Issue 8, 2010

Integration of sol–gel derived inorganic nanonetworks into polymers

Abstract

Nanoparticulate networks as fillers for polymer based nanocomposites offer an optimized, surfactant free distribution of the inorganic component. Additionally, their non-aggregated but interconnected nanoparticulate subunits can lead to new properties owing to special inherent solid state properties and/or spacial restrictions to the polymeric parts. In particular, polymer nanocomposites based on poly(methyl methacrylate) (PMMA) or poly(hydroxyethyl methacrylate) (PHEMA), filled with different nanoparticulate networks of AlOOH were synthesized using two advanced synthesis techniques. An ex situ method, in which a preformed AlOOH-gel was solvent exchanged by methyl methacrylate (MMA) and an in situ method, in which the AlOOH scaffold was prepared within hydroxyethyl methacrylate (HEMA), have been used to produce the materials described here through polymerization. On the MMA based composites the particles were removed by etching, yielding porous polymers. Promising for a broad variety of crystallisable networks within polymers, the phase transition of amorphous AlOOH within PMMA towards crystalline boehmite was performed using a hydrothermal method. The materials were characterized using transmission electron microscopy, X-ray diffraction, gel permeation chromatography, differential scanning calorimetry, IR-spectroscopy, UV/Vis spectroscopy and hardness measurements. Special material properties were investigated using thermogravimetry, thermomechanical analysis and dynamic mechanical analysis. Furthermore, interactions between PMMA segments and the AlOOH network were detailed studied using dielectric spectroscopy.

Graphical abstract: Integration of sol–gel derived inorganic nanonetworks into polymers

Article information

Article type
Paper
Submitted
01 Apr 2010
Accepted
05 May 2010
First published
18 Jun 2010

Polym. Chem., 2010,1, 1226-1236

Integration of sol–gel derived inorganic nanonetworks into polymers

S. Wohlrab, A. Schönhals, H. Goering and J. F. Friedrich, Polym. Chem., 2010, 1, 1226 DOI: 10.1039/C0PY00105H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements