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Despite decades of research many aspects of the biology of Mycobacterium tuberculosis remain
unclear and this is reflected in the antiquated tools available to treat and prevent tuberculosis and
consequently this disease remains a serious public health problem. Important discoveries linking

M. tuberculosis’s metabolism and pathogenesis have renewed interest in this area of research.

Previous experimental studies were limited to the analysis of individual genes or enzymes whereas

recent advances in computational systems biology and high throughput experimental technologies

now allow metabolism to be studied on a genome scale. Here we discuss the progress being made
in applying system level approaches to studying the metabolism of this important pathogen.

The information from these studies will fundamentally change our approach to tuberculosis
research and lead to new targets for therapeutic drugs and vaccines.
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Introduction

Tuberculosis (TB) is a disease which plagued ancient Egyptians
and still remains a major threat to human health thousands of
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years later. The control of tuberculosis has been significantly
hindered by the limited resources available for the prevention
and treatment of tuberculosis. A truly effective vaccine is
lacking as the 90 year old Mycobacterium bovis bacillus
Calmette—Guerin live attenuated vaccine is not universally
protective and does not produce immunity against re-infection
or reactivation. Lengthy (6-9 months) and complex (three or
more different drugs) treatment is required using currently
available anti-TB drugs. The economic and logistic burden of
administering these drug regimens in industrially undeveloped
countries where TB is most prevalent is enormous and com-
bined with poor patient compliance are important factors in
the emergence of drug resistant TB isolates which are causing
ongoing epidemics. These factors underscore the urgent need
for the development of novel and effective therapeutics and
vaccines and new approaches will be required to achieve
these goals.

Mycobacterium  tuberculosis is an unusual bacterial
pathogen which has the remarkable ability to cause both acute
life threatening disease and also clinically latent infections
which can persist for the lifetime of the human host. Unlike
many pathogens M. tuberculosis does not rely on the
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production of specific toxins to cause disease but rather the
secret of this bacterium’s great success seems to be the ability
to adapt and survive within the changing and adverse environ-
ment provided by the human host during the course of an
infection. It is becoming apparent that key to this adaptation
is the metabolic reprogramming of M. tuberculosis during both
the acute and chronic phase of TB disease and therefore a
more complete understanding of mycobacterial metabolism
remains a major goal of TB research.

Whilst recent increases in research funding has progressed
our understanding of the basic biology of M. tuberculosis this
has not yet impacted on the global TB trends which remain at
staggering levels. A possible reason why it has been difficult to
translate basic research into effective strategies for combating
tuberculosis is that TB research has until recently, focused on
studying individual parameters in isolation which can con-
sequently result in an overestimation of the importance of
these factors. This effect may be particularly profound for a
persistent pathogen such as M. tuberculosis which lacks clas-
sical virulence factors. The systems biology framework which
investigates the dynamic interactions of many components
provides an alternative and complementary strategy to the
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Fig. 1 The iterative process of modeling the metabolism of the pathogen Mycobacterium tuberculosis. A cycle of model building and experimental
validation, refinement of the model for the identification of drug targets and hypothesis generation is shown. The drawing includes the properties

of the two available genome scale models.?®*
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more traditional reductionist approaches to TB research. The
central component of all systems biology approaches is a
mathematical model which instantiates knowledge about a
particular system that can be used to provide a scaffold for the
integration and interpretation of “omic” scale datasets but is
also capable of generating novel hypotheses and predic-
tions that can be experimentally tested in an iterative cycle
of hypothesis generation, prediction and model refinement
(Fig. 1).

Metabolic model building

The ultimate goal of system biology approaches to studying
TB is to construct a complete model of infection incorporating
both the pathogen and host, but this is currently infeasible as
the information about the different components to be included
in the model is lacking. Studies with other organisms have
demonstrated that metabolism is, by far, the best understood
cellular network and is thereby an excellent starting point for a
systems-based approach.'™

However, metabolism is complex. Even the simplest organisms
synthesize many hundreds of metabolites connected by a
similar number of enzyme-catalyzed reactions. Each reaction
is described by a set of kinetic parameters (e.g. Ky, Viax)
which, in combination with substrate/product concentrations,
determine its rate. Although K, values are constants (for a
particular substrate/product combination) and may be deter-
mined experimentally, intracellular concentrations of substrate,
products and enzyme (influencing V,,.,) vary over wide ranges
and are not easily measured. Even a single enzyme reaction is
therefore a highly dynamic system; and systems of just a few
reactions steps are usually mathematically described by a set of
ordinary differential equation with a large number of para-
meters and variables whose values are extremely challenging to
measure experimentally. Kinetic models have therefore only
been applied to the dynamics of small well-defined systems,
such as glycolysis in Escherichia coli* that are very far from
being genome-scale.

