis-
cuous terpene synthase homologue (Bcl-TS) (a sesterterpene/
triterpene synthase), which potentially catalyses the conver-
sion of linear C35 isoprenoid into monocyclic isoprenoid.
However, the cyclization step does not result in the ses-
terterpenoids production, as revealed by GC-MS analysis of the
culture media."” Nevertheless, the authors were able to purify
functional Bcl-TS protein that successfully converted GFPP into

TeC-509 TrC-144

MC-149

Fig. 8 Representative structures of sesterterpenoids isolated from bacteria.
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the linear sesterterpenoid B-geranylfarnesene, by introducing
the Bcl-TS gene of B. clausii in stable transfected Escherichia
coli.*” Recent reports suggest that culture-related factors, such
as the media's oxygenation or pH, dramatically change cycli-
zation and the profile production of sesterterpenoids in
bacteria.*®® Therefore, enzyme activities select the substrates
and restrict the range of products, making the in vitro bacterial
cultures unsuitable tools for the research of sesterterpenoids. In
nature, bacteria grow in structured communities, forming
microcolonies that bound to surfaces to form biofilms. Biofilm
formation is a dynamic process initiated by the early colonizers,
which determine the three-dimensional expansion of the
bacterial communities.*** The colonizers elaborate the outer
polymer matrix to capture nutrients and new microbes, leading
to a complex, multi-species biofilm that represents a protected
environment allowing cells to survive in hostile situations. In
the biofilm, bacteria communicate through small diffusible
molecules to regulate gene expression, control the production
of secondary metabolites, organize the community's structure
and relationships, and colonize new surfaces by dispersing
bacteria.*® Streptomyces albus forms a compact biofilm in which
cells are embedded in an extracellular protein matrix composed
of a network of fimbriae.**® The biofilm allows S. albus to
maintain its metabolic functions, including the catalysis of
regio- and stereo-selective hydroxylation.*”” The co-cultivation of
S. albus with Bacillus amyloliquefaciens leads to an increase in
the formation of fimbriae and biofilm stability. This suggests
that secondary metabolites extend the half-life of bacteria in the
biofilm.**%%

Improved yeast-based promoter engineering platform
(mCRISTAR),* has been used to activate the previously
uncharacterized Class II cyclase-containing gene cluster, called
atolypene (ato) gene cluster, cloned from the genome of the
cultured actinomycete Amycolatopsis tolypomycina. Heterolo-
gous expression of ato gene cluster into S. albus led to the
characterization of atolypenes A and B (TrC-144 and TrC-145,
Fig. 8).1°

Two clade II promiscuous terpene synthases (Fusarium
graminearum mangicdiene synthase, FgMS and F. graminearum
GJ1012 synthase, FgGS) from an endophytic fungus, F. grami-
nearum, showed to produce variable terpenoids in vivo by con-
verting precursor polyisoprenoid diphosphates of different
lengths (C10, C15, C20, C25). Six Escherichia coli variants, ob-
tained by combining two terpene synthases and three PTs,
afforded 50 different terpenoids, including the 11-6 bicyclic
variecoltetraene (DC-234), the 5/5/6/5 tetracyclic mangicdiene
(TeC-482), and (2E)-a-cericerene (MC-114). Further exploitation
of mutants F65L and F159G afforded the 5/8/6/6 tetracyclic
sesterterpene Tec-509, Fig. 8.*"* Recently, Gu et al. reported the
discovery of the sesterterpene synthases Streptomyces violens
sesterviolene synthase (SvSS) from S. violens, that converted
GFPP into a sesterterpene hydrocarbon, sesterviolene A (TeC-
464), and a few trace compounds. Enzyme engineering through
site-directed mutagenesis gave access to a high-yielding enzyme
variant that provided six additional minor products sestervio-
lenes B-G (TrC-331, TeC-466, TeC-467, DC-250-DC-252) and the
main product TeC-464.*"> The guanidine-containing scalarane
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scytoscalarol (TeC-366) has been isolated from the cyanobacte-
rium Scytonema sp. (Scytonemataceae).®* Other guanidine-
bearing compounds are cybastacines A and B (TeC-359 and
TeC-360, Fig. 8), isolated from another cyanobacterium, Nostoc
sp. (Nostocaceae).*** Only compounds with simpler structures,
such as the acyclic sesterterpenoids (AI, Table S1, ESIt), are
known in benthic diatoms. C,s highly branched isoprenoid
alkenes (haslenes) are ubiquitous in marine sediments.**®
These polyunsaturated sesterterpene oils have been isolated
from several species of Haslea (Naviculaceae), i.e. H. ostrearia
(AI-14-AI-21, AI-23 and AI-24), H. crucigera, H. pseudostrearia (Al-
18) and H. saltstonica (AI-16).***7 Similar compounds (AI-12
and AI-13 rhizenes) have been isolated from the marine diatom
Rhizosolenia setigera (Rhizosoleniaceae).*”® A promising source
of sesterterpenoid synthesis could be that of lichenised Asco-
mycota species. As these compounds have been shown to
mediate trophic or defensive interactions in many fungi, it can
be expected that a wide variety of sesterterpenoids will be
present in lichen species that have to cope with biotic rela-
tionships between mycobionts, algal or cyanobacterial photo-
trophs and a major component of the microbiota. To date,
however, knowledge in this regard is relatively scarce. From
Gypsoplaca macrophylla (Gypsoplacaceae), gypmacrophin A (PC-
34, Fig. 8), showing a skeleton similar to asperterpenoids iso-
lated from Aspergillus and other fungal species, has been iso-
lated.?”®** Retigeranic acid A (PC-7) has been purified from
Lobaria isidiosa var. subisidiosa, L. retigera, and L. subretigera
(Peltigeraceae), while the epimer retigeranic acid B (PC-56) has
been described only from Lobaria isidiosa var. subisidiosa.*"***
Retigeran-11-ol (PC-32) and 4-hydroxyretigeran-11-ol (PC-33)

have been isolated from Leprocaulon microscopicum
(Leprocaulaceae).**
4.2.3. Sesterterpenoids drive symbiotic relationships in

fungi and bacteria. Endophytic fungi and symbiotic bacteria
have coevolved with higher plants or other microorganisms,
providing an eclectic metabolic potential that enables adapta-
tion to the specific host and complements missing synthetic
pathways.*®* Among fungi (Table S6, ESIf), Alternaria spp. are
among the most widely distributed existing endophytes of
plants. The glucosyl sesterterpene, 24-o-p-glucosyl-(—)-terpes-
tacin (DC-108) has been isolated from Alternaria alternata, an
endophytic fungus from the fresh root of Ceratostigma griffi-
thii.** The 5/8/6/5 tetracyclic sesteraltererol (TeC-490) and
10,11-epoxysesteraltererol (TeC-491), together with DC-245,
have been identified in A. alternata living in symbiosis with
Leucosceptrum canum.** Emericellenes A-E (DC-205-DC-209),
showing an emericellane-type bicarbocyclic ring system, were
obtained from the endophytic Emericella sp. AST0036 isolated
from Astragalus lentiginosus.*® 16,17-Dihydro-(—)-terpestacin
(DC-110) and terpestacin C (DC-111) have been isolated from
Aplosporella javeedii, obtained from the stem tissue of Orycho-
phragmus violaceus.*”® Ophiobolin O (TrC-49) and 6-epi-ophio-
bolin O (TrC-50) have been isolated from endophytic Aspergillus
sp. from the body of Zoanthus.*** Ophiobolins R-T (TrC-55-TrC-
56) have been obtained from the endolichenic Ulocladium sp.
isolated from Everniastrum sp.>** Several sesterterpenoids have
been isolated from mangrove endophytic fungi. When

