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Flower-like TiO2 nanostructures with exposed {001} facets were

synthesized by a low-temperature hydrothermal process from Ti

powders for the first time, and they exhibited enhanced photo-

catalytic degradation of methylene blue dye under ultraviolet light

irradiation.
Titanium oxide (TiO2), as one of the most important oxides, has been

widely investigated due to its numerous applications in photovoltaic

cells,1 photocatalysis,2,3 Li-ion battery materials,4 sensors5 and so on.

These applications originate from the unique physical and chemical

properties of TiO2 which depend not only on the crystal phase and

particle size but also on the exposed facet.6–10 For anatase TiO2, both

theoretical and experimental studies have found that the minority

{001} facets in the equilibrium state are especially reactive.8–11

However, it has been demonstrated that the average surface energies

are g{001} (0.90 J m�2) > g{100} (0.53 J m�2) > g{101} (0.44 J m�2).7,9,10

Although the higher-surface-energy {001} facets have much higher

chemical activities, almost all of anatase TiO2 micro- and nano-

structures reported to date are usually dominated by less-reactive

{101} facets, which are thermodynamically stable due to their lower

surface energy. Therefore, anatase TiO2 nanostructures with exposed

{001} facets are rarely observed.

An important step forward in the preparation of anatase TiO2

single crystals with exposed {001} facets were achieved by Lu and co-

workers.11 They reported the synthesis of anatase TiO2 microcrystals

with exposed {001} facets by using TiF4 as the raw material. Since

then, several researchers have prepared anatase TiO2 single crystals

with exposed {001} facets from different raw materials, such as

titanium tetrafluorine, titanium chloride, tetrabutyl titanate, titanium

tetraisopropoxide, and so on.12–16 However, these materials have high

hydrolytic reaction rates which make it difficult to control their

reaction processes. Very recently, anatase TiO2 sheets with a high

percentage of {001} facets were prepared from titanium nitride by Lu

and co-workers.17 However, the price of titanium nitride is still very

high. Moreover, all of the previously mentioned experimental
aKey Laboratory of Solar Thermal Energy and Photovoltaic System,
Institute of Electrical Engineering, Chinese Academy of Sciences, No. 6
Beiertiao, Zhongguancun, 100190 Beijing, China. E-mail: wjwangwj@
126.com; Fax: (+86) 10-82547041; Tel: (+86) 10-82547042
bNational Center for Nanoscience and Technology, No.11 Beiyitiao,
Zhongguancun, 100190 Beijing, China. E-mail: piaoly@nanoctr.cn; Fax:
(+86) 10-82545505; Tel: (+86) 10-82545505
cInstitute of Metal Research, Chinese Academy of Sciences, Shenyang,
110016, China
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FE-SEM images. See DOI: 10.1039/c0nr00050g
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processes require high temperatures,11–18 even as high as 1300 �C,15

which not only increases the production cost but also hinders scaled-

up production.

Furthermore, nanomaterials with hierarchical architectures have

attracted much attention, since they can possess a number of

attractive properties and have a wide range of applications in catal-

ysis, solar cells, Li-ion batteries, and so on.19–24 For example, rose-like

ZnO nanostructures, which consist of many nanosheets, exhibit

enhanced light conversion efficiency in dye-sensitized solar cells

(DSSC).23 Flower-like ZnMn2O4 nanostructures, which are

composed of numerous nanorods, showed enhanced electrochemical

lithium storage.24 However, it remains a great challenge to develop

feasible methods for the synthesis of well-defined hierarchical TiO2

nanostructures.

Herein, we report a simple and facile route for the one-pot

synthesis of flower-like TiO2 nanostructures with exposed {001}

facets by a low-temperature hydrothermal process from Ti

powders. These flower-like TiO2 nanostructures with exposed {001}

facets have never been reported until now. In agreement with

calculations, it can be confirmed that these flower-like TiO2 nano-

structures contain about 10–30% exposed highly reactive {001}

facets. Moreover, these flower-like TiO2 nanostructures exhibited

enhanced photocatalytic degradation of methylene blue (MB) dye

under ultraviolet (UV) light irradiation, and they also have poten-

tial applications in photonic and optoelectronic devices, solar cells,

sensors, and so on.

In a typical synthesis, 0.1 g Ti powder (200 mesh, 99.9% purity, see

Fig. S1 of the ESI†), 40 ml H2O and 0.25 ml hydrofluoric acid

(40 wt %) were added into a Teflon-lined autoclave. Then, the

mixture was kept at 120 �C for 10 h. After completion of the reaction,

the products were collected by centrifugation and thoroughly washed

with high-purity water (18 MU) until pH 7.0 was reached. Finally, the

products were dried at 80 �C.

Fig. 1 a and b show typical field-emission scanning electron

microscope (FE-SEM) images of the flower-like TiO2 nanostructures.

It can be seen that the TiO2 product contains numerous flower-like

aggregates, and almost all of them show the same morphology. These

flower-like TiO2 nanostructures have a size around 300–700 nm, and

they are composed of large numbers of truncated tetragonal pyra-

midal TiO2 nanocrystals. The width of their top surface is ca. 50–

150 nm. The length of the truncated tetragonal pyramidal TiO2

nanocrystals is ca. 100–200 nm. Fig. 1c shows an X-ray diffraction

(XRD) pattern of the flower-like TiO2 nanostructures. All XRD

peaks of the synthesized flower-like TiO2 nanostructures can be

indexed to the anatase TiO2 phase (JCPDS No. 21-1272) and no

residual Ti phase can be detected. Remarkably enhanced (101) and
Nanoscale, 2010, 2, 1115–1117 | 1115
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Fig. 1 (a, b) FE-SEM images of the flower-like TiO2 nanostructures at

low and high magnifications, respectively. (c) XRD pattern of the flower-

like TiO2 nanostructures. Vertical bars indicate peak position and

intensity of anatase TiO2 (JCPDS No. 21-1272).

Fig. 2 (a) TEM image of the flower-like TiO2 nanostructures. (b)

Schematic diagram of the flower-like TiO2 nanostructures. (c) HRTEM

image of a truncated tetragonal pyramidal TiO2 nanocrystal. (d) The

corresponding fast-Fourier transform (FFT) pattern.
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(004) peaks indicate that the TiO2 nanostructures are dominant in

{101} and {001} facets.

Fig. 2a shows a transmission electron microscopy (TEM, FEI F-

20) image of the flower-like TiO2 nanostructures. It confirms that the

flower-like TiO2 nanostructures were composed of many truncated

tetragonal pyramidal TiO2 nanocrystals. An angle of 68.3� � 0.3�,

which is consistent with the interfacial angle between (001) and

(101),11,14,15 was observed on the truncated tetragonal pyramidal TiO2

nanocrystals. It suggests that the truncated tetragonal pyramidal

TiO2 nanocrystals expose facets of {001} and {101}. Fig. 2b gives

a schematic illustration of the flower-like TiO2 nanostructures. Fig. 2c

shows a high-resolution TEM (HRTEM) image of a truncated

tetragonal pyramidal TiO2 nanocrystal with clear crystalline lattice

fringes. The lattice spacing of 0.352 nm corresponds to the {101}

planes, while the lattice spacing of 0.237 nm corresponds to the {004}

planes. The angle labeled in the corresponding fast-Fourier transform

(FFT) image (Fig. 2d) is 68.3� � 0.3�, which is identical to the

theoretical value for the angle between the {101} and {001} facets. On

the basis of the above characterizations, it can be confirm that the

flower-like TiO2 nanostructures have exposed {001} facets.

It has been demonstrated that metal Ti could react with HF

forming TiO2, under hydrothermal conditions.25 Due to their low
1116 | Nanoscale, 2010, 2, 1115–1117
surface energy, TiO2 crystals grow with exposed {101} facets mainly

during the early stages of synthesis. However, fluorine ions can

markedly reduce the surface energy of {001} facets to a level lower

than that of {101} facets.11 As a result, {001} facets are exposed during

growth, and flower-like TiO2 nanostructures with exposed {001}

facets are formed. Therefore, hydrofluoric acid is believed to have

a triple role here: to dissolve the Ti powders, to retard the hydrolysis of

the titanium precursor, and to reduce the surface energy.18

The photocatalytic activity of the flower-like TiO2 nanostructures

was evaluated in terms of the decolorization of MB dye under UV

light irradiation. For photocatalytic reaction, the surface fluorine was

removed using a heat treatment process at 600 �C in O2 for 2 h,

without altering the morphology (see Fig. S2 of the ESI†). After that,

30 mg flower-like TiO2 nanostructures was dispersed in 100 ml of

aqueous solution containing 0.01 M NaOH and 25 ppm MB.12

Before exposure to UV light irradiation, the suspension was stirred in

the dark for 1 h to allow it reach a complete adsorption–desorption

equilibrium. Then the solution was irradiated with �0.5 mW cm�2

UV light (with a wavelength peak at 365 nm) under continuous

stirring. The concentration of MB was determined from the absor-

bance at the wavelength of 665 nm. For comparison, the same

procedure was also done for P25 TiO2 powders.

As shown in Fig. 3, the flower-like TiO2 nanostructures exhibited

higher activity than that of the commercial P25 TiO2 powders. The

linear relationship of ln C0/C vs. time (inset of Fig. 3) shows that the

photocatalytic degradation of MB follows pseudo-first-order kinetics,

ln(C0/C) ¼ kt, where C/C0 is the normalized MB concentration, t is

the reaction time, and k is the pseudo-first-rate constant. The

apparent photochemical degradation rate constant for the flower-like

TiO2 nanostructures is 1.23� 10�2 min�1, which is almost two times

of that for the P25 TiO2 powders, 6.73 � 10�3 min�1. This further

confirms that the flower-like TiO2 nanostructures exhibit high

photocatalytic efficiency. The enhanced photocatalytic activity of

the flower-like TiO2 nanostructures can be attributed to their
This journal is ª The Royal Society of Chemistry 2010
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Fig. 3 The variation of MB concentration by photoelectrocatalytic

reaction with P25 TiO2 powders and flower-like TiO2 nanostructures.

The inset shows the pseudo-first-order kinetic rate plots for the photo-

chemical degradation of MB.
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three-dimensional (3D) hierarchical nanostructures and exposed

{001} facets. 3D hierarchical nanostructures are regarded to have

a greater number of active sites than either 1D or 0D architec-

tures.26,27 Furthermore, it has been demonstrated that the {001} facets

are more reactive toward dissociative adsorption of reactant mole-

cules compared with {101} facets.28–32 Therefore, high photocatalytic

efficiency is expected for the flower-like TiO2 nanostructures with

{001} facets.

In conclusion, flower-like TiO2 nanostructures with exposed {001}

facets have been successfully synthesized by a low-temperature

hydrothermal process from Ti powders for the first time. Owing to

their chemically active {001} facets, these TiO2 nanostructures

exhibited enhanced photocatalytic efficiency, and they could possibly

be further used in photovoltaic cells, photonic and optoelectronic

devices, sensors and so on.
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