However, it is relatively straightforward to generate a
metabolic network that describes the biochemical reactions
that an organism is predicted to be capable of performing, in
terms of stoichiometric formulas. The genome annotation
predicts all those genes encoding enzymes that are readily
linked to databases describing the predicted biochemical con-
versions performed by these enzymes. These stoichiometric
reactions can then be incorporated into pathways that may
be integrated into a network to construct a genome-scale
metabolic network that effectively describes the chain of
reactions responsible for inputting nutrients and transforming
them into the biomass of the cell, waste products and energy.

On their own genome-scale metabolic networks are essen-
tially descriptive, describing the set of metabolic reactions and
their connectivity but cannot actually simulate any metabolic
process. To do that they must incorporate metabolite concen-
trations and, for dynamic systems, all the kinetic parameters
discussed above which is infeasible at a genome scale. How-
ever, if a critical assumption is made, that all metabolite
concentrations are held constant, then the underlying dynamics
are hugely simplified and the system may be solvable. Consider

the simple set of stoichiometric conversions, A - 2B — C + D.
If this is a dynamic system then knowing the concentration of
A tells us nothing about the concentrations of B, C or D
without knowledge of the detailed kinetic parameters.
Yet if the concentrations of A, B, C and D are unchanging
(the system is at steady-state) then the rate of flux from
A — 2B must equal the rate of flux from 2B - C + D, so
knowing the concentration of A (or the flux towards A) uniquely
determines the concentration (or the fluxes) of all the down-
stream metabolites. Steady state systems are thereby described
by far fewer parameters and variables than dynamic systems.

Of course a genome scale model is far more complex than
the above system but the entire set of stoichiometric conver-
sions for an organism is available from its genome annotation
and standard biochemical literature. It is therefore possible to
build a model consisting of all the stoichiometric reactions
predicted by the annotation and link these pathways and
networks connected by flux values between each reaction.
Such a network can be incorporated into a mathematical
model that, once parametrized by measurements such as
substrate uptake or biomass production rates, can be solved
by standard linear algebra tools (rather than the differential
calculus required by kinetic models). However, because
metabolic networks contain multiple branch points and
parallel pathways there is not a unique solution but a vast
space of possible solutions (the system is underdetermined). It
is therefore necessary to apply constraint based approaches
which reduce the solution space and thereby predict metabolic
capabilities or internal fluxes.> '® Flux balance analysis (FBA)
uses the procedure of optimization to reduce the solution
space (for a review of FBA we recommend'""'?), whereas
metabolic flux analysis (MFA) applies additional measure-
ments as constraints. The application of both of these methods
to M. tuberculosis will be discussed below.

There are of course limitations to these approaches such as
the requirement for steady or quasi-steady state conditions.
Also, since no consideration is made of either transcriptional,
translational, metabolic regulation or enzyme kinetics the
predictive capabilities of constraint based models are limited
to situations when these factors are not significantly influencing
reaction rates.> Nevertheless, this approach has been success-
fully applied to predict the metabolic capabilities of many
different cellular systems®'° and has also been used in metabolic
engineering.'>!*

Metabolism of M. tuberculosis

Application of metabolic modeling approaches to M. tuberculosis
is aided by the fact that metabolism is a reasonably well
studied system even in mycobacteria. Moreover, metabolism
has been shown to be involved in the virulence of M. tuberculosis,
playing a key role in the development and maintenance of
both acute and persistent TB infections.'>!” It is perhaps
not surprising therefore that several modeling efforts in tuber-
culosis have focused on metabolism.

Much of what is known about metabolism in M. tuberculosis
has been gleaned from conventional biochemical and molecular
studies over many decades. The pathogen appears typical of
bacteria of the Actinomycetales order, with a predominantly
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aerobic metabolism that is able to catabolize a wide range of
substrates to generate biomass and energy. The genome
encodes all the enzymes of the Embden—Meyerhof-Parnas
pathway (EMP) and pentose phosphate pathway (PPP) and
has a complete, or nearly complete TCA cycle (see below). The
pathogen also encodes a functional glyoxylate shunt as well as
several enzymes connecting the TCA cycle and glycolysis that
may be used for either anaplerosis or gluconeogenesis.

There are however several features of central metabolism in
M. tuberculosis that appear to be unusual. Although the
link between glycolysis and the TCA cycle is complete in
M. tuberculosis, the closely related pathogen, M. bovis, lacks
a functional pyruvate kinase and is therefore unable to deliver
sugars from glycolysis to the TCA cycle and thus is unable
to utilize carbohydrates as the sole carbon source.'® This
function is therefore unnecessary in vivo as this pathogen
causes very similar disease in humans to M. tuberculosis. The
role of isocitrate lyase has been intensively studied since the
demonstration that both of the isocitrate lyase genes encoded
by this pathogen, ic/l and icl2 (although some strains only
have icll), play an essential role in virulence.'>!® This finding
has been generally interpreted to be due to this enzymes role in
the glyoxylate shunt and a metabolic shift in the principal
carbon source from carbohydrates to fat in the host. However
the role of the isocitrate lyases may be more complex than just
fat catabolism as these enzymes also function as methyl citrate
lyases in the methyl citrate cycle.'® In addition, it has also been
demonstrated that the glyoxylate shunt functions concurrently
with an oxidative TCA cycle which is completed by an
anaerobic a-ketoglutarate ferredoxin oxidoreductase (KOR).?°
The TCA cycle also seems to be atypical since a-ketoglutarate
dehydrogenase (KDH) activity has not be detected. It has been
proposed that M. tuberculosis can either complete the oxida-
tive TCA using KOR, an enzyme usually associated with the
reductive TCA cycle, or use an alternative pathway from
a-ketoglutarate to succinate via succinic semialdehyde.?®?' Fig. 2
illustrates the central metabolic pathways of M. tuberculosis, as
understood in 2010.

Experimental systems

Systems biology is an iterative procedure of experimental
data acquisition, model building, hypothesis generation and
experimental verification (Fig. 1). One of the constraints upon
this approach surrounds the experimental basis of this work.
Models should be developed and validated with accurate and
reproducible data, which can be obtained from standard high
throughput methods such as transcriptomics, proteomics and
metabolomics. However, it is important to note that the
mathematical underpinning of flux-based predictions derived
from modeling approaches such as FBA or MFA assume that
the system is in metabolic steady-state, which can usually only
be met by growing the organism in steady state (typically in a
chemostat or batch cultivated cells in the exponential growth
phase where the growth rate is maximal) and flux-based
predictions are only strictly valid for these systems. Determi-
nation of substrate utilization and biomass productions
rates are also essential for most flux-based predictions so
it is usually necessary to grow the test organism in defined
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Fig. 2 A metabolic map of central metabolism in M. tuberculosis
showing the reactions surrounding the TCA cycle. The standard TCA
cycle is shown in blue with the variant (SSA) pathway in yellow.
Anaplerotic/gluconeogenic reactions are shown in turquoise with the
glyoxylate shunt in red. Only enzymes mentioned in the text are
indicated, including KOR (a-ketoglutarate ferredoxin oxidoreductase),
KGD (a-ketoglutarate decarboxylase), GabD1/D2 (succinic semi-
aldehyde dehydrogenase), ICL (isocitrate lyase) and MEZ (malic enzyme
(malate dehydrogenase, decarboxylating)), PEPCK (phosphoenol-
pyruvate carboxykinase), PK (pyruvate kinase) and PYC (pyruvate
carboxylase).

media with simple and readily assayable carbon and nitrogen
sources.

Our group has developed a system for growing mycobacteria
in a carbon limited chemically defined minimal medium and
demonstrated that biomass composition of the pathogen is a
function of the growth rate.”* This adds a further level of
complexity to M. tuberculosis models as, to model the organisms
growing at different growth rates, alternative biomass formulae
must be incorporated.

However, it should be emphasized that many systems-based
studies of metabolism do not depend on the steady-state
assumption. Indeed, systems-based investigations into the
intracellular metabolism of pathogens can be performed using
model free approaches.>*

Modeling the metabolism of M. tuberculosis

The first M. tuberculosis constraint based model was
constructed by Raman et al. (2005) and consisted of all the
reactions in mycolic acid synthesis.?® This sub-model of
metabolism was composed of 219 reactions which involved
197 metabolites, catalysed by 28 enzymes. FBA was used to
simulate mycolic acid metabolism and to identify potential
drug targets in these pathways. The study illustrates the use of
optimization in FBA. As already discussed, FBA solves the
excess solution space problem by finding the flux solution of
the network that reaches the optimal value of the ‘objective
function’. Deciding on an appropriate objective function is a
perquisite for the successful application of FBA. Objective
functions include maximization or minimization of ATP
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production; maximization of redox potential; maximization of
the rate of synthesis of a particular product, or minimization
of nutrient uptake. But the most commonly used objective
function in FBA is maximization of growth rate, which of
course makes the assumption that microbial cells do indeed
maximize their growth rate. Although this assumption could
of course be criticized on many grounds, the use of a objective
function that maximizes growth rate or biomass formation has
been shown to result in a good predictive accuracy in several
experimental systems, including nutrient limited chemostat
culture of E. coli®” Its use is more problematic for slow
growing pathogens, such as M. tuberculosis, since it is not at
clear that these organisms do indeed maximize their growth
rate. Raman et al. (2005) used two objective functions
that optimized the production of mycolic acids. The first,
termed C1, optimized production of only the most abundant
mycolate, whereas the objective function C2 maintained the
known ratios of different mycolates. To test the predictive
accuracy of these objective functions in silico deletions were
performed and compared to transposon site hybridization
mutagenesis data. The highest predictive accuracy was
obtained with the objective function C1. FBA identified
16 essential genes in this study and this primary list was
then filtered to remove any genes encoding proteins which
were complemented by homologues and also those with
close homologues in the human proteome. This feasibility
analysis identified seven potential drugs targets for anti-TB
drug design.

Although targeting a small sub-system such as mycolic acid
synthesis can yield valuable information on specific pathways,
it has limited value in elucidating the metabolic capability of
M. tuberculosis. This latter objective is best approached by
constructing a genome-scale networks of metabolism.*>?° Two
independent genome scale models of M. tuberculosis have
been published to date (GSMN-TB and iNj66/) using
different reconstruction and validation approaches. The first
published genome scale network was built by our group using
Streptomyces coelicolor as a starting model.”® Orthology
relationships were mapped between the related species using
the KEGG databases and this preliminary model was further
supplemented with data from the BioCyc database. This
automatic process, however, accounted for only 57% of the
final model. The remaining model was reconstructed by labour
intensive manual curation based upon primary research
publications, textbooks and review articles and also by picking
the brains of experts in the field. The final model utilized two
biomass formulations which were derived from published
data of cell composition obtained from a variety of sources
including our own chemostat-derived data obtained from fast
and slow-growing BCG. BIOMASS 1 reflects the actual macro-
molecular composition of in vitro-grown M. tuberculosis,
whereas BIOMASSe consisted of only those cellular com-
ponents, such as DNA, RNA, protein, co-factors and cell wall
skeleton that were considered to be essential for in vitro growth.
The advantage of having these two biomass formulations is that
the model could be used to predict gene essentiality both in vitro
(with the minimal BIOMASSe as the objective function) and
in vivo (with the more complete BIOMASS 1 as the objective
function).

The final functional genome scale metabolic network of
M. tuberculosis (GSMN-TB) consisted of 739 metabolites
participating in 849 reactions and involves 726 genes (Fig. 1).
The model is freely available as both an excel file or in sbml
format, and is accessible via a user-friendly web tool for con-
straint-based simulations (http://sysbio.sbs.surrey.ac.uk/tb/).
FBA-based predictions of in vitro gene essentiality using
BIOMASSe as the objective function had a good correla-
tion with experimental data obtained by global transposon
mutagenesis,”® with an overall predictive accuracy of 78%.%®

Quantitative validation of the model was performed using
data from continuous culture chemostat experiments.”® The
model predicted a lower rate of glycerol consumption than the
experimentally determined values. A plausible explanation for
the discrepancy was that, in addition to consumption of
glycerol, the tubercle bacillus also utilized oleic acid released
from hydrolysis of the Tween 80 dispersal agent present in the
media. Opening an additional oleic acid transport flux
corrected this discrepancy and unpublished data from our
laboratory have confirmed that Tween 80 is indeed consumed
in these experiments. The success of the approach also demon-
strated that growth rate optimization was an appropriate
objective function for M. tuberculosis at least in these in vitro
conditions.

The second genome scale reconstruction of M. tuberculosis
was carried out starting with the genome annotation and then
using several databases combined with manual curation and
yielded 939 reactions, catalysed by 543 enzymes encoded by
661 genes®® (Fig. 1). Although silicon iNj661 weighs in with
90 more reactions and less genes than the GSMN-TB the
percentage of orphan reactions is approximately 20% in both
networks suggesting that iNj661 has an expanded coverage.
However, whilst iNj661 was very good at predicting the
growth rate of M. tuberculosis in different media this model
had a relatively poor predictive accuracy for experimental
essentiality data (55%) as compared with GSMN-TB and is
also limited by having only one biomass formulation.

Building upon the work described by Raman et al. (2005)
hard-coupled reaction (HCR) sets were calculated for the
iNj661 model in order to predict novel drug targets on a
genome scale.?” Hard coupling reaction (HCR) sets are generated
by a method which does not require an objective function and
therefore overcomes any bias introduced by using a specific
objective function to constrain the solution space. HCR’s are
groups of reactions which, due to mass conservation and
connectivity constraints, must operate in unison. This strategy
identified known and also potential new drug targets which
require further analysis.

Application of genome-scale models to provide system-level
insights into metabolism

Genome-scale models can also provide novel insights and
predictions that are not readily apparent from a consideration
of individual reactions and pathways. Model predictions can
be structural, depending only on the network connectivity
between metabolites (e.g. FBA-based gene/substrate essentiality
predictions), or flux-based. The latter (e.g. predictions of
internal fluxes, growth or substrate utilization rates) are
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usually generated by methods such as FBA and MFA and
depend on the steady-state assumption and are thereby strictly
applicable only to experimental systems in which this condi-
tion is satisfied (see above). Most gene essentiality predictions
are structure-based and can yield some non-intuitive surprises.
For instance, the gene encoding isocitrate lyase is (correctly)
predicted to be essential for growth of fatty acids, since the
product of their beta oxidation, acetate, can only be incorpo-
rated into biomass via the carbon-conserving glyoxylate shunt.
However, the gene is not predicted to be essential for growth
on complex fats, such as phospholipids and triglycerides, as
sole carbon source. The explanation is apparent through
examination of the flux solution. The shunt is no longer
required because oxidation of these fats yields glycerol in
addition to acetate, and glycerol can be incorporated to
generate biomass without operation of the shunt. That the
ICL gene is essential for growth in vivo suggests that either
triglycerides and phospholipids are not in vivo substrates for
M. tuberculosis, or, for unknown reasons, only the acetate
product of their oxidation is available for incorporation into
biomass.

As an example of a useful flux-based prediction, flux
variability analysis (FVA) was performed to assess the in silico
metabolic response of M. tuberculosis to slow growth (Fig. 3)
on Roisin’s media with glycerol as sole carbon source. FVA is
a variant of FBA which, instead of finding a single optimal
solution, computes the range of fluxes in each reaction that
are compatible with optimization of the objective function.

The FVA predicted that whereas the relative fluxes through
most reactions would be similar between slow and fast growth
rate, a significant relative increase in flux through the isocitrate
lyase reaction was expected at slow growth rate (Fig. 3),
leading to the hypothesis that isocitrate lyase was involved
in mycobacterial survival at slow growth rates. This was
surprising since the glyoxylate shunt was not thought to be
involved in catabolism of a 3-carbon compounds (such as
glycerol) at any growth rate. However, experimental measure-
ment of isocitrate lyase enzyme activity at both growth rates in
the chemostat did indeed demonstrate increased isocitrate
lyase activity at slow growth rate, which is consistent
with the hypothesis that the glyoxylate shunt is involved in
maintenance of slow growth. We are currently investigating
this hypothesis further using '>*C-MFA (Fig. 4) but the finding
may also have relevance to the demonstration that isocitrate
lyase is essential for survival of M. tuberculosis in vivo.'>1631:32