This journal is © The Royal Society of Chemistry 2025
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associated with mangroves, Fusarium spp. produce neo-
mangicols (TeC-370-TeC-372) and mangicols A-G (TeC-374-
TeC-380), which represent novel classes of sesterterpenoids
with an unprecedented carbon skeleton, including spirotricyclic
structure components.**” These sesterterpenoids have not been
recovered from in vitro pure cultures of the fungi. Fusaproliferin
(DC-112), a 15/5-membered ring system with three trans olefins
in the 15-membered ring, was firstly isolated from Fusarium
proliferatum.***** From the same fungus, obtained from the
fresh tissue of the marine mangrove plant Bruguiera sexangular,
the similar compounds fusaprolifins A and B (DC-113 and DC-
114) have been isolated.*** DC-112 has been also characterized
from a strain of Fusarium solani, isolated from the plant
Aglaonema hookerianum.*** In 2013, a novel 5/7/3/6/5 pentacyclic
sesterterpenoid, asperterpenoid A (PC-31) was isolated from
a mangrove endophytic fungus Aspergillus sp.*>* Asperterpenols
A and B (TeC-97 and TeC-98), with a 5/8/6/6 tetracyclic carbon
skeleton, were isolated from a mangrove endophytic fungus
Aspergillus sp.*** Aspterpenacids A and B (PC-38 and PC-39),
featuring a 5/3/7/6/5 ring system, have been isolated from the
endophytic fungus A. terreus of the mangrove plant Kandelia
obovata.** In the proposed biosynthetic pathway an interme-
diate with a 15/5 ring system, deriving from GFPP by head-to-tail
connection and cyclization, originates the 5/6/7/3/5 carbon
skeleton. Finally, further oxidation, reduction, and acetylation
can generate PC-38 and PC-39."® The endophytic fungal strain
Aspergillus sp. Z]J-68, collected from the leaves of the mangrove
plant Kandelia candel, afforded the nitride ophiobolins asper-
ophiobolins A-K (TrC-67-TrC-77), with an additional five-
membered lactam ring between C-5 and C-21. Asper-
ophiobolins A-K (TrC-67-TrC-70) were isolated from the
fermentation culture of the mangrove endophytic fungus
Aspergillus sp. ZJ-68 as the first ophiobolin derivatives with
a five-membered lactam unit between C-5 and C-21.>** The
nitidasane sesterterpenoid sesteralterin (TeC-393) has been
obtained from the culture extract of an Alternaria alternata
strain (k21-1) isolated from the surface of the marine red alga
Lomentaria hakodatensis. Behind the structural support, endo-
phytic fungi exploit the cyclization catalyzes of critical bifunc-
tional diterpene synthase to direct by-products to the
cytochrome P450 oxidation, resulting in the production of
conidiogenone, a diterpene inducer of conidiation. Upon
production, conidiogenone rapidly accumulates at the surface
of the hypha. Once it reaches the threshold concentration, it
triggers conidiogenesis.*** Conidiogenesis induces the growth
of hyphae to further penetrate the substrates of plants for
anchoring the mycelia and mining nutrients.**” As endophytes
reside in association with plants for at least a part of their life
cycle, it is possible that fungi can detect plant-derived signals to
adjust their metabolism and growth to environmental condi-
tions. Plant homoserine and asparagine induce gene expression
in fungi, whereas horizontal gene transfer (plant to endophyte
genome or vice versa) explains the metabolic complementation
during symbiosis.****** Multiple species of microbes colonize
plant tissues or marine organisms, resulting in interactions
between associated endophytes, including fungus-fungus,
fungus-bacteria, and bacteria-bacteria relationships. These

This journal is © The Royal Society of Chemistry 2025
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intricate networks of microbial interactions significantly impact
metabolites production.*”* The networks involve metabolic
elicitors, such as quorum-sensing signal molecules that trigger
otherwise silent pathways.****** Co-culture of different microbes
that mimic the competition of natural ecosystems rather than
maintaining axenic cultures is increasingly practiced in micro-
bial natural product research.*** This strategy can stimulate the
transcription and translation of genes, and enhancing the
production of constitutively present natural products, or trig-
gering the expression of silent biosynthetic pathways with the
production of new compounds.**** The fermentation broths
of coculture of basidiomycetes Trametes robiniophila and Pleu-
rotus ostreatus afforded the linear sesterterpenoids postredienes
A-C (AI-5-AI-7).“* Anyway, dynamic “C-labeling analysis
showed that sesterterpenoids were synthesized by P. ostreatus
instead of T. robiniophila.*** Physical interactions between A.
nidulans and Streptomyces spp. induce epigenetic regulation of
secondary metabolism as previously observed in lichens.*** In
these organisms, specific interactions between microorganisms
belonging to different domains produce physical interactions
that induce otherwise silent biosynthesis genes in response to
environmental factors or internal biological processes. These
observations demonstrate that novel terpenoid structures can
be isolated from different ecological environments. Marine
fungi such as the Aspergillus genus typically coexist with
different sponges. In the Mediterranean Sea, A. insuetus
produces different secondary metabolites if associated with
Petrosia spp. or Psammocinia spp. sponges.**® Marine sponges
also host a bacterial population that has not yet been fully
characterized. Metagenomic analysis of the sponge Ircinia
ramosa revealed that its microbiota is composed of 32%
sequence-associated Archaea and 41% sequence-associated
Bacteria. The metabolic reconstruction showed extensive
redundancy across taxa.**” Bacteria inside sponges have both
commensal and parasitic relationships, and the density and
diversity of resident bacteria control metabolic production. The
density of chemosynthetic autotrophs or heterotrophs increases
from the inner to the outer, while cyanobacteria preferentially
reside at the borders.?**”*® However, there is still limited
literature on the interaction of bacteria and sponges and its
impact on sesterterpenoids production.

4.3 Sesterterpenoids in plants

With over 350 000 known species, plants (Table S7, ESIt), are
a megadiverse kingdom of organisms.*** They were among the
first organisms to colonise terrestrial environments, and have
acted as habitat builders, significantly modifying the chemical
composition of the Earth's atmosphere and the chemical and
physical properties of the soil. Plant species have developed
a complex array of primary and secondary metabolic pathways
in response to environmental pressures. These pathways facil-
itate to the synthesis of metabolites that are biologically active
within the plant and potentially useful for regulating the
physiology of other organisms. Plants have been a significant
source of food and medicine since ancient times, owing to their
properties. In a constant balance between an adaptive response
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to the pressures of the environment and a modifying effect on it,
plant species have differentiated in their genome a very rich
complexity of primary and secondary metabolic pathways
capable of leading to the synthesis of different compounds.
These compounds can be functionally active both for the plant
healthiness and potentially for regulation of the physiology of
other organisms. Regarding sesterterpenoids, vascular plants
(Tracheophyta) are one of the richest phyla with 219 known
compounds, following Porifera and Ascomycota (Fig. 1). The
diversity of compound classes (6 out of the 10 considered in this
review) is remarkable, and the most represented class being
dicarbocycles (DCs) with 114 known compounds (Fig. 1). TrCs
(Table S1, ESLt and Fig. 4d) are the class of sesterterpenoids
most shared between different plant families, even those that
are phylogenetically distant from each other. In some families,
this is the predominant or even exclusive class of sesterterpe-
noids, such as Pteridaceae.*”*** Cheilanthane sesterterpenoids
have been isolated from Cheilanthes farinosa, cheilarinosin
(TrC-102, Fig. 9)*** and cheilanthatriol (TrC-138),** Aleur-
itopteris khunii (TrC-236 and TrC-237),** A. agetae (TrC-300-TrC-
302).%' 17-Ox0-18,19-bisnorcheilanth-13(24)-en-6a-0l, a 19,20-
bisnorcheilanthane (C,; sesterpenoid) (TrC-303) and 13,17-
dioxo-18,19,24-trisnorcheilanth-6a-0l, a 19,20,21-trisnorchei-
lanthane (C,, sesterpenoid) (TrC-304), have been also isolated
from A. agetae.”™ Ancepsone A (TrC-320), isolated from A.
anceps,”* and (17Z)-13,19-epoxycheilanth-17-en-6a-ol (Tec-506,
Fig. 9), from A. mexicana,**> showed a 13,19-epoxycheilanthane
skeleton. 18-epi-Scalar-16-ene-6a,19-diol (Tec-507) and 16a,19-
epi-dioxy-18-episcalar-17(25)-en-6a-0l (Tec-508) have been also
isolated from A. mexicana. Other cheilantanes, cristases-
terterpenoic acid and cristasesterterpinol glucoside (TrC-276
and TrC-277), have been obtained from Caesalpinia crista
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(Fabaceae).*** Involudispirones A and B (TrC-278 and TrC-279,
Fig. 9), containing a 1,2-dioxadispiro[5.2.5.2]hexadecane ring
system have been isolated from Stahlianthus involucratus (Zin-
giberaceae).*” It has been speculated that this spiro system
could be formed by an enzyme-catalyzed Diels-Alder addition
between the derivative of cadalenequinone, a major constituent
in S. involucratus, and myrcene.**”**® Similarly, it has been
hypothesized that heliocide H2 (TrC-157), isolated together with
heliocides B1 (TrC-155) and H1, H3 and H4 (TrC-156, TrC-158,
and TrC-159) from Gossypium hirsutum (Malvaceae),***** could
be biosynthesized by a Diels-Alder addition between the ses-
quiterpenoid gossypolone and myrcene.*** A Diels-Alder reac-
tion has been used to synthesize TrC-155 and TrC-159 from
hemigossypolone and trans-p-ocimene.** Linder-
asesterterpenoids A and B (TrC-319 and TrC-319) with an
unusual 7-cyclohexyldecahydroazulene carbon skeleton have
been isolated from the roots of Lindera glauca (Lauraceae).*** 2/'-
Isopicrasin A (TrC-288)*** and picrasin A (TrC-289),"® simar-
oubolides having the C,5 simarolidane skeleton which consists
of three carbocycles and two lactone rings, and is closely related
to simarolide, have been isolated from Picrasma quassioides
(Simaroubaceae).***> Vulgarosides 1-4 (TrC-245-TrC-248), ses-
terterpene esters whose base aglycon skeleton is quite similar to
TrC-280 (except for the stereochemistry at C-13 and C-14), have
been obtained from Cydonia vulgaris (Rosaceae). The distribu-
tion of TrCs in vascular plants suggests a more ancestral
inheritance of the genes involved in the synthesis of these
compounds. While a detailed discussion of the phylogeny of
sesterterpenoids in plants is not a primary objective of this
review, it is worth noting that there are several gaps in our
knowledge regarding this topic. Based on current knowledge,
Lamiaceae is the largest source of compounds among the 22

