Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online / Journal Homepage / Table of Contentsfor thisissue

PAPER www.rsc.org/molecularbiosystems | Molecular BioSystems

Inferring large-scale gene regulatory networks using a low-order

constraint-based algorithm+

Mingyi Wang,” Vagner Augusto Benedito,”” Patrick Xuechun Zhao” and

Michael Udvardi**

Received 26th August 2009, Accepted 7th January 2010

First published as an Advance Article on the web 19th February 2010

DOI: 10.1039/b917571g

Recently, simplified graphical modeling approaches based on low-order conditional
(in-)dependence calculations have received attention because of their potential to model gene
regulatory networks. Such methods are able to reconstruct large-scale gene networks with a small
number of experimental measurements, at minimal computational cost. However, unlike Bayesian
networks, current low-order graphical models provide no means to distinguish between cause and
effect in gene regulatory relationships. To address this problem, we developed a low-order
constraint-based algorithm for gene regulatory network inference. The method is capable of
inferring causal directions using limited-order conditional independence tests and provides a
computationally-feasible way to analyze high-dimensional datasets while maintaining high
reliability. To assess the performance of our algorithm, we compared it to several existing
graphical models: relevance networks; graphical Gaussian models; ARACNE; Bayesian networks;
and the classical constraint-based algorithm, using realistic synthetic datasets. Furthermore,

we applied our algorithm to real microarray data from Escherichia coli Affymetrix arrays and
validated the results by comparison to known regulatory interactions collected in RegulonDB.
The algorithm was found to be both effective and efficient at reconstructing gene regulatory

networks from microarray data.

Introduction

Massive accumulation of genome-wide gene expression data
for many organisms presents an opportunity and a challenge
to elucidate gene regulatory networks (GRNSs) controlling
various biological processes. Graphical models' are probabilistic
tools to analyze and visualize conditional dependencies
between random variables, and have the potential to identify,
systematically, transcriptional regulatory interactions from a
compendium of microarray expression profiles. Such models
include relevance networks (RNs),? graphical Gaussian models
(GGMS),3 low-order conditional dependence models*”’ and
Bayesian networks (BNs).® BNs are capable of identifying
non-linear causal relationships between genes using statistical
methods. The causal relationships derived from this approach
can portray information embedded in microarray data in a
manner that is intuitive and familiar to biologists. Generally,
a BN is a graphical representation of the relationship
(dependence) between multiple interacting entities. This graphical

“ Plant Biology Division, The Samuel Roberts Noble Foundation, Inc.,
2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
E-mail: mudvardi@noble.org; Fax: +1 580 224 6692;
Tel: +1 580 224 6655
b Genetics & Developmental Biology Program, Plant & Soil Sciences
Division, West Virginia University, 2090 Agricultural Sciences
Building, Morgantown, WV 26506, USA
i Electronic supplementary information (ESI) available: Additional
information. The software, datasets and three supplementary files can
be downloaded from http://bioinfo.noble.org/manuscript-support/lpc/.
See DOI: 10.1039/b917571¢g

representation is more commonly called a directed acyclic
graph (DAG). The nodes or vertices of a DAG represent the
random variables in the network, e.g. genes, while the
edges connecting the vertices represent the causal influence of
one node on another. BN-based GRN inference involves
searching through multiple possible DAGs for the one that
best represents the observed data. This task is also called BN
learning. However, in most typical microarray experiments, the
number of genes analyzed far exceeds the number of distinct
expression measurements. This situation challenges BNs
both conceptually and computationally. The main problem
with BN learning is that the number of the possible DAGs
increases super-exponentially with the number of nodes (genes)
in the network, and thus only a small subset of all possible
DAGs can be tested. More importantly, an inaccurate
estimation of conditional dependencies leads to a high rate of
false positive and false negative relationships in the final results.
An interpretation of the BN graph within the Markov
framework (see details in the next section) is rather difficult.
Gene expression databases typically contain measurements for
thousands of genes, but most existing algorithms for learning
BNs do not scale to such high-dimensional datasets. There are
some exceptions,”'® which use hybrid approaches to improve
computational efficiency. However, the often-exercised
discretization they employ leads to information loss, which
can influence considerably the results obtained. This is
corroborated by a previous study'' on the popular BN method,
which demonstrated that this approach tends to perform poorly
on microarray data.

988 | Mol. BioSyst., 2010, 6, 988-998

This journal is © The Royal Society of Chemistry 2010

https://doi.org/10.1039/b917571g
https://pubs.rsc.org/en/journals/journal/MB
https://pubs.rsc.org/en/journals/journal/MB?issueid=MB006006

Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online

To circumvent these problems, simplified graphical models,
such as RNs, GGMs and low-order conditional (in-)dependence
models, have received attention for practical use.'>* RNs
(or co-expression networks) are the simplest approach, and are
constructed by computing a similarity score for each pair of
genes, e.g., the correlation or mutual information between
expression profiles. If similarity is above a certain threshold,
the pair of genes is connected in the graph, if not, it remains
unconnected. RN are relatively easy to calculate and reasonably
accurate, even when the number of genes is much larger than the
number of samples. The results from RNs agree well with
functional similarity,'> and many co-expression relationships
are conserved over evolution supporting the conclusion that they
represent biologically-meaningful networks.> However, RNs
contain only limited information about the underlying biological
mechanisms since the effect of other genes on the relationship
between two genes is ignored. For example, from similarity of
expression profiles alone, we cannot distinguish between direct
and indirect relationships. In contrast, GGMs can identify a
direct correlation between two genes after accounting for the
impact of all other genes in the model. In this mode, each gene
pair is tested for conditional independence (CI) given the data
from all other genes. From these tests, one can tell if the
correlation between two genes is direct or mediated through
other genes. A problem with GGMs is that full conditional
models are hard to estimate if the number of samples is small
compared to the number of genes.*'® Low-order conditional
dependence models represent a compromise between RNs and
GGMs and are capable of identifying direct and indirect
correlations between any two genes after correcting for the
influence of a third gene only. Thus, in contrast to GGMs,
low-order conditional independence models do not consider the
effects of all other genes on the correlation between any two
genes. This facilitates the study of dependence patterns in a more
complex and exhaustive way than with only pair-wise
correlation-based relationships (i.e. RNs), while maintaining high
accuracy even from few observations. In this approach, modeling
is limited to 0-1 order conditional independencies (thus also
called 0-1 graphs®). This simplification avoids the need to carry
out statistically unreliable and computationally costly searches
for conditional independence in large subsets.