Using models to interrogate genome annotation

Genome-scale networks are usually constructed initially from
genome annotation and are thereby subject to errors in that
annotation. However, the metabolic model scrutinizes the
metabolic component of genome annotation at a system level
for functionality and can thereby be used to find pathway
holes or inconsistencies in the annotation. There are several
‘orphan reactions’ in GSMN-TB, that is reactions that are
required for network functionality but for which there is no
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Fig. 4 An experimental work flow for '*C Metabolic Flux Analysis (MFA). Media containing a mixture of unlabelled and labeled substrate is fed
into steady state chemostat cultures. The label becomes distributed throughout the cells and after several volume changes the culture will reach
isotopic steady state after which very little change to the labeling pattern will occur. Samples are taken for physiological measurements such as
glycerol uptake rates and for measurement of the '*C enrichment of proteogenic amino acids from cell hydrolysates and sometimes also
intracellular metabolite pools. An isotopomer model detailing the fate of each carbon atom in central metabolism is constructed and the
experiment is simulated in silico. An algorithmic fitting procedure is used to adjust the fluxes in the isotopomer model to find the values of the
intracellular fluxes that are consistent with the pattern of amino acid labeling.

annotated M. tuberculosis gene predicted to perform that
function. For example, sulfolipid synthesis in M. tuberculosis
generates the metabolite adenosine 3’,5’-bisphosphate (PAP in
the model) which will accumulate and thereby become toxic
(unbalanced in the model) if it is not catabolized. The model is
therefore infeasible unless the reaction catalyzed by the
enzyme 3’,5'-bisphosphate nucleotidase (which converts the
metabolite to AMP and inorganic phosphate) is included
in the network, as an orphan reaction. Examining model
feasibility thereby generates clues to incomplete or incorrect
genome annotation and may even provide novel drug targets
that are not apparent in the genome annotation.

In silico models also allow genome annotation to be
scrutinized by systems-based experimental data. For example,
the route for glycerol utilization is generally assumed to
proceed via glycerol kinase (encoded by glpK) followed
by dehydrogenation; however, the genome annotation of
M. tuberculosis includes several alcohol dehydrogenases that
could be involved in an alternative uptake pathway whereby
glycerol is first oxidized by glycerol dehydrogenase before
being phosphorylated (this pathway is annotated in the
KEGG M. tuberculosis pathway map). However, incorporation
of this pathway into the initial GSMN-TB model led to the
prediction that the gene g/pK is dispensable for growth on

media with glycerol as sole carbon source. Global mutagenesis
data demonstrated that glpK was in fact essential for growth
on glycerol as sole carbon source, which was confirmed by
construction of a glpK knock-out mutant.*® This information
was incorporated into a refined GSMN-TB model in which the
annotated alcohol dehydrogenases does not provide an alter-
native glycerol uptake pathway.

In this way, genome-scale models can be used to interrogate
and correct genome annotations and the resulting consensus
are used to update both model and genome annotation.

Use of genome-scale models to integrate and interpret functional
genome data and predict metabolic states

The functional genomics revolution has provided the means to
generate high-throughput transcriptomic, proteomic and
metabolic datasets but one of the challenges of systems
biology is to use these datasets to predict the metabolic state
of a cell. Transcriptomics is often the most readily available
dataset and therefore several researchers have developed methods
that use genome-scale models to interrogate transcriptome
data and predict aspects of the corresponding metabolic state.
However, there are a number of problems with this approach
as the mapping between transcriptome and metabolic flux will
be affected by factors (e.g. post-transcriptional control) that
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are not measured in transcriptome experiments. Nevertheless,
a number of structural or flux-based approaches have been
developed that use models to interrogate transcriptome data.
The simplest structural method is to use the model as a
scaffold and then simply overlay the transcriptomic data of
genes encoding metabolic enzymes onto the reactions
catalyzed by those genes in a network. However, this approach
does not utilize the systems properties of the networks and
thereby generates pathway-centric interpretations. A more
sophisticated method is the reporter metabolites approach
which utilizes bi-partite graph analysis to associate genes with
metabolites within a metabolic network and identify focal
points of metabolism: network nodes that appear to be most
affected by differentially expressed (enzyme-encoding) genes.>*
We have recently developed a related method, Differential
Producibility Analysis (DPA), which uses FBA to probe
metabolite connectivity and identify similar focal points of
metabolism. The method was used to extract metabolic signals
from the transcriptional response of M. tuberculosis to the
macrophage and predicted a general slowing down of central
metabolism together with a remodeling of the bacterial surface
as the pathogen adapts to its intracellular environment.