TeC-506 DC-59

DC-167 TeC-435

Fig. 9 Representative structures of sesterterpenoids isolated from plants.
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vascular plant families for which sesterterpenoids have been
described, with DC and MC being the most important. Colei-
folides A and B (MH-50 and MH-51), characterized by a B-
methyl-o,B-unsaturated-y-lactone and structurally similar to
manoalide derivatives, have been isolated from Scutellaria
coleifolia.**® Leucosceptrane sesterterpenoids (leucosceptroids),
colquhounoids and eurysoloids have been isolated from the
Lamiaceae Leucosceptrum canum, Colquhounia coccinea var.
mollis and Eurysolen gracilis. From the trichome exudates and
the leaves of L. canum bicarbocyclic sesterterpenoids have been
isolated, i.e. leucosceptroids A and B, E-Q (DC-168 and DC-
169),*” leucosceptroids E-N (DC-185-DC-192, DC-138, and DC-
229) showing an o,B-unsaturated <y-lactone moiety,**® leuco-
sceptroids P and Q (DC-198-DC-199),**° leucosesterlactone (DC-
164),"° 17a-hydroxyleucosceptrine (DC-166),"* leucosceptrine
(DC-211).*% Leucosceptroid O (DC-193), possessing a spiro a,p-
unsaturated vy-lactone moiety, has been isolated from the
flowers of the same species.””® Additionally, tricarbocyclic
compounds with antipodal cyclopentenones leucosceptroids
C-D (TrC-190 and TrC-191),** leucosesterterpenone (TrC-188,
Fig. 9),*° and 14p-methylleucosesterterpenone (TrC-189),*”*
have been found. Leucosceptroid degradation products, i.e. the
C20 norleucosceptroids A-C (DC-172-DC-174), and the C21
norleucosceptroids D-H (DC-200-DC-204).*>*”* have been iso-
lated from L. canum of Nepalese and Chinese origin, respec-
tively.  1a-Hydroxyleucosceptrine  (DC-212) and  8a-
hydroxyleucosceptrine (DC-213) were produced microbial
transformation of DC-211 by Rhizopus stolonifer.*** Colquhou-
noids A-D (DC-182-DC-184 and DC-246), and 14-epi-colquhou-
noid D (DC-247) have been isolated from Colquhounia coccinea
var. mollis.*’**”7 Eurysoloids A and B (TeC-441 and TeC-442),
characterized by a pentacyclic 5/6/5/10/5 scaffold with an
unusual macrocyclic ether system have been isolated by Eur-
ysolen gracilis.*’® The genus Salvia has received much attention
within Lamiaceae. Sesterterpenoids have been found in both
cultivated plants e.g. S. tingitana®”® and wild species, such as in
the case of S. dominica from subarid regions of Jordan.*****
Prenyllabdane-type sesterterpenoids® have been isolated from
several Salvia species, as S. syriaca (DC-59, Fig. 9),**> S. hypoleuca
(DC-64, DC-67, DC-68, and DC-70),***** §. palaestina (DC-73-
DC-75),"% S. dominica (DC-81-DC-91, DC-94-DC-96, DC-101 and
DC-102),*** S. tingitana (DC-120, DC-127, DC-129-DC-132, DC-
146, DC-147),*” S. yosgadensis (DC-134), and S. mirzayanii (DC-
121).%%¢ Prenyllabdane sesterterpenoids with a lactone, ester or
acetal functionality between C6 and C23 have been found in
various species, as S. hypoleuca (DC-65, DC-66, DC-69, and TrC-
223),%344 S, tingitana (DC-127, DC-143-DC-145),"° S. sahendica
(DC-71 and DC-72),**” S. dominica (DC-76-DC-80, DC-92-DC93,
DC-101 and DC-102),"** S. lachnocalyx (DC-97-DC-98).%*® Other
metabolites with a tetrahydropyran ring similar to manoyloxide-
type diterpenoids between C-8 and C-13 were obtained from S.
mirzayanii (DC-122-DC-126)** as well as other hydroxymanoyl-
oxide derivatives (DC-140-DC-142) from S. limbata,*® (14E)-
methylmanoyloxide-14,16,18-trien-19,16-oxide-23-carboxylate

