Recently, integrated chemical systems have been further downscaled to the 101–103 nm scale, which we call extended-nano space. The extended-nano space is a transient space from single molecules to bulk condensed phase, and fluidics and chemistry have not been explored. One of the reasons is the lack of research tools for the extended-nano space, because the space locates the gap between the conventional nanotechnology (100–101 nm) and microtechnology (>1μm). For these purposes, basic methodologies were developed such as nanofabrication, fluidic control, detection methods, and surface modification methods. Especially, fluidic control is one of the important methods. By utilizing the methodologies, new specific phenomena in fluidics and chemistry were reported, and the new phenomena are increasingly applied to unique applications. Microfluidic technologies are now entering new research phase combined with the nanofluidic technologies. In this review, we mainly focus on pressure-driven or shear-driven extended-nano fluidic systems and illustrate the basic nanofluidics and the representative applications.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?