In contrast to BN models, the output from most simplified
graphical models contains undirected edges between nodes/
variables and provides no means to distinguish between
response variables and covariates and, thus, between cause
and effect. This makes it difficult for biologists to discern
regulatory relationships between genes. To redress this difficulty,
we revisited Dbasic concepts used in constraint-based
algorithms,'” an important offshoot of BN learning methods,
in which dependencies and conditional dependencies are tested
in the data and directed graphs are built accordingly. The
PC-algorithm (after its authors Peter and Clark) proposed
in ref. 17 is a well-known example. However, for the
PC-algorithm, in the worst case, all possible combinations of
the conditioning set need to be examined which would require
an exponential number of tests. Consequently, it is hard to
apply the PC-algorithm to large gene expression datasets.
Therefore, we developed an algorithm that estimates causal
relationships based on a low-order constraint-based approach,

in which low-order CI tests rather than full-order CI tests are
required. The algorithm has high computational efficiency but
still finds most causal relationships.

Methods

Definitions and preliminaries

To illustrate our new algorithm, some formal notions,
definitions and assumptions are needed, which can be found
in most books on BNs.'®

Let V denote a non-empty finite set of random variables.
A Bayesian network (BN) for V is defined by a pair (G,®). The
structural model is a directed acyclic graph (DAG) G = (V,E),
in which nodes represent variables in V (in BN, variable and
node can then be used interchangeably) and the set of edges E
is all edges between nodes in V. We use the notation X —» Y
if and only if there is a directed edge between two nodes
X and Y, and X-Y if and only if there is an undirected edge
between X and Y. The parents of a node X (written Parents(G,X))
is the set of nodes that have directed edges to X. The adjacency
set of a node X in graph G, denoted by Adjacencies(G,X), are
all nodes that are directly connected to X by an edge.
The elements of Adjacencies(G,X) are also called neighbors of
X or adjacent to X. We call the set of edges connecting the k&
nodes a path from X to X. Y is called a descendant of X, and
X is called an ancestor of Y is there is a path from X to Y, and
Y is called a non-descendant of X if Y is not a descendant
of X. For each node there is a probability distribution at
that node given the state of its parents in G, denoted by
P(X|Parents(G,X)). ©® are parameters specifying all these
probabilities. BNs follow the Markov condition, stating that given
its parents each variable is independent of its non-descendants.
Under the Markov assumption, each BN specifies a decomposi-
tion of the joint distribution over all distributions of the nodes, in
a unique way: P(V) = Ilycv P(X|Parents(G,X)).

It is necessary to give a brief description of the conditional
independence (CI) relation. X and Y are said to be conditionally
independent given S (where X € V, Y € Vand S = V\{X,Y})
if P(S) # 0 and one of the following holds: (1) P(X|Y.,S) =
P(X|S) and P(X|S) # 0, P(Y|S) # 0; (2) P(X|S) = 0 or
P(Y|S) = 0. This CI relation is denoted by I(X,Y|S). A CI
relation is characterized by its order, which is simply the
number of variables in the conditioning set S.

A criterion called d-separation captures exactly the CI
relationships that are implied by the Markov condition. We
say X and Y are d-separated by a node set S = V\{X,Y}in G if
every path between X and Y is blocked by S. A path between X
and Y is blocked by S if one of the following holds: (1) W e S
and W does not have converging arrows along the path
between X and Y, or (2) W has converging arrows along the
path and neither W nor any of its descendants are in S. Here,
we say a node W has converging arrows along a path if two
edges on the path point to W. A probability distribution @ on
V is said to be faithful with respect to a graph G if conditional
independencies of the distribution can be inferred from
so-called d-separation in the graph G and vice-versa. More
precisely, faithfulness of @ with respect to G means: for any
X,Y € Vwith X # Yand anyset S = V\{X.,Y}, X and Y are

This journal is © The Royal Society of Chemistry 2010

Mol. BioSyst., 2010, 6, 988-998 | 989

https://doi.org/10.1039/b917571g

Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online

conditionally independent given S if and only if node X and
node Y are d-separated by the set S.

The nodes W, X and Y form a v-structure in a DAG G when
X — W « Y is the subgraph of G induced by W, X and Y.
Two DAGs are equivalent if and when they represent the same
d-separation statements. The equivalence class of a DAG G is
the set of DAGs that are equivalent to G. Even given an
infinite number of observations, we cannot distinguish among
the different DAGs of an equivalence class. Using published
results,'® we can characterize equivalent classes more precisely:
two DAGs are equivalent if, and only if, they have the same
skeleton and the same v-structures. The skeleton of any
DAG is the undirected graph resulting from ignoring the
directionality of every edge. A common tool for visualizing
equivalence classes of DAGs is a partial directed acyclic graph
(PDAG), which is a graph that contains both directed and
undirected edges. There may be more than one PDAG that
correspond to the same equivalence class because extra
undirected edges can be oriented sometimes. Thus, completed
PDAG (CPDAG) is proposed to represent an equivalence class
uniquely.’® The CPDAG corresponding to an equivalence
class is the PDAG consisting of a direct edge for every
compelled edge in the equivalence class, and an undirected
edge for every reversible edge in the equivalence class.
A directed edge X — Y is compelled in G if for every DAG G’
equivalent to G, X — Y exists in G’. CPDAGs are also called
maximally oriented graphs.*' Several orientation rules®' can be
used to generate a CPDAG. The connections (edges) in a BN
can be used to interpret causal relationships between nodes.®

Algorithm

In this section, we present a new algorithm for learning a
PDAG from a database D with n nodes and m cases (called
sample size). In our case, D represents a microarray dataset
with n genes and m measurements/chips. The algorithm adopts
similar procedures to those used in the classical PC-algorithm
but requires only low-order CI tests and is, therefore, named a
low-order PC-algorithm, or LPC. This LPC-algorithm
consists of two phases: CI tests and an orientation phase.
Only low-order CI tests are performed in our algorithm
because their results are more reliable than higher-order
tests.!” In the CI definition, to test P(X|S), if there are many
variables in the conditioning set S, there may be very few
examples in the dataset that satisfy a particular value assignment
for S, and P(X|S) may be inaccurate if there is noise in the
examples. Similar issues may occur for P(X|Y,S). Thus, the
high-order CI tests are hard to estimate if the sample size is
small. The other benefit of low-order tests is restrained
computational complexity. To guarantee that causal relationships
inferred by this algorithm are correct, we perform extra tests in
the orientation phase. The formal pseudocode of the
LPC-algorithm is presented in Appendix A (Table 2). In this
algorithm, it receives a dataset D, significance level &, and
maximal order k of CI tests as input, and returns a PDAG as
output.

In the first phase, G is initiated as a fully connected
undirected graph. For example, suppose we have a simple
DAG with only five nodes (Fig. 1a), a complete graph is

(b) the complete graph

(e) [=2 (f) v-structure

(8) Rulel (h) Rule2

Fig. 1 Given relations in the original DAG (a), the LPC-algorithm
starts with a complete graph (b), then creates undirected graphs after
0-order CI tests (c), 1st-order CI tests (d), and 2nd-order CI tests (e) in
the first phase, and infers directions (f)—(h) using the orientation rules
in the second phase.

produced (Fig. 1b) in the first step of our algorithm. Then,
iterative CI tests are performed for each connected node pair
given a node subset S taken from neighbor nodes of the
connected node pairs. Under the DAG faithful assumption,
correlations or non-correlations, direct or indirect correlations
between node pairs can be distinguished by CI tests. In this
procedure, we used depp(X,Y|S) as a measure of the strength
of the conditional dependence between X and Y given S with
respect to D. In order to decide if I(X,Y|S) is true or not,
depp(X,Y|S) runs a partial correlation coefficient calculation
when D is continuous and then uses ¢ as the significance level.
In our algorithm, the partial correlation coefficient calculation
follows the method previously used'”?* and is described in
Appendix C.

For a given connected node pair X, Y in Fig. 1b, the
conditioning set is taken from neighbors of X or Y, i.e., any
subset S (S = Adjacencies (G,X)\{Y}). The size of S (|S]) is the

990 | Mol. BioSyst., 2010, 6, 988-998

This journal is © The Royal Society of Chemistry 2010

https://doi.org/10.1039/b917571g

Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online

order of CI tests and is controlled by / in our algorithm. Thus,
in this case, 0-order CI test depp(T,Y|Q) is performed when
! = 0. The 1st-order CI tests depp (T,Y|X), depp (T,Y|W) and
depp (T,Y|Z) are performed when / = 1. For 2nd-order CI
tests (! = 2), depp (T,Y\W.Z), depp (T.Y|W,X) and
depp (T,Y|X,Z) are performed. All the connected node pairs
in G are checked given / (lines 3—12 of Table 2). The order of
CI tests is iteratively increased from 0 to the maximal order k.
In this procedure, if a connected node pair T and Y are
conditionally independent given S, then the edge between
T and Y will be removed and S will be recorded into Sepset,
which is used to store the conditioning set. From our example
in Fig. 1, suppose we set k = 2, from d-separations given
in Fig. la, X-WW can be broken from 0-order tests because
I(X, W] @). No link can be broken from Ist-order CI tests and
thus Fig. 1d is unchanged. {X,Z} blocks each path between
T and W and each path between 7 and Y, that is,
(T, W|{X,Z}) and I(T,Y|{X,Z}). Thus, T-W and T-Y are
removed after 2nd-order CI tests (Fig. le), and the conditioning
sets are saved (i.e., Sepset(7,W) = {X,Z} and Sepset(7,Y) =
{X,Z}). This procedure is repeated until the order of CI tests
[is increased to k& or no more conditioning sets can be found
(lines 2—14 of Table 2). The highest order of CI tests is limited
by k specified by the user, thus avoiding an exponential
increase in the number of CI tests with the number of
neighbors. After the first phase, the skeleton of a PDAG
(Fig. le in our example) is generated and the weights of all
edges are assigned the minimal conditional dependence values
for each node pair calculated from all the CI tests.

In the second phase, orientation rules are applied to orient
the graph skeleton. First, the v-structures are determined (lines
15-19 of Table 2) for triple nodes X, Y and Z, if X and Y, and
Y and Z are connected while X and Z are not connected and
Y ¢ Sepset(X,Z), then we can infer directionality X — Y « Z
(any one of the three alternatives X - ¥ »> Z, X « Y « Z
and X « Y - Z will lead to I(X,Z|Y) and Y € Sepset(X,Z),
and thus cause a contradiction). In our example, we
have I(X,W| O), Z ¢ O and min(|Adjacencies(G,X)\{Z}/,
Adjacencies(G,Z2)\{X}|) = 2 and min(]Adjacencies(G,W)\{Z}|,
Adjacencies(G,Z)\{W}|) = 1,thus X - Zand W — Z can be
inferred according to the v-structure rule in our algorithm.
Similarly, X - Yand W — Y can be inferred. The other four
orientation rules are given in lines 21-24 of the LPC-algorithm
(Table 2). Next, the orientation rules (R1-R4) are repeatedly
used (lines 20-25 of Table 2) to determine the directions of
undirected edges until no more edges can be oriented. The
basic idea is to make sure that all other undirected edges also
can be oriented based on the DAG assumption. The details
can be found in Appendix A (lines 21-24 of Table 2). According
to the orientation rule 1 (line 21 of Table 2), Z — T can be
determined (Fig. 1g) because W — Z and Z-T while W and
T are not connected and |Adjacencies(G,7)\{Z}| = 1 (k).
According to the orientation rule 2 (line 22 of Table 2), by
satisfying X — Z and Z — T and min(]Adjacencies(G,X)\{T}|,
Adjacencies(G,7)\{X}|) = 1(<k), we can infer X — 7. No
other rules can be applied in this case. Fig. 1h is the final
structure inferred from the LPC-algorithm.

In the second phase, the key point of the LPC-algorithm
is that the neighbor number for linked node pairs is

checked before applying each orientation rule, ie.,
min(|Adjacencies(G,X)\{ Y}|, Adjacencies(G,Y)\{X}|) < k given
the node pair between X and Y must be satisfied. This is a
non-trivial step that must be completed before applying the
orientation rules in the second phase. The goal of this step is to
ensure that the orientation rules in the second phase are still
correct when only 0-k low-order CI tests are performed in
the first phase. Theoretical proofs of soundness are provided
in Appendix B. Thus, we can extend the use of the
classical constraint-based algorithm to datasets with large
variable numbers because only polynomial runtime is used.
The number of CI tests in the first phase is bounded by
O((n* — 4n® + Tn* — 4)/4) in the worst case when k = 2
and time efficiency is maintained. This is particularly
important for microarray data when the number of genes is
much higher than the number of samples because conditional
dependencies are generally hard to estimate with only limited
samples and high orders.!”-?

Because only low-order CI tests are performed, some false
edges may be retained in the skeleton and some directions are
missed. This is the price that the LPC-algorithm pays to reduce
runtime. Note that if & is increased to n — 2, the LPC-algorithm
is equivalent to the classical PC-algorithm. Thus, the LPC-
algorithm can be viewed as a special case of the PC-algorithm.

Results

Because we have insufficient knowledge to construct complete,
large-scale models of real gene regulatory networks, it is
necessary to employ simulated datasets with known network
structures to test novel algorithms.

Synthetic data

To assess the performances of our algorithm, we compared it
to several existing methods, using well-defined synthetic datasets.
We followed previous studies*?*? to generate hypothetical or
synthetic data, using the reaction kinetics-based system of
coupled non-linear continuous time ODEs introduced in
ref. 24. Gene expression levels are taken as state variables x;,
i = 1, ..., n. The influence on the transcription of each gene
due to all other genes is described by the n x n (sparse) matrix
of adjacencies G, and the rate law for mRNA synthesis of a
gene is obtained by multiplying together the sigmoidal-like
contributions of the genes identified as its inhibitors and
activators. Consider the i-th column of G, i = 1, ..., n and
choose randomly a sign to its non-zero indices in this column.
Denote by jj, ..., j, the indices with assigned positive values
(activators of the i-th gene) and by ky, .. ., k; the negative ones
(inhibitors of the i-th gene) in the i-th column of G. The ODE
for x; is then

h; I
dx; A7 0*
= Vi H (1 + hj : /1’) H < h, 5 h)
de JEUt i} A+ 07) gegio ny \I" 0

— /L-x,-

where the activator 4; and inhibitor ; act independently of
each other. V;is a basal rate of transcription, i.e., when there is
no action of inhibitors or activators. The constants 0; and 0
represent concentrations at which the effect of the activator or

This journal is © The Royal Society of Chemistry 2010

Mol. BioSyst., 2010, 6, 988-998 | 991

https://doi.org/10.1039/b917571g

Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online

inhibitor is half of its saturating value. The exponents /; and /1
are the activation and inhibition Hill coefficients and 4; the
degradation rate constants. We set 0; and 0y as 100, V;, h; and
hy as 1, A; as 0.1.%3

For fairness of directed graph comparisons under BN
frameworks, we used DAGs as the network structures. It will
not affect the conclusions for the evaluation of undirected
graphs if other structures are chosen (such as scale-free
networks—see results in the ESIf). We generated 10 DAGs
G with 100 nodes, which have different topology structures but
have a fixed edge number of 500. The maximal degree of a
node in these DAGs is 10. For each G, seven different datasets
with different sample sizes (10, 20, 50, 100, 200, 500 and 1000)
were generated separately using the above formula. To further
evaluate the performances of our algorithm under other
network structures, we also generated 10 scale-free networks
with feedback loops. The test results for scale-free networks
are presented in the ESIf.

Evaluation

In order to evaluate our algorithm, we compared it to several
others that are commonly used, including GGMs, BNs, PC,
RNs and ARACNE* (an algorithm based on low-order CI
tests). The implementation of GGM, the BN learning method,
PC and ARACNE were taken from ref. 3, 4, 22, and 25
respectively. We chose the BN learning method used in ref. 25
because it can accept continuous data and is a scoring and
searching method,'® an offshoot of BN learning methods that
serves as a good reference for our constraint-based algorithm.
While the true network is a directed graph, the competitive
methods may lead to undirected, directed, or partially directed
graphs. To assess the performance of our algorithm, we
applied two criteria in different approaches. The first
approach, referred to as the undirected graph evaluation,
discarded information about the edge direction. The second
approach, referred to as the directed graph evaluation,
compared the predicted structures with original directed
graphs for LPC, PC and BN because only these three methods
can output edge directions. For these comparisons, we ran
LPC, PC, BN, RN GGM and ARACNE over 70 synthetic
datasets consisting of 10 DAGs with 7 different sample sizes,
generated as described above. For the LPC and PC
algorithms, we set o = 0.05 for CI tests (see Appendix B)
because it achieved the best performance.

Evaluation of undirected graphs

Although the main goal of the LPC-algorithm is to identify a
directed network, the skeleton itself already contains interesting
information. Hence, initially, we compared the LPC-algorithm
to other methods without directions. Since genetic networks
are sparse, i.e., most gene pairs are not connected by a
direct regulatory link, the numbers of true negative (TN)
instances (Ntn) far exceed the true positive (TP) numbers
(Ntp). Traditional receiver operator characteristic (ROC)
analysis is insensitive to the false positive rate (1-specificity:
Npp/(Ngp + Ntn)) and, therefore, inappropriate for the
final area-under-the-curve (AUC) calculation. Therefore, we

adopted the Precision versus Recall (PvsR) curves* and the
TP number with fixed FP numbers® as measures of the
quality of network reconstruction. For a PvsR curve,
precision (Ntp/(Ntp + Ngp)) is plotted against the recall
(Ntp/(N1p + Ngn)), Where precision and recall are computed
over a range of pruning thresholds, then AUC value is
obtained as a measurement score, with higher scores indicating
better performance. Each of the five reverse engineering
methods compared in this study generates a matrix of scores
associated with the edges in a network. These scores are of
different nature: absolute values of Pearson correlation
coefficients for RNs, partial correlation coefficients for GGMs,
LPC and PC, marginal posterior probabilities for BNs and
conditional mutual information for ARACNE. However, all
these scores define a ranking of edges. We compared each weight
matrix with the real adjacency matrix DAGs under different
thresholds. The mean values of AUC(PvsR) and TP for a fixed
acceptable FP (here 20) run over 10 datasets under equal
conditions at same sample sizes are presented in Fig. 2a and b.

From the AUC(PvsR) evaluation (Fig. 2a), the
performances of LPC and PC were better than other methods
at sample sizes of 100 and 1000, while GGM outperformed all
other algorithms at other sample sizes. The average
AUC(PvsR)s were low when sample sizes were only 10, 20
and 50, meaning that very few TPs were captured in such
cases. In terms of AUC(PvsR)s, the performances of LPC, PC
and BN improved steadily with increasing sample sizes,
whereas, AUC(PvsR)s of RN stabilized and of GGM
decreased with sample sizes above 200. This indicates that
simple graphical models (such as RNs) can detect connections
well, and better than the sophisticated models LPC and PC at
very low sample size but their performance improves relatively
little when sample sizes increase. GGM achieved best
performance overall in the AUC(PvsR) evaluation. This can
be attributed to a small sample stable estimation procedure
used in GGM for genomic data with small sample sizes.’

From TP for fixed FP tests (Fig. 2b), the LPC-algorithm
was superior to RN, GGM, ARACNE and BN at almost all
sample sizes and was also slightly better than PC. Overall,
LPC and PC outperformed RN, ARACNE and BN in this
test. For ARACNE, the major reason for its poor
performance was the non-linear similarity measures employed,
which were less precise for this simulated data. This is also
corroborated by a previous study.”?

Evaluation of directed graphs

LPC, PC and BNs, yield directed graphs and we compared
their predicted graphs with true graphs to evaluate the quality
of structure prediction. We adopted the structure hamming
distance (SHD) metric'® to evaluate the predictive powers of
these methods. Briefly, the SHD counts the number of
edge insertions, deletions, and flips required to convert the
estimated PDAG into the correct representation (CPDAG) of
the original DAG.? Thus, a large SHD indicates a poor fit,
while a small SHD indicates a good fit. SHD comparisons are
presented in Fig. 2¢, while the distribution of structure errors,
such as the numbers of missing, extra, and flipped edges are
shown in Fig. 2d—f.

992 | Mol. BioSyst., 2010, 6, 988-998

This journal is © The Royal Society of Chemistry 2010

https://doi.org/10.1039/b917571g

Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online

(a) (c) (e)
0.8 600 120
0.7) 100 ;
g 550 Lo
o 7 . ! S s
0.6 £ — 8 80 //
% o0s 2 5 £ 60| f
g B ° B, /
153 2 o N fi
2 04 2 450 g 40 /
E g . ' ,‘f .
0.3 £ =z 20 L A ,%‘ Tt
o o S %7
5 400 *-f—s[r—f N1
02 [0 ! ¥ g
0.1 350 ‘ -20
10 20 50 100 200 5001000 10 20 50 100 200 5001000 10 20 50 100 200 500 1000
Sample Sizes Sample Sizes Sample Sizes
(b) (f)
300 500 2 160
—LPC 2 LPC ;
GGM ¥ 450 @ 1401 —<—pPC
250 ~— BN 5 © —=— BN Tis
- i " o 120 4
RN 5 a <3 F/
200 —7—PC W 5 400 5 100 ; /X
8 —2— ARACNE 7 e 3 1/
@ 350 £\ @2
o J o W\ s 80
% 150 /ﬁ £ \\ 3
S o+ 5 - 60
3 b4 2
100 £ [\ 2 40
3 250 \+ £
= 5 20
200 3
E
0 150 Z -20

10 20 50 100 200 500 1000
Sample Sizes

10 20 50 100 200 500 1000
Sample Sizes

10 20 50 100 200 500 1000
Sample Sizes

Fig. 2 The performance comparisons between several methods. For (a) and (b), the average AUC(PvsR)s and true positives under the fixed
20 false positives were plotted for LPC, GGM, BN, RN, PC and ARACNE under 7 different sample sizes. For (¢)—(f), the predictive errors
comparing between LPC, PC and BN. The average errors over 10 datasets under 7 sample sizes: (c) total SHDs; (d) missing edges; (e) extra edges;

(f) reversed edges or missing directions.

In terms of SHD metrics, the LPC-algorithm performed
similarly to the PC-algorithm and much better than BN. LPC
outperforms PC for sample sizes greater or equal to 100 while
it performs worse than PC for sample sizes smaller than 100
(Fig. 2¢). The major prediction errors for both methods were
from missing edges, the numbers of which varied from ~480
to 220 at different sample sizes. This indicates that some
associations are difficult to detect by partial correlation
calculations. The LPC-algorithm produced more spurious
edges than the PC-algorithm (Fig. 2e) and fewer missing edges
(Fig. 2d), presumably because higher-order CI tests were not
performed in LPC. PC is slightly better than LPC in direction
prediction (Fig. 2f), as more directions are missed when only
limited-order CI tests are performed as in LPC. Overall,
however, prediction accuracy of LPC was similar to that of
PC (Fig. 2c).

In both tests described above, the BN learning method
performed poorly compared to other methods as most edges
were not be recovered by this method (Fig. 2d and e). Apart
from the reasons mentioned above, we presume that the
implementation of the BN learning method is very restrictive
for some data types because it is based on the multivariate

Gaussian assumption.”>*® Scoring and searching methods
for continuous data are further stumbling blocks for the
BN community because they are computationally expensive
and lack the -causality-related theoretical correctness
guarantee.27

Effects of order on the LPC-algorithm

We evaluated the effect of the order k chosen in the
LPC-algorithm on computational expense and quality as
follows. The number of CI tests performed is indicative of
the computational effort spent for this algorithm. Using
simulated datasets with varying sample sizes, we calculated
the average number of CI tests performed in LPC when k
varied from 0 to 9 or the highest order reached in the
algorithm at each sample size (Fig. 3a). The average numbers
of CI tests versus the order k for different sample sizes
(SS in short) are plotted in Fig. 3a. The error bars represent
one standard deviation across 10 datasets at each sample size.
For SS = 10 and 20, the highest orders reached in the
LPC-algorithm are only 4 and the numbers of CI tests are
much lower than other sample sizes. The numbers of CI tests

This journal is © The Royal Society of Chemistry 2010

Mol. BioSyst., 2010, 6, 988-998 | 993

https://doi.org/10.1039/b917571g

Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online

187519

15}

14}

13

12}

11F >
o

0 10 S
£ g
o 9f /
S . /

o
27 a

E 6l /
Z /

5 /

at /—{/

3F /7 }’{/ o]
25 F o _E/"" /

| IR 4 g F—F—]
ol T

0 4 5 6 7 8 9

Order k in LPC
(a)

1600

; §8=10
1500 SS=20
1400 58=50
$S=100
——§5=200
‘. —— 58=500
12004 : ——— §5=1000
1100 \

1300} |

1000
900
800

SHDs

700
600

500
400

300
200

FHH

100

2 3 4 5 6 7 é é
Order k in LPC

(b)

Fig. 3 The average numbers of CI tests performed in the LPC-algorithm over 10 independent DAGs when the order £ is varied from 0 to 9. The
average numbers and standard deviations (error bars) are shown in (a). The average SHDs and their standard deviations from the LPC-algorithm
versus the order k are plotted in (b). Each sample size (SS) is depicted by one color curve (see legend) in these two sub-figures.

are basically unchanged after k is above 2 for SS = 10 and 20,
thus, the curves for those sample sizes (SS = 10, 20 and 50) are
almost flat and indistinguishable in Fig. 3a because they
overlap. The highest order varied according to sample sizes,
indicating that increased sample sizes increase sensitivities and
help identify more hypothetical neighbors for each node. For
datasets with low sample sizes (10, 20, 50 and 100), there was
little increase in the number of CI tests with increasing k
(Fig. 3a). However, CI test numbers increased substantially
with increasing order k at big sample sizes (200, 500 and 1000).
Setting k = 2 reduced the numbers of CI tests by 26.2%,
63.5% and 81.5% for datasets with sample sizes of 200, 500
and 1000, respectively. Clearly, low-order tests can reduce
computational time significantly for sample sizes greater
than 200.

To confirm the time efficiency of our LPC-algorithm,
runtime comparisons were done on a Pentium Xeons,
2.33 GHz and 4 GB RAM running Windows XP. The average
processor times for estimating the CPDAG under different

Table 1 Average processor time for estimating graph structures
(in seconds, with standard errors in brackets at each sample size).
Maximal k in PC means the highest order of CI tests performed in the
PC-algorithm

Sample size LPC (k = 2) PC Maximal k in PC

10 1.11(0.38) 1.39(0.07) 4
20 1.09(0.41) 1.41(0.06) 4
50 1.23(0.46) 1.41(0.07) 6
100 1.46(0.45) 1.78(0.65) 9
200 2.74(0.50) 11.24(15.11) 10
500 36.7(38.31) 138.99(106.99) 12
1000 641.10(757.97) 1430.92(1380.84) 14

sample sizes are given in Table 1. For every sample size, the
LPC-algorithm ran faster than PC on average. The difference
increased with higher sample sizes. The explanation for this is
that the relative number of CI tests is reduced in our
algorithm, compared to PC, at higher sample sizes (Fig. 3a
and Table 1), while this is not the case for the PC-algorithm,
which has no limit on k. We do not list runtime for the BN
learning method because it is much slower than LPC and PC.
The BN method required more than 2 days to complete the
same tests for each sample size.

Notice that this test was based on moderate-sized networks
of 100 nodes each. Many more CI tests would be spared by our
LPC-algorithm compared to the PC-algorithm when networks
are scaled up to several thousand nodes. However, due to the
computational complexity, it was not feasible to perform
these tests using the PC-algorithm (or set k& values high in
the LPC-algorithm) for networks having over 1000 nodes.

We also examined the effect on performance of limited
(0-k) order CI tests in LPC. We compared average SHD
measurements at different orders, i.e., k is varied from 0 to 9
(Fig. 3b). From Fig. 3b, we can see that the average SHDs
are decreased considerably after initial low-order CI tests
(when k is varied from 0 to 4 at most). For SS = 10, 20, 50
and 100, the SHD remains constant after k > 2. Even for the
sample size 1000, the SHD are not improved further for & > 4.
This shows that the major performance improvement of
LPC comes from low-order CI tests. SHD values decreased
with increasing order, although performance improved only
from order k = 1-3. Little was gained by increasing to higher-
order (k > 4) CI tests at all sample sizes. Therefore, limitation
of our algorithm to order 2 or 3 is justified on the grounds of
greater efficiency.

994 | Mol. BioSyst., 2010, 6, 988-998

This journal is © The Royal Society of Chemistry 2010

https://doi.org/10.1039/b917571g

Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online

Escherichia coli network inference

To test the ability of LPC to scale up to thousands of genes in
a dataset, we applied our algorithm to real microarray data.
We downloaded E. coli gene expression data from M3D
(http://m3d.bu.edu/norm/). This dataset consists of 445 arrays
from 13 different collections corresponding to various treatments,
including different growth media, environmental stresses
(e.g. DNA damaging drugs, pH changes), genetic perturbations,
and growth phases. The experiments were all carried out using
Affymetrix GeneChip E. coli Antisense Genome arrays,
containing 4345 gene probe-sets. Since transcription factors
(TFs) are the primary regulators of gene expression in a cell,
we used 328 validated or computationally-predicted transcription
factors (TFs) as prior knowledge, and only links between
these 328 TFs and all other genes (including TF-TF links)
were allowed for the initial graph pattern used by the
LPC-algorithm, instead of the fully connected graph. We set
k = 3 and o = 0.001 for this inference.

We used the E. coli K12 transcriptional network compiled in
the RegulonDB database version 6.3%% as the ‘true’ network,
from which we derived a directed graph of 3071 interactions.
We then compared our predicted gene interactions to the true
network. All 16884 gene pair edges resulting from LPC
analysis were oriented (see results in the ESIf). Importantly,
only 2.9% of gene pairs were directed from non-TF to TF
genes. In other words, 97.1% of all predicted relationships
were directed from TF genes to other genes, including other
TF genes, as expected. Among all the predicted gene inter-
actions, 208 are validated by known regulatory relations listed
in RegulonDB. Of these, 199 TFs were predicted correctly to
regulate known target genes, while the direction of interaction
between TFs and known target genes was incorrectly predicted
in only 9 cases.

We compared the performance of LPC with CLR, a
state-of-the-art method used for gene network reconstruction
that performed well in a large-scale benchmark evaluation.?’
When we selected the same number of gene pairs (16 884) from
CLR analysis, based on top-ranking, 209 true interactions
were recovered. Therefore, the performance of LPC (208 true
interactions in our case) was comparable to that of CLR in
terms of undirected graph prediction. However, CLR can only
predict an undirected network while our LPC-algorithm can
also infer the direction of edges connecting nodes (genes). We
did not compare our results to those of two recent studies’*>!
using the same E. coli dataset because these previous studies
used (semi-) supervised learning methods to infer TF-gene
regulations. In other words, additional prior data were used to
train the prediction models, making comparisons with our
method of unsupervised learning unfair. It is important to note
that the level of prior knowledge for E. coli is unmatched in
most other species, which would severely handicap supervised
approaches in more complex or less-studied species.

Discussion

The motivation for this work was to develop a time-efficient
algorithm for GRN reconstruction from genome-wide
transcript data, as a basis for hypothesis generation and

(idD <—1er

® ® © &

Fig. 4 The top 50 transcriptional regulatory relationships inferred by
LPC. Directed edges that have experimental support in RegulonDB
release 6.3 are indicated by blue arrows, edges that are not yet
supported by data in RegulonDB are depicted in grey, and known
edges with incorrectly predicted directions are depicted as undirected
blue lines. TFs are marked by red circles and regulated genes by green
circles. Line width is proportional to the Fisher’s Z-transformed
partial correlation value returned by LPC.

experimental testing. Theoretical proofs and the results of
evaluation tests show that our LPC-algorithm is useful for
network inference. This new algorithm is computationally
scalable to high-dimensional datasets, does not require
discretization of transcript levels, and can predict causal
relationships. The algorithm is a good alternative to BN
learning methods for large-scale GRN reconstruction.

As part of our analysis of publicly available E. coli
transcriptome data, a sub-network consisting of the 50 most
significant gene interactions predicted by our algorithm was
generated (Fig. 4). Importantly, the majority of predicted
regulatory relationships have been demonstrated experimentally
in the past, as documented in RegulonDB (blue arrows), while
others are not included in the current version of RegulonDB
(marked in grey in Fig. 4). However, additional published data
are consistent with regulatory relationships between some of
the latter: nac, ginK and amtB are involved in responses to
nitrogen starvation;’>>* and FliA is a sigma factor that is
necessary for transcription of class 3 flagellar genes, such as
flgK.*® Furthermore, the sigma factor Fecl and the membrane
proteins ExbB and ExbD act in coordination for iron
uptake.*®37 Thus, there is good agreement between this subset
of our LPC-predicted GRN and previous experimental data
that established gene interactions in E. coli. More importantly,
novel gene regulatory relations predicted by our LPC

This journal is © The Royal Society of Chemistry 2010

Mol. BioSyst., 2010, 6, 988-998 | 995

https://doi.org/10.1039/b917571g

Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online

algorithm should guide experimental work to confirm and
expand GRNs, not only in E. coli, but in the many other
organisms for which little experimental information beyond
genome and transcriptome data is available.

One reason for the apparent success of the LPC algorithm in
reconstructing E. coli genetic networks is that GRNs are sparsely
connected in most cases,®® ie., there are far fewer directly
connected genes for each gene than the total number of genes
minus one. Therefore, the LPC-algorithm can infer most causal
relationships in GRNs based on low-order CI tests.

All methods that attempt to reconstruct GRNs based on
transcriptome data are subject to false positive and false
negative errors arising from biological and computational
sources. For example, the regulatory link between a TF and
its target genes, whether it is positive or negative, will be
missed (false negative) if transcriptional regulation of the TF is
not the primary level of control for that gene/protein.*
Thus, if the TF gene is constitutively-expressed and post-
translational modification of the TF protein is the primary
means by which TF activity is regulated, then a correlation
between transcript levels of the TF gene and its target gene
may not exist, and a regulatory link between the two genes
never established, at least in wild-type cells. This may be less
often the case in prokaryotes, where TF genes are often part of
the operons that they control, than in eukaryotes, where this is
not the case. Genetic approaches, especially the use of mutants
defective in specific TF genes could help to overcome this
problem. Use of transcriptome data from defined TF mutants
in our LPC should help to reveal regulatory relationships that
are hidden in wild-type data.

False positive inferences of regulatory relationships can
arise when co-expressed genes are confused as co-regulated.
Consider, for instance, two TFs involved in distinct signaling
pathways with different roles, different environmental stimulation,
and different target genes. If, in a given set of experiments the
target genes have similar expression profiles, they will be
falsely considered as co-regulated (false positive). Moreover,
either of the two TFs could be mistaken as the common
regulator of all the target genes, based on the limited
experimental data, leading to a false inference of transcriptional
regulation.*® To avoid such problems, more informative
experiments should be selected,*® or alternate data sources
such as promoter sequence information or ChIP-on-chip data
should be incorporated with microarray data to enhance GRN
inferences.