(DC-139) from S. tingitana,*” lachnocalyxolides C and D (DC-99-
DC-100) from S. lachnocalyx,**® yosgadensolides A and B (DC-
134 and DC-135) along with their epimers from S. yosgadensis,**
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salviaethiopisolide derivatives (DC-219-DC-220)*> and others
hydroxymanoyloxides (DC-221-DC-223)** from S. aethiopis. A
norprenyllabdane-type sesterterpenoid, (13E)-4a,60,80-
trihydroxylabd-13(14),17(18)-dien-16,19-olide  (DC-132), was
isolated from S. tingitana.*”® Compounds arising from degra-
dation of C-19 and C-20, 19,20-dinorsesterterpenoids were yos-
gadensenol (DC-133) and 13-epi-yosgadensenol (DC-42) from S.
yosgadensis,** and 6-dehydroxyyosgadensenol (DC-137) and 6-
dehydroxy-13-epi-yosgadensenol (DC-136) from S. limbata.**°
The sesterpene y-lactone genepolide (DC-167, Fig. 9), isolated
from Artemisia umbelliformis (Asteraceae) has been described as
a formal Diels-Alder adduct of the exomethylene-y-lactone
germacranolide costunolide and the diene myrcene.*® Another
intermolecular Diels-Alder reaction between thujanone, a thu-
jane-type monoterpene one of main constituents in the essen-
tial oil of A. argyi, and a guaianolide, has been hypothesized for
the biosynthesis of isoartemisolide (PC-26), isolated from the
same species.**® Raoulic acid (DC-218), isolated from Raoulia
australis, probably biosynthesized by diprenylation of a sesqui-
terpenoid precursor of the germacrene type, common in other
Asteraceae species.”” Dibritannilactone A (TeC-45), isolated
from Inula britannica, may derive from a monoterpene and
a sesquiterpenoid.>®** The trinorsesterterpene glycoside 3-[6-
(4,8-dimethyl-nona-1,3,7-trienyl)-4-hydroxy2,6-dimethyl-
cyclohex-1-enyl]-3-hydroxypropionic acid 1 glucoside (MC-99)
has been obtained from the fern Woodwardia virginica (Asple-
niaceae).”® The scalarane corallocarpscalarolide (TeC-410) has
been isolated from the roots of Corallocarpus epigaeus (Cucur-
bitaceae).”® Biyoulactones D and E (DC-170 and DC-171),
tricyclic meroterpenoids possessing an octahydroindene ring,
a vy-butyrolactone ring, and a B-diketone moiety, have been
isolated from Hypericum chinense (Hypericaceae).**® From the
fruit of Phellodendron chinense var. glabriusculum (Rutaceae),
phellogine (TeC-32), whose structure is similar to tirucalla-7-ene
derivatives in the same species, has been obtained.*** Gonio-
carpic acid (DC-214) has been described within the constituents
of the leaves of Serjania goniocarpa (Sapindaceae). Nevertheless,
the classification of DC-214 as a sesterterpenoid has been
questioned as it cannot be derived from GFDP.”> Among Mon-
ocotiledonous species, Aletris farinosa (Nartheciaceae), afforded
two sclarane (TeC-226 and TeC-227) and four cheilantane ses-
terterpenoids (TrC-274, TrC-275, TrC-290, and TrC-291) have
been studied.****** The scalarane sesterterpenoid perisomalien
A (TeC-34)"* and the monocyclic n-non-2’-en-1'-yl-13(15,19,19-
trimethyl-cyclohex-14,16-dienyl)-2,6,10-trimethyl-tetradec-6-ol-
13-on-1-oate (hemidesmu sesterterpenoid ester) (MC-98), have
been isolated from Periploca somaliensis and Hemidesmus indi-
cus, respectively.®” The potential of sesterterpenoids in plants is
still largely untapped, as evidenced by the case of Gentiana-
ceae.” Nitidasin (TeC-352)°° was the first gentianellane-type®
sesterterpenoid isolated from the Andean species Gentianella
nitida. From the same species, nitiol was isolated (TrC-184).>* It
has been speculated that the seco-gentianellane alborosin (TrC-
109) from G. alborosea, could be derived from the cyclization of
GFPP through TeC-352 as a key intermediate, and after the final
oxidative cleavage of the C11/C12 bond.**” Later, other gentia-
nelloids have been isolated from the Chinese G. turkestanorum,
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namely the C-6 epimeric sesterterpenoids gentianelloids A and
B (TrC-286 and TrC-287), two compounds containing an
unusual 10,11-seco-gentianellane skeleton,**® and 18-epi-nitida-
sin (PC-80), gentianelloids C-F (TeC-447, TeC-449, TeC-451,
TeC-453), 18-epi-gentianelloids C-F (TeC-448, TeC-450, TeC-452,
TeC-454), and 18-epi-alborosin (TeC-455).>* Another species
belonging to Gentianaceae, Swertia bimaculata, afforded
aspterpenacid C (PC-40, Fig. 9)°*° with the 5/3/7/6/5 pentacyclic
skeleton similar to aspterpenacids A and B (PC-38 and PC-39)
mangrove endophytic fungus Aspergillus terreus, isolated from
Kandelia obovata (Rhizophoraceae).**® Their biosynthetic
pathway could be derived from GFPP with a series of cycliza-
tions, rearrangements, redox and acetylation reactions.*** Boli-
vianine (PC-53) and isobolivianine (PC-53), two sesterterpenoids
with an unusual skeleton, have been isolated from the bark of
Hedyosmum angustifolium.”** The authors hypothesized their
biosynthesis starting from onoseriolide, a sesquiterpene
lactone already isolated from other Chloranthaceae. Another
species, H. brasiliense, afforded hedyosulide (TrC-20), probably
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biogenetically related to the a-exo-methylene-y-lactone
precursor hedyosumin A and myrcene.** In the cormophytes,
acyclic sesterterpenoids (A, Table S1, ESIt) have been obtained
from Poaceae, Euphorbiaceae, and Solanaceae. 2,6,10,14-Tet-
ramethyl-18-butanecarboxymethylene-henecos-12-en-17-ol
(AI-11) has been isolated from Oryza sativa,® and
(22,6Z,10E,14E)-geranylfarnesol (AI-8) from Triticum aestivum.>*?
Other linear sesterterpenoids, 2E-3,7,11,15,19-
pentamethyleicos-2-en-1-ol (AI-22) (2Z,6E,10E,14E)-ger-
anylfarnesol (AI-9), have been isolated from the aerial parts of
Croton hieronymi (Euphorbiaceae).”™* 3,7,11,15,19-Pentamethyl-
2-cis-6-trans-eicosadien-1-ol (AI-4) has been obtained from the
unsaponifiable matter of the leaves of Solanum tuberosum
(Solanaceae).**

Among terrestrial organisms, vascular plants are therefore
the most important source of sesterterpenoids.” It is inter-
esting to examine the geographical distribution of the source
species of sesterterpenoids on a global scale. Fig. 10 shows the
most noteworthy areas for raw materials collection to be

MC

TrC

PC

Fig. 10 Worldwide distribution of plant species known to be sources of different macrocategories of sesterterpenoids. The intensity of the
colours in the figure is proportional to the number of taxa. The abbreviations of the macrocategories of compounds are as follow: Al = acyclic;
MC = monocarbocyclic; DC = dicarbocyclic; TrC = tricarbocyclic; TeC = tetracarbocyclic; PC = pentacarbocyclic. Monoheterocyclic (MH),
diheterocyclic (DH), trineterocyclic (TH) and hexacarbocyclic (HC) compoundsare not included in the analysis, as they have little or no repre-

sentation for plants in the database.
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exploited for a potential use in the pharmaceutical field. The
spatial distribution patterns of the compounds also reveal
regions where it may be beneficial to increase eco-metabolomic
research on sesterterpenoids. Overall, China, India and, more
generally, the Asian continent are the areas with the greatest
wealth of sesterterpenoids rich vascular plants even if Australia
(for MC, DC and TrC), the Andean regions of South America (for
AI) and the Mediterranean areas (for DC) are also notable. It
should be noted that this distribution partially overlaps with the
world's floristic hotspots. However, some areas with high
specific richness and high rates of endemism, such as Maca-
ronesia, Amazonia, or the Alpine regions, appear surprisingly
underrepresented and may still contain a considerable wealth
of sesterterpenoid diversity.