Several flux-based methods have also been developed. The
challenge with these approaches is that there is not a linear
relationship between the level of mRNA encoding an enzyme
and the metabolic flux through the reactions encoded by
that enzyme. Nevertheless, approaches have recently been
developed that attempt to predict metabolic state of organisms
including M. tuberculosis from transcriptome data.>*® In the
M. tuberculosis study a large compendium of gene expression
data from the tubercule bacillus growing in a variety of
different conditions was used to constrain the MAP sub-model
and also GSMN-TB.*” Fluxes were constrained using a func-
tion that was based on the level of transcript obtained for the
gene encoding that enzyme in each experiment and this was
used to limit the maximal flux through each enzymatic
reaction. As the focus of the study was to predict impact on
fatty acid metabolism, both total mycolic acid production and
biomass production were used as objective functions. This
‘E-flux’ method applied to either the GSMN-TB or MAP
correctly predicted that seven of the eight mycolic acid
inhibitors tested in the experimental data negatively modulated
mycolic acid metabolism regardless of which objective func-
tion was used. The study also predicted that several other
novel compounds had an impact on mycolic acid metabolism.
The validity of these predictions awaits further experimental
testing.

Use of models to identify drug targets

Both the currently available genome-scale M. tuberculosis
metabolic networks correctly identified the target of several
anti-tuberculous drugs (e.g. isoniazid) as essential genes
(e.g. inhA). Systems level approaches have also been applied
in the drug discovery process® and will undoubtedly facilitate
the development of novel anti-TB therapeutics. Raman ez al.
(2008) have developed a very useful framework for drug
discovery which incorporates the three published M. tuberculosis
metabolic models as part of a comprehensive and integrated

scheme for drug identification. TargetTB imposes sequential
filters on an initial list of essential genes (a structural prediction)
in order to generate several shortlists of putative drug targets.*’
The first list was generated by combining data from a protein—
protein interactome and FBA studies using both the available
genome scale models (iNj661, GSMN-TB) and also the mycolic
acid pathway (MAP) sub-model. This list was then filtered
using sequence analysis to remove genes with homologues in
humans; structural analysis to remove targets with similar
binding sites to human proteins. The process identified 622
putative drug targets including several known and proposed
candidate drug targets thereby validating the method. Further
filtering generated a short list of broad spectrum antibacterial,
TB specific targets and also candidate targets which could be
important for treating persistent TB (216 targets).

As an alternative to the above approaches which predict
reactions as drug targets by evaluating their effects on
metabolism, Kim e al. (2009)*! used a metabolite-centric
approach to identify potential candidate drug targets in a
number of pathogens including M. tuberculosis. Using con-
straint based flux analysis of the iNj66/ model, essential
metabolites were identified as metabolites which resulted in
zero growth when removed from the model using growth rate
as the objective function. Chokepoint analysis identifies enzymes
that uniquely produce and/or consume a particular meta-
bolite. Metabolites which were both essential and chokepoints
were filtered in order to remove targets that could produce
unwanted side effects. This analysis identified 413 essential
metabolites, 554 chokepoints and a final list of 364 putative
drug targets in M. tuberculosis. Chorismate synthesis was
identified by this analysis as a broad range target. Chorismate
is a key intermediate in the biosynthesis of a wide range of
compounds, including aromatic amino acids, folate cofactors,
menaquinones, ubiquinones, and siderophores. As a product
of the shikimate pathway which is essential in higher plants,
fungi, bacteria (including M. tuberculosis) and algae and is
absent in mammals, chorismate production has been validated
as a drug target by others.*** The shikimate pathway is
essential for the growth of M. tuberculosis even with exogenous
supplementation with amino acids** and is therefore a very
attractive anti-mycobacterial drug target. Mycolate synthesis
was also identified as a prioritized drug target and its meta-
bolism is already targeted by current anti-tubercular drugs.