Thanks to the investigation of new biosynthetic chemistry,
undescribed plant sesterterpenoids have been defined. By
genome mining and gene clusters analysis, it appears that many
genes and gene clusters do not direct the production of known
metabolites of the organism in which they are found and that
novel gene clusters provide the biosynthesis of known natural
products.®*® Moreover, the induced expression of silent genes
can lead to the isolation of new metabolites.*®* Terpenoid
diversity in plants is determined by short-chain prenyl-
transferases (SC-PTs) and terpene synthases (TPSs). Among the
SC-PTs, geranyl-farnesyl pyrophosphate synthases (GFPPS)
produce the sesterterpene base scaffold GFPP.**?* Ses-
terterpene synthases (sester-TPSs), a clade of the TPS-
a subfamily, are a branch of class I TPSs, firstly identified in
Brassicaceae,*® and widely distributed in the plant kingdom.
Sester-TPSs catalyse diphosphate abstraction, cyclization of C1-
C15 and C14-C18, producing a 5/15 bicyclic carbocation, which
then undergoes structural modifications to yield diverse poly-
cyclic sesterterpene scaffolds.*'® Many sesterterpenoids contain
a cyclopentane moiety, generated via type A (C1-IV-V) (between
the C1 cation, the C14-C15 double bond (IV), and the C18-C19
double bond (V)) or type B (C1-III-IV) (between the C1 cation, the
C10-C11 double bond (III), and the C14-C15 double bond (IV))
early-stage cyclization mechanisms of GFPP in the catalytic
pocket of plant sesterTPSs.”®**"*'® Type A cyclization is mainly
represented in plants. Examples are (—)-caprudiene A (TeC-435,
Fig. 9), produced by transient expression of individual STS with
a GFPPS gene by “agro-infiltration”, with Agrobacterium tume-
faciens infiltrated into the undersides of leaves of Nicotiana
benthamiana,”* and (—)-variculatriene A (TrC-117).°*** Type-B
Sester-TPSs, considered as possible progenitors of Type-A
Sester-TPSs, have been discovered in Brassicaceae. AtTPS06,
identified in Arabidopsis thaliana, is the first gene found in
plants which produces the E/Z isomer of flocerene (TrC-292) via
type-B cyclization mechanism.”**7** In the genome of A
thaliana, AtsesterTPS1, responsible for the biosynthesis of the
new tricyclic sesterterpene (+)-thalianatriene (TrC-120) with the
unprecedented 11-6-5 fused ring system, and AtsesterTPS2,
which produced (—)-retigeranin B (PC-4), with the characteristic
5/5/5/6/5 fused ring system, were identified.*® Transient
expression of TPSs from A. thaliana, Capsella rubella, and
Brassica oleracea in Nicotiana benthamiana afforded ses-
terterpenoids with various scaffolds, as (—)-caprutriene (TrC-
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116), (—)-variculatriene A (TrC-117), (—)-aleurodiscalene A (TeC-
17), (—)-ent-quiannulatene (PC-3), (+)-boleracene (PC-6), and
(+)-astellatene (PC-9).* Engineered Nicotiana benthamiana
expressing LcTPS2, characterized from Leucosceptrum canum,
produced two 18- and four 14-membered ring sesterterpenoids
including (S,2E,6E,10E,14E)-3,7,11,15-tetramethyl-18-(1-
hydroxyisopropyl)cyclooctadecatetraene (MC-141),
(S,2E,6E,10E,14E)-3,7,11,15-tetramethyl-18-(1-methylethenyl)
cyclooctadecatetraene (MC-142), (S,2E,15Z)-a-cericerene (MC-
143), (S,2E)-cericerene (MC-114), (S,2E)-o-cericerene and
(14S,15R,2E)-15-hydroxy-o-cericerene (MC-145).>> Engineered
Escherichia coli expressing CcTPS1, obtained from Colquhounia
coccinea var. mollis, produced (+)-a-geranylbisabolene (MC-150)
and (+)-somaliensene B (MC-151), characterized by an alotane
skeleton, not previously isolated from any plants.>*® Trans-pre-
nyltransferase (PT) and N-terminal terpene synthase (TPS) gene
pairs from Arabidopsis thaliana have been reported to synthesize
sesterterpenoids. AtsesterTPS2 produced the pentacyclic ses-
terterpenoid (—)-retigeranin B (PC-4) with the characteristic 5/5/
5/6/5 fused ring system. AtsesterTPS1 produced the tricyclic
(+)-thalianatriene (TrC-120).>*

5 Biological and pharmacological
properties of sesterterpenoids

Over the years, sesterterpenoids have been investigated for their
action on a wide range of biological activities of pharmacolog-
ical importance including suppression of cancer cell growth,
anti-inflammatory properties, mainly counteracting PLA,
activity, and modulation of neurodegenerative processes (Fig.
11). Moreover, they were explored for their key functions such as
antimicrobial effects against fungi, Gram + and — bacteria,
viruses such as HIV or as anti-malarial and anti-tuberculosis
agents. Sesterterpenoids have been also inspected as ichthyo-
and phyto-toxins, as nematocidals, and antifeedants from an
ecological point of view. Few of them were tested for the
involvement in the treatment of metabolic diseases such as
type-II diabetes, hypercholesterolemia and obesity and as
immunosuppressive agents. Here, we briefly discuss those ses-
terterpenoids whose mechanism of action has been thoroughly
investigated, focusing on their target enzymes. In parallel,
a more comprehensive list of sesterterpenoids biological
activity can be found in the annexed Table S8, ESI,} and at
https://sesterterpenoids.unige.net/. Selected sesterpenoids
structures were numbered to help reading.

5.1 Sesterterpenoids with anti-cancer activity

The majority of sesterterpenoids were probed for their cyto-
toxicity, predominantly against cancer cells. Principally,
ophiobolins were screened versus multiple cancer cell lines:
among the approximately 80 identified ophiobolins, about 20
were reported for their cytotoxic capability. Mainly, TrC-2
(Fig. 3) displayed growing inhibition against 25 human cancer
cells: it principally counteracts apoptosis-resistant glioblastoma
cells by inducing a non-apoptotic cell death via reaction with
primary amines prompting pyrrolylation of lysine residues on
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Fig. 11 Circular plots showing the relationships among referred
compound categories and their biological activities. The dimension of
color bands is proportional to the number of compounds found in
each category. Abbreviations are as follow: BACT = anti-bacterial;
CANC = anti-cancer; CYTO = cytotoxic; ENZ = enzyme inhibitor;
FEED = anti-feedant; FUNG = anti-fungal; IMM = immunosuppres-
sive; INFL = anti-inflammatory; MICR = anti-microbial; VIR = anti-
viral; OTHER = other activities; UNKNOWN = unknown effect. For
sesterterpenes categories: Al = acyclic, linear;, MC = mono-
carbocyclic; MH = monoheterocyclic; DC = dicarbocyclic; DH =
diheterocyclic; TrC = tricarbocyclic; TeC = tetracarbocyclic; TH =
triheterocyclic; PC = pentacarbocyclic; HC = hexacarbocyclic.

its intracellular target protein.”** Intrigued by this property,
Fujiwara studied the behaviour of TrC-2 in the L1210 cell line in
2000, showing a concentration-dependent cytotoxicity.”*® This
compound provoked paraptosis-like cell death in human glio-
blastoma cells by altering the cytoskeleton dynamic pathway.>>*
Furthermore, TrC-2 selectively inhibited the correct develop-
ment of solid and haematological cancer cells with a very low
ICsy; it also prompted apoptosis in MDA-MB-231 cells through
the inhibition of PI3K/mTOR, Ras/Raf/ERK and CDK/RB path-
ways®* and it has been discovered to significantly repress the
mammosphere formation.** This super active compound has
also a role in fighting multi-drug resistant cancer cells, as it acts
against HL60 cells that are resilient to combined chemotherapy,
ovarian carcinoma cells that are resistant to cisplatin, small
lung carcinoma cell line GLC4 that is resistant to adriamycin,
and the others.**® Ophiobolins not only were extensively studied
for their in vitro cell inhibition, but also reduced tumour
development in in vivo animal models. For instance, TrC-2 was
inoculated in a mouse model of glioblastoma®*® and of mela-
noma.”* Later on, TeC-326, heteronemin acetate (TeC-349),
hyrtiosin E (TeC-309), 12-deacetoxy-scalarin 19-acetate (TeC-
176) and TrC-130 were tested against a large panel of cells such
as HuCCA-1, HeLa, MDA-MB-231, MCF7, HT-29, and H69AR,
KB, human colon adenocarcinoma (DLD-1 and HCT-116),
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hormone-dependent breast cancer (T-47D) and human
chronic myelogenous leukaemia (K562) cell lines and TeC-326,
Fig. 12, was the most potent on all cell lines.*®*** On examining
the mechanism of TeC-326 action, it was found to induce
apoptosis in leukaemia Molt4 cells by acting on the oxidative
stress pathway, on mitochondrial dysfunction and on talin
expression. More in detail, it was able to upregulate both talin
and phosphorylated talin expression and, additionally, to
interfere with actin microfilament formation inducing
morphological alteration.”*® TeC-326 was found to inhibit the
proliferation of the HCC cell lines HA22T and HA59T and to
induce apoptosis via the caspase pathway. TeC-326 treatment
also induced the formation of reactive oxygen species (ROS),
which is associated with TeC-326-induced cell death, and to
triggers ROS removal by mitochondrial SOD2 instead of cyto-
solic SOD1. The mitogen-activated protein kinase (MAPK) sig-
nalling pathway was linked to ROS-induced cell death, and TeC-
326 reduced the expression of ERK, a MAPK that is associated
with cell proliferation. Inhibitors of JNK and p38, which are
MAPKs associated with apoptosis, restored TeC-326-induced
cell death. In addition, TeC-326 treatment reduced the expres-
sion of GPX4, a protein that inhibits ferroptosis, which is
a novel form of non-apoptotic programmed cell death. Treat-
ment with a ferroptosis inhibitor also restored TeC-326-induced
cell death.” TeC-326, 12-epi-heteronemin acetate (TeC-328),
TeC-331 and TrC-130 were found to be toxic also against human
epidermoid carcinoma KB cells*** and TeC-326 is also reported
to inhibit the proteasome, promoting apoptotic cell death.”** A
very deep analysis has been carried out by Lai et al. 2016 on two
scalarane  sesterterpenoids,  12f-(3'B-hydroxybutanoyloxy)-
20,24-dimethyl-24-oxo-scalara-16-en-25-al (TeC-105) and 12p-
(3'B-hydroxypentanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-
25-al (TeC-320) on various cancer cells. In leukaemia Molt 4
cells, TeC-105, Fig. 12, triggered mitochondrial membrane
potential disruption, induced ROS production, calcium release
and ER stress and inactivates topoisomerase Ilo, determining
apoptosis. Moreover, this molecule is able to target the molec-
ular chaperone Hsp90 modulating its client proteins expres-
sion.>* In 2009, sesterterpene lactones isolated from Salvia
dominica were discovered to interact with tubulin-tyrosine
ligase (TTL), an enzyme involved in tubulin tyrosination in
cancer cells, by chemical proteomics and surface plasmon
resonance assays. An inhibition of this enzyme has also been
assessed by  8¢,15(S),23a-trihydroxy-23,6  a-epoxy-labd-
13(14),17-dien-16(S),19-olide (DC-78), 8u,15(S)-dihydroxy-23a-
O-ethyl-23,6a-epoxy-labd-13(14),17-dien-16(S),19-olide (DC-79),
8a-hydroxy-23a-O-ethyl-23,6a-epoxy-labd-13(14),17-dien-
16(R),19-olide (DC-80), 60,80,15(S),23-tetrahydroxy-labd-13(14),
17-dien-16(S),19-olide (DC-81), 6a,8a,15(S)-trihydroxy-23-car-
bossi-labd-13(14),17-dien-16(S),19-olide (DC-83), 60,80
dihydroxy-23-carbossi-labd-13(14),17-dien-16,19-olide (DC-84),
6a,8a,15(S)-trihydroxy-23-oxo-labd-13(14),17-dien-16(S),19-
olide (DC-85), 6a,8a-dihydroxy-23-oxo-labd-13(14),17-dien-
16(R),19-olide (DC-86), 60,15(S),23-trihydroxy-labd-
8(22),13(14),17-trien-16(S),19-olide (DC-87), 6¢,15(S)-dihydroxy-
23-oxo-labd-8(22),13(14),17-trien-16(S),19-olide (DC-88),
60.,80,23-trihydroxy-labd-13(14),15,17-trien-16,19-olide (DC-89),

This journal is © The Royal Society of Chemistry 2025
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Fig. 12 Representative structures of sesterterpenoids with anti-cancer activity.

6a,80-dihydroxy-23-carbossi-labd-13(14),15,17-trien-16,19-olide
(DC-90), 60,8a-dihydroxy-23-ox0-13(14),15,17-trien-16,19-olide
(DC-91), 8o-hydroxylabd-13(14),15,17-trien-6R,23-16,19-diolide
(DC-92) and 8a-23-dihydroxy-23,6R-epoxy-labd-13(14),15,17-
trien-16,19-olide (DC-93).*** Also kohamaic acid A (DC-4,
Fig. 12), besides other bioactivities, has been described to
prevent the growth of human cancer cell (promyelocytic
leukaemia cell line, HL-60) and its derivatives by a binding to
four mammalian polymerase Beta residues (Leull, Lys35,
His51 and Thr79).>** Starting from 2010, Prof. Monti's group
published some results on TrC-178's, new targets obtained by
chemical proteomics. In brief, this molecule was able to interact
with the proteasome inhibiting its function and thus becoming
a candidate as an anticancer drug. It also altered the autophagy
pathway.>****® DH-80, Fig. 2, and DH-81, Fig. 12, presented an
anti-proliferative effect against A549, HeLa, and HCT-116 cells
with ICs, values in the micromolar range through the inhibition
of protein-tyrosine phosphatase 1B.** Differently, MC-9, MC-10,
and TH-25 targeted a deubiquitinating enzyme named USP7
blocking its function with ICs, values in the range of 2.7-4.6 uM
and are being considered as new anticancer lead compounds.*®
Also the suvanines, sulfate-containing sesterterpenoids,**®
differently decorated on their scaffold, including TrC-143,
Fig. 12, suvanine N,N-dimethyl-1,3-dimethylherbipoline salt
(TeC-387), suvanine N,N-dimethylguanidium salt (TeC-388),
and TrC-200-TrC-205, revealed moderate cytotoxicity against
the K562 and A549 cell lines."> More in detail, using a chemical
proteomics approach, Cassiano et al.>* revealed a direct inter-
action of suvanine and the heat shock protein 60, a key chap-
eronin involved in several tumoral and inflammatory diseases.

5.2 Sesterterpenoids with anti-inflammatory activity

Sesterterpenoids have an exceptional potential as anti-
inflammatory compounds. In the latter part of 80s, many

This journal is © The Royal Society of Chemistry 2025

compounds were isolated from the marine sponge Luffariella
sp. with a consistent anti-inflammatory activity: the most well-
known is manoalide (MC-13, Fig. 3),>*** which significantly
lowers chemically-induced inflammation in vivo and irreversibly
blocks the in vitro hydrolysis of phosphotidylcholine by phos-
pholipase A, (PLA,).>****> PLA, is a key step at the beginning of
the inflammatory cascade releasing arachidonic acid from
membranes. MC-13 is a non-specific inhibitor of phospholi-
pases that modulates the activity of phospholipase C, human
SPLA, (IC5o = 1.7 uM), cPLA, (IC5, = 10 uM) and snake venom
SPLA, (ICs, = 0.03 uM).**® This latter activity has been
confirmed by Dal Piaz et al.>*® in deciphering the mechanism of
MC-13 along with TrC-178, Fig. 12, binding to bee venom PLA,:
the y-hydroxybutenolide ring with its masked aldehyde is able
to covalently bind the N-terminus of PLA, giving rise to a Schiff
base. The same inhibition mechanism has also been demon-
strated for different petrosaspongiolides, 21-hydroxy-
petrosaspongiolide K (TeC-65, Fig. 13), and 21-hydroxy-
petrosaspongiolide P (TrC-181)."** Prof. Gomez-Paloma group
also extended this work to human synovial PLA, and demon-
strated that TrC-178 was able to covalently modify a certain
lysine on the protein's surface, reducing the adhesion of this
protein on the membrane and inhibiting its function.*** MC-13
was registered by Allergan pharmaceuticals and reached phase
II clinical trials as a topical antipsoriatic. However, because of
formulation hitches, it stopped in that phase. Several congeners
of MC-13 have been extracted from different organisms. For
example, three sesterterpenes fitting in the same family, ie.
(4E,6E)-dehydromanoalide (MC-68), deoxysecomanoalide (MC-
29) and deoxymanoalide (MC-22), showed good inactivation
degree on the snake venom PLA, at 0.2 to 0.5 uM even if lower
than MC-13.>' Noteworthy, these metabolites are reduced
forms of MC-13, and thus their PLA, inhibitory activity is much
weaker.”®® MC-70 is a powerful antagonist of topical phorbol
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Fig. 13 Representative structures of sesterterpenoids with anti-inflammatory activity.

myristate acetate promoted inflammation in the mouse ear. It
inhibited in vitro hydrolysis of phosphatidyl choline by bee
venom PLA,, too (ICs, = 0.23 uM).>** The determined inhibition
achievable by MC-70 is only 80% as compared to MC-13 because
its binding was partially reversible (around 30%). Indeed,
a detailed kinetic analysis of the MC-70 reaction with PLA,
confirmed also a non-competitive type of inhibition.”*®
Furthermore, the luffariellins (mainly MC-53, Fig. 13 and MC-
56, Fig. 13) from the sponge Luffariella variabilis were also
considered anti-inflammatory sesterterpenes by the research
group of Kernan in 1987.>*® They are powerful antagonists of
topical phorbol myristate acetate-induced inflammation in the
mouse ear and also bee venom PLA, was significantly down-
regulated by MC-53 (IC5, = 0.056 uM) and MC-56 (IC5, = 0.060
uM). Barbara Potts confirmed in 1992 that even DC-162 dis-
played approximately 50% inhibition of oedema in the mouse
ear assay.” Other PLA,-modulating sesterterpenes from
marine origin included cacospongionolides B (DC-19, Fig. 13)
and E (DC-20) (ICs, = 300 nM against human and bee venom
SPLA, **>%°*¢ and DH-16 (IC5, = 6.9 uM against human sPLA, and
cPLA, *” De Marino et al.*** in 2000 proposed that spongidines
A-D (TrC-259-TrC-262) inhibited hsPLA, as well. Interestingly,
studies on diastereoisomeric mixture of DC-6 and DC-7, both
bearing a hydroxybutenolide moiety, demonstrated that this
group itself is not sufficient for PLA, inhibitory activity but that
non-covalent interactions between the counterparts also play
key roles in terms of compound potency.>**>* TeC-75, a di-
aldehyde containing sesterterpene, is considered a good anti-
inflammatory compound,®****** mainly inactivating PLA,s.**> In
2000, Prof. Cimino's group isolated many scalarane and
homoscalarane compounds from the nudibranchs Glossodoris
sedna and G. dalli and tested them against mammalian cyto-
solic PLA,. The di-aldehyde-bearing compounds exhibited
a consistent inhibition of the enzyme although it occurred at
high concentration.”* Next, Monti et al. assessed the role of di-
aldehyde moiety of TeC-75 and of 12-epi-scalaradial (TeC-78) on
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secretory PLA,.>*"°*%* Also DH-76 and its monoacetate
analogue, isolated from the sponge Hyrtios sp., were tested on
cobra venom PLA,, showing good results in terms of inactiva-
tion.>®® In 2009, Prof. Zampella isolated TrC-200, Fig. 13 and
TrC-154, Fig. 13, two sesterterpenoids bearing nitrogen atoms
together with suvanine (TrC-143), the latter exerting anti-
inflammatory activity by the inhibition of different secretory
PLA, such as groups IIA, IA (Naja naja venom), IB (porcine
pancreatic enzyme) and III (bee venom enzyme).'*

5.3 Sesterterpenoids with anti-microbial activity

Hyrtiosin B (TeC-306, Fig. 14) from Hyrtios erecta was found to
modulate the protein isocitrate lyase from Candida albicans.>*®
This compound was a good inhibitor of this enzyme which plays
a crucial role in fungal development. Furospongin-4 (MH-44,
Fig. 14) and isofurospongin-4 (MH-25, Fig. 14) showed weak
influence on Staphylococcus aureus at 100 ug mL™~ " '’ while PC-
31 exhibited strong influence against Mycobacterium tubercu-
losis protein tyrosine phosphatase B.*** Several sesterterpenoids
have been described to have bacteriostatic and bactericidal
effects against tested pathogens. The antibiotic profile of MC-13
was investigated early, in 1980,** alongside (6E)-neomanoalide
(MC-16), and (6Z)-neomanoalide (MC-17) which were found to
be effective selectively against Gram-positive bacteria.’” The
proposed mechanism regards the modulation of cell-cell
communication by MC-13 and by manoalide 25-monoacetate
(MC-14).>*® In the field of HIV inhibitors, phyllolactones were
verified for their effect in downregulating HIV-1 envelope-
mediated fusion.'® Additionally, TrC-130 inactivates HIV-1
integrase by binding to DNA as reported by surface plasmon
resonance and docking analysis.’® Using a model of HIV-1
infection, TrC-192 and TrC-211, alotaketals C and D (MC-117
and MC-118) and TeC-390 were found to promote HIV proviral
gene expression as well as being at least as potent as MC-117
and MC-118."° PC-40 inhibits HIV-1 replication.*'* Also PC-31

This journal is © The Royal Society of Chemistry 2025
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Fig. 14 Representative structures of sesterterpenoids with anti-micro,

and PC-64 had potent inhibition against Mycobacterium tuber-
culosis protein tyrosine phosphatase B with ICs, values of 3-6
]J.M.389

5.4 Sesterterpenoids with anti-neurodegenerative activity

Few sesterterpenoids have been studied for their ability to
counteract neurodegeneration. In 2014, Prof. Monti's group
identified TeC-326, Fig. 12, a marine sesterterpenoids isolated
from Hyrtios sponge,””® as an interactor of trans-activation
response DNA-binding protein of 43 kDa (TDP-43) by using
chemical proteomics. This metabolite can bind the protein and
can alter its tendency to create insoluble aggregates in brain
cells. After this, a small library of natural scalarane derivatives
such as petrosaspongiolactams A-C (TeC-126-TeC-128) has
been investigated for their ability to modulate the activity of
TDP-43 giving the identification of protein aggregates inhibi-
tors.*” In parallel, TrC-6 from Bipolaris oryzae has been discov-
ered to strongly induce the autophagic degradation pathways of
insoluble aggregates involved in neurodegenerative diseases.>”*
In this case, the targeted protein was alpha-synuclein in PC12
cells. Also, erinacine S (TeC-392), isolated from the ethanol
extract of the mycelia of Hericium erinaceus, downregulates the
formation of AP insoluble precipitates in the brains of trans-
genic mice after an oral administration as reported by Chen
et al.>”* Following this, in 2019, Hu et al. deeper investigated the
mechanism of TeC-392, examining its capability in reducing
amyloid plaque formation and improving neurogenesis in rats.
Furthermore, this study showed that TeC-392 can penetrate the
blood-brain barrier.’””> DC-164 and DC-211 showed their anti-
neurodegenerative profile by acting against prolylendopepti-
dase>*> as well as MC-36 was tested against Alzheimer
showing a good profile as PPARa/y-RXRo agonist and RARa
positive allosteric modulator.>”* TeC-97 and TeC-98 *** played as
acetylcholinesterase inhibitors in rats whereas the compound
YW3699 inhibited the glycosylphosphatidylinositol (GPI)
synthesis.””> Finally, palinurin (DH-3) acted by an allosteric
regulation on GSK-3.%”°

5.5 Sesterterpenoids with phytotoxicity

In 1984, TrC-2, Fig. 3, and its congeners were deeply analysed as
photosynthesis inhibitors. Furthermore, their biological profile

This journal is © The Royal Society of Chemistry 2025

TeC-306

MH-44

anti-neurodegenerative and anti-feedant activities.

was acutely evaluated using spinach leaf slices and chlorella.
TrC-2 resulted in well counteracting photosynthesis causing
brown spots in rice plants.*”” Later on, other ophiobolins were
investigated by a mitochondrial electron transport assay
designed to identify malate oxidation inhibitors: TrC-2 and TrC-
5 were found to inhibit oxidation in maize mitochondria.***
Moreover, using the so-called leaf spot assay, their influence has
been measured against several plants such as sorghum, maize,
bentgrass, sicklepod and morning glory based on the necrosis
superficial amplitude: TrC-2 and TrC-3 were more phytotoxic
than their anhydro derivatives.*** Additionally, in 1991, Prof.
Ballio deeply studied the mode of action of these sesterterpe-
noids. He postulated that the probable role of TrC-2 in the
development of brown spot of rice is due to its involvement in
a precise membrane transport process related to K* perme-
ability. Indeed, he demonstrated that in vitro TrC-2 irreversibly
inhibits the calmodulins of bovine brain, maize and spinach by
a covalent bond of the toxin to lysine 63, identifying this enzyme
as ophiobolins target: the Ca**-calmodulin complex is
accountable for the regulation of many cellular functions.>”® In
2006, ophiobolins were also investigated as phytotoxins by Prof.
Evidente's group: in particular, TrC-2 instigated the appearance
of large necrosis areas, even at low concentrations on grass
weeds.**® Also, ophiobolins TrC-8, TrC-16 and TrC-35 were toxic
to various weed species by the leaf-puncture bioassay.**®

5.6 Sesterterpenoids with nematocidal and anti-feedant
activity

In plants, also TrC-38, Fig. 14, and TrC-39 were tested as
nematocidal agents and they were toxic against the free-living
worm Caenorhabditis elegans.>*® In 1996, Tsipouras deepened
the understanding of the mechanism of TrC-45 and its conge-
ners.*”” Indeed, all of these compounds exerted their nemato-
cidal property by altering the ivermectin binding to nematode
membranes. The same sesterterpenoids along with TrC-13 were
also effective in the C. elegans motility assays and they were toxic
in the low uM range.**” Some defensive sesterterpenoids with
unusual cyclopentenone rings were extracted and purified from
the leaves of L. canum: they were leucosceptroids DC-168,
Fig. 14, TrC-190 and TrC-191.**” The potent antifeedant activity
recommended them as self-protective molecules.*”* The related
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DC-172-DC-174 showed the same bioactivity as well as DC-187
and DC-192 and, finally, in 2014 also DC-200-DC-202.%°®* More-
over, it was discovered that leucosceptrane sesterterpenoid
degradation products could also be involved in the plant
defence mechanisms against insects.**® In 2013, in a very
innovative paper, Li group studied DC-182, DC-183 and DC-184
from leaves through a laser-microdissection coupled to mass
spectrometry analysis and X-ray diffraction and planned
a defensive role for these sesterterpenoids since they were
closely related to the above-described leucosceptroid-class. All
three compounds disincentivised the beet armyworm and the
cotton boll worm.*”” Finally, TrC-20 has been indicated as try-
panosomicidal: mainly, its anti-protozoal activity was exerted
against trypomastigote and amastigote forms of Trypanosoma
cruzi”?

5.7 Sesterterpenoids with immunosuppressive activity

In 2007, irregularasulfate (DC-26), hipposulfate A (TrC-113) and
halisulfate-7 (DC-31) were discovered to be moderate inhibitors
of the catalytic subunits of the mammalian Ser/Thr protein
phosphatases calcineurin and could be used as immunosup-
pressive molecules.’”® Also TrC-286 and TrC-287 were consid-
ered immunosuppressive by a different mechanism of action
inhibiting the proliferation, activation, and cytokine IFN-y
production on T cells.*® Also TeC-5, TeC-6, TeC-11, TeC-12, and
TeC-13, studied by Fujimoto et al., were immunosuppressive,
acting on the human chemokine receptor CCR5.** It's
intriguing that more and more sesterterpenoids have been
revealed to have immunosuppressive properties after the Covid-
19 epidemic. Initially, the activity of leucosceptrane-type ses-
terterpenoids was assessed by preventing the release of cyto-
kines in LPS-induced macrophages RAW264.7 and 3-H-2,17a-
dihydroxy-leucosceptroid N (DC-270) demonstrated immuno-
suppressive activity against TNF-o and IL-6, with ICs, values of
13.39 and 19.34 uM, respectively.*® Then, a deep analysis of
leucosceptroid N (DC-192), 5,13-dehydro-leucosceptroid A (DC-
306), and 5a,160-epoxy-leucosceptroid R (DC-291) showed their
block on T cells and macrophages activations thought the
inhibition of AKT-mTOR, JNK, p38 MAPK, and ERK pathway.
Furthermore, DC-291 and DC-306 caused T cell GO/G1 cell
arrest, whereas DC-192 markedly reduced IL-6 and TNF-a levels
in peripheral blood serum and lessened the multiorgan damage
in mice with LPS-induced sepsis, at 25 mg per kg dose. Addi-
tionally, there was a dose-dependent suppression of T cell
proliferation and IFN-y release when activated by anti-CD3/
CD28.7®> The TNF-a secretion was also effectively inhibited by
leucosceptrodine (MC-153) and nor-leucosceptroid L (DC-264),
with ICs, values of 11.21 uM and 12.19 pM, respectively.*®
Lastly, few ophiobolin-like substances were studied in this area,
including maydispenoids and undobolins: maydispenoids A
(TrC-306) and B (TrC-307) demonstrated proliferation inhibitory
activity on differently stimulated murine splenocytes®? and
undobolin F (TrC-362) established significant inactivation
against ConA-induced T lymphocyte proliferation with an ICs,
value of 2.3 pM.>%*
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5.8 Miscellaneous

In 2006, Nam and coworkers isolated several sesterterpenoids
from the sponge Spongia sp. including TeC-109 and TeC-110
which have a structure similar to guggulsterone and have been
tested for their ability to modulate the transactivation of the
farnesoid-X-receptor (FXR). These scalaranes inhibited FXR and
were not cytotoxic for cells opening the way to treat hypercho-
lesterolemia and, more in general, metabolic diseases.’** An
anti-obesity profile has been reported for DC-169, based on
a different mechanism of action: this metabolite acts reducing
fat amassing through destroying unsaturated fatty acid
biosynthesis. More deeply, it downregulates the expression of
two stearoyl-CoA desaturase (SCD) genes fat-6 and fat-7, and
a fatty acid elongase gene elo-2 in wild-type C. elegans.*® Inhi-
bition of protein tyrosine phosphatase 1B has also been
explored by a few sesteterpenoids as, for instance, hyattellac-
tones A and B (TeC-239 and TeC-240), in an interesting paper'*®
since this protein can be considered a therapeutic target for the
treatment of type-II diabetes and obesity. The same inactivation
has been reported for phyllofolactones characterized by an
alpha-beta-unsaturated lactone.”* In 2011, phorbasones were
discovered to induce osteoblast differentiation, specifically
phorbasone A (TrC-195) revealed a stimulatory effect on the
calcium deposition activity in C3H10T1/2 cells.”* MC-119, also,
significantly excites osteoblast differentiation by activating the
ERK pathway.>®

6 Conclusions

Within the terpenoids family, which is the biggest group of
secondary metabolites, sesterterpenoids represent an incred-
ible chemically varied and pharmacologically relevant
subgroup, widespread in more than a few phyletic groups,
including marine sponges, nudibranchs, bacteria, lichens,
fungi, higher plants and insects. Over seven decades of research
on their isolation and characterization, around 1600 structur-
ally unique sesterterpenoids are summarized in the current
review paper, which is supported by information on biological,
pharmacological, ecological, and geographic distribution. It is
highly probable that in the next years novel understudied taxa
groups will bring up new interesting members of these pen-
taprenyl terpenes. Moreover, it is expected that the synthetic
origin of some of these compounds will be disentangled,
unveiling interconnecting mechanisms of symbiotic or trophic
exchanges, bioaccumulation, biotransformation, and de novo
synthesis. By regulating microbial metabolism, sesterterpe-
noids have facilitated the co-speciation of bacteria with fungi
and the interaction of fungi with marine and terrestrial plants,
thus generating complex interactions essential for microbial
survival. Recently, there has been a growing recognition of the
role of specific sesterterpenoids in establishing the composition
of leaf and root microbiota in which the dynamic complemen-
tation of enzymatic pathways controls plant health.*® From
a biological point of view, microorganisms as well as humans
use them as antimicrobial, antiviral, antifeedants, and to
combat neurodegeneration, hypercholesterolemia, diabetes,
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and obesity, in addition to their regal role as anti-cancer and
anti-inflammatory (ophiobolin and manoalide derivatives,
about everything). Recently, tests for the inhibition of T cell
proliferation and the release of IFN-y, TNF-o, and IL-6 have
been conducted in an effort to counterbalance overactive
immune system components. This could potentially be a future
avenue for the repurposing of these poly-pharmacological
metabolites. Furthermore, it should be emphasized that
genome mining and heterologous expression approaches of
sesterterpene synthases, increasingly in recent years, have led to
the identification of new sesterpenoids, drawing a path that will
be surely implemented in the future for the discovery of new
molecular scaffolds. In the present review, we reported selected
examples of naturally occurring marine and terrestrial ses-
terterpenoids within their structures, ecological, geographical
and biological details. But without a question, the most
important component of this enormous undertaking is the
exhaustive list of known metabolites, which is included in the
annexed Tables, and at the friendly consultable https://
sesterterpenoids.unige.net/. The authors chose to publish the
results of their work using an architecture formed by the
integration between a relational database and a web-based
interface. This architecture allows for rapid updating of
research contents which will be implemented through two
channels. The first is the direct intervention of the authors who
will be able, after their authentication on the site, to manually
insert new evidence relating to the subject matter present in
new publications. The second concerns the interaction with
public databases, selected by the authors of this work, for their
evident authority, which will provide automatic access to
updated in-depth content on the description of the individual
organisms involved in the research. Pipelines based on Natural
Language Processing to obtain automatic insertion of new
evidence detected from scientific articles will be applied.
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