In another study drug target combinations were identified
using an iNj661 based reaction influence network in order to
analyze the dependency of one protein on another by virtue of
metabolite sharing.*> Highly influential proteins (those which
are linked to a large number of other proteins through
metabolite sharing) in the network were identified and their
interaction with other influential proteins analyzed in order to
ascertain influential pairs, triplets and quadruplets. This
analysis was complemented with FBA which demonstrated
that most of the identified combinations of proteins are also
synthetic lethals in silico and may therefore be very good drug
targets. Multi-target therapeutics can be more efficacious and
less vulnerable to adaptive resistance because the biological
system is less able to compensate for the action of two or more
drugs simultaneously, and is of course the standard treatment
for tuberculosis.
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Another promising application of systems biology approaches
in the drug discovery process is in the simulation of thera-
peutic intervention. By developing a combined model con-
sisting of enzyme inhibition kinetics, metabolic simulation by
FBA of iNj661 and cell growth dynamics, Fang ez al. (2009)
successfully simulated drug inhibition of M. tuberculosis. Two
metabolic inhibitors 3-nitropropionate and 5’-O-(N-salicyl-
sulfamoyl) adenosine which target the enzyme isocitrate lyase
and salicyl-AMP ligase, respectively, were chosen to test the
model as these have been identified as important targets for
therapeutic intervention and experimental data are also
available for these inhibitors.*® The validation analysis showed
that the model had good predictivity at determining the
experimental dose-response curve of both these drugs. A
limitation to this study was that there was some overlap
between the experimental data used for construction and
validation of this model. However, this study demonstrates
the successful integration of three different phenotypic com-
ponents, a key strength of systems biology approaches.*’

Future challenges

The current models of M. tuberculosis metabolism are heavily
influenced by the genome annotation, which, as we have already
discussed, is likely to have many errors and is incomplete in
many pathways. Inconsistencies between model predictions and
experimental data are already apparent and indicate that there
is much that remains to be learnt about the metabolism of this
important pathogen.

A key question is how M. tuberculosis actually catabolises
its substrates and makes biomass both in vitro and in vivo.
Although clues can be gleaned from the methods described
above even FBA-based methods are hugely underdetermined
so a great number of flux solutions are usually compatible with
available data. The most powerful currently available method
for directly measuring internal fluxes is '*C-MFA (Fig. 4). In
this method, an organism is grown with a '*C-labelled sub-
strate. The label is incorporated into internal metabolites and
products of central metabolism, such as the proteogenic
amino acids. The positional labeling patterns (which carbon
atoms are labeled) of the amino acids and/or metabolites
(as determined by either mass spectrometry or NMR) are then
used as additional constraints in MFA to solve the internal
fluxes and thereby reconstruct the paths through central
metabolism that the carbon took inside the cells (Fig. 4).
3C-MFA has already proved to be an invaluable tool in
metabolic engineering and has been used to successfully identify
novel or unusual pathways in bacteria*®*** and has enormous
potential for studying the metabolism of M. tuberculosis. In
particular *C-MFA could be used to investigate the meta-
bolism of M. tuberculosis under conditions relevant to the
in vivo situation such as low oxygen or using fatty acids as
carbon sources. Such experiments could help answer questions
surrounding the operation of the TCA cycle and may also
identify entirely novel or unusual pathways in operation
during these conditions which maybe prone to inhibition by
targeted chemotherapy.

Currently it is not possible to apply many of the tools
of systems biology directly to examine the metabolism of

M. tuberculosis in vivo due to the requirement for steady
state growth conditions for stoichiometry-based modeling
approaches (FBA and MFA) and the problems associated
with separating the metabolism of the bacterium from that of
the host. There are however developments being made in this
area and it is expected that studying host—pathogen inter-
actions on a systems scale will eventually be possible.*” The
development of kinetic models would allow the application of
modeling approaches to study of dynamic systems, such as
infection, but, as discussed above, measuring parameters for
such models remains a major challenge. For now, it appears
that the best approach may be to utilize a combination of
both in vitro and in vivo studies, utilizing the in vitro studies
to develop mapping rules that can be applied to the more
limited data available in vivo and thereby discover the answer
to vitally important questions, such as what and how
M. tuberculosis eats in vivo.

The principle challenge for systems biology of M. tuberculosis
is to construct more complete models that integrate genome,
transcriptome, proteome, metabalome, physiology and struc-
ture and interactions with the host. Such multilevel models are
beyond current capabilities but there are already models
of transcriptional networks®® that could be integrated with
metabolic models. Also, metabolic models of human cells have
been constructed”*° which should soon allow the building of
combined host—pathogen cellular models that incorporate at
least metabolite exchange between pathogen and host cell.
While fully integrated models of tuberculosis are still a very
distant goal, systems biology efforts can (and are beginning to)
have an enormous impact on both our understanding of
the metabolic potential of M. tuberculosis and the success of
the drug discovery process which could lead to significant
advances in the treatment of tuberculosis.
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