False positive and false negative associations between genes
can also arise from the computational methods and
parameters employed. Obviously, the threshold that is set
for CI tests between two genes will have a major impact on
the predicted GRN, with a higher threshold reducing the
number of false positives and increasing the number of false
negatives. This is a problem for all algorithms that rely on
statistical treatment of data, including the LPC-algorithm.
With the accumulation of known regulatory relationships
with gene expression data, it is expected that optimal
threshold values could be determined wisely. Similar to the
PC-algorithm, another limitation of the LPC-algorithm is that
false negatives arising from statistical tests cannot be corrected
at a later stage and will lead to spurious final results.

Another source of errors in predicted GRNs are the
statistical assumptions that are made, which may not correctly
reflect the nature of the regulatory relationship between some
genes. For example, the DAG assumption for transcriptional
regulation does not accommodate more complex relation-
ships, such as feedback loops. This is, in fact, a shortcoming
of all static BN learning methods. Nevertheless, from the two
phases of the LPC-algorithm, the undirected graph returned
from the first phase still makes sense even for the feedback
loop situation. Previous studies*' showed that conditional
independencies are still sound even in directed cyclic graphs
(DCGs) within linear models. Thus, the undirected graph from
LPC would identify regulatory connections between genes.
The simulation tests over scale-free networks with feedback
loops also support this notion (in the ESIt). The second
phase of our algorithm may wrongly assign or fail to
assign directions to edges when the DAG assumption is
broken. However, due to the sparseness of connections in a
GRN, our algorithm is still able to recover causal relationships
when local network structures satisfy the assumptions in
BNs. Furthermore, if sufficient time-series microarray data
are available, the LPC-algorithm can be extended to
dynamic BN models** to overcome feedback loop problems
encountered in the DAG assumption. As GRN simulation
technology continues to mature (such as inclusion of the
interampatteness property to explain feedback loops,*’) and
suitable experimental time-series microarray data become
available, it will be interesting to test the ability of our
approach to model synthetic and real GRNs containing
feedback loops.

Appendix A: pseudocode of the LPC-algorithm

The formal pseudocode of the LPC-algorithm is presented in
Table 2.

Appendix B: proofs for the LPC-algorithm

The correctness of causal relationships identified by the
LPC-algorithm is guaranteed in Theorem 1. The lemmas are
per definition important since they are needed to prove the
theorem.

Lemma 1

In a faithful BN, let G = (V,E) be a DAG and X,Y € V. Then
if X and Y are d-separated by some set, they are d-separated
either by the set consisting of neighbors of X or the set
consisting of neighbors of Y.

Proof

Clearly, if X and Y are adjacent in G, no set d-separates them
as no set can block the path consisting of the edge
between them.

In the other direction, suppose X and Y are not adjacent.
Either there is no path from X to Y or there is no path from Y
to X for otherwise we could have a cycle. Without loss of
generality, assume there is no path from Y to X. We will show
that X and Y are d-separated by the set Adjacencies(G,Y)\X
consisting of neighbors of Y. Consider any path n between

996 | Mol. BioSyst., 2010, 6, 988-998

This journal is © The Royal Society of Chemistry 2010

https://doi.org/10.1039/b917571g

Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online

Table 2 Low-order PC-algorithm: LPC

Input: D: a dataset containing n nodes in m cases
k: the highest order can be performed in CI tests
€ the threshold for CI tests

Output: G: the partial directed graph over # nodes

/* Phase 1: learn a graph skeleton */

Form a complete connected undirected graph G with »# nodes;

Create the two-dimensional nxn arrays Sepset.

=0,

repeat

repeat
Select a new ordered pair of node X', Y that are adjacent in G
such that |Adjacencies (G.Y\ Y} =1
repeat
choose a new S ¢ Adjacencies (G X\ Y} with [S|=/;
if depp (X.Y|S)< ¢ then
Delete edge Xand ¥ in G;
Save S in Sepset(.X.}) and Sepset(}.X);
0: end if
1 until edge X and Y is deleted or all S < Adjacencies
(G.X)\{Y} with |S|=/ have been chosen
until all ordered pairs of adjacent variables X and ¥ such that
|Adjacencies (G, X)\{Y}>/ and S < Adjacencies (G, X)\{Y}
with [S|=/ have been tested for conditional independence
13} =01,
14: until there is no adjacent nodes X, ¥ satisfying | Adjacencies
(GXMYH=1or >k
/* Phase 2: Orientation */
15: for each triple of nodes X, ¥, Z such that the pairs .Y, ¥ and pairs Y,
Z are each adjacent in G but the pair X, Z are not adjacent in
G
16: if min(] Adjacencies(G.X)\{Y}|,| Adjacencies(G.Y)\{X}[)<k and
min(| Adjacencies(G.Z)\{ V'}|.| Adjacencies(G.Y)\Z}|)<k and Y
& Sepset(X.Z) then

7 orient X—Y—Z into X—Y«Z;

8 endif

19: next

20: repeat

21: RI1 Orient Y—Z into Y—Z whenever there is arrow X— Y such that
X and Z are nonadjacent and min(| Adjacencies(G.Y)\{Z}|,
Adjacencies(G.2)\{ Y} |)<k;

22: R2 Orient Y—V into X—Y whenever there is a chain X—=Z—Y
and min(| Adjacencies(G,X)\{Y},|
Adjacencies(G, V)\{.X}|)<k;

23: R3 Orient Y—V into X—Y whenever there are two chains
X—Z—=Y and X—W—=Y such that Z and W are nonadjacent
and min(| Adjacencies(G,X)\{Y}],|
Adjacencies(G.Y)\{ X})=k and min(| Adjacencies(G X\ Z}|,
| Adjacencies(G,2)\{X}|)<k and
min(|Adjacencies(G.X)\{ W} .| Adjacencies(G,W)\{X}|)<k ;

24: R4 Orient X—Y into X—Y whenever there are two chains
X—Z—W and Z—W—Y such that Z and Y are nonadjacent
and min(| Adjacencies(G,X)\{Y}],|
Adjacencies(G.Y)\{ X})=k and min(|
Adjacencies(G.X)\{Z}|.| Adjacencies(G,2)\{X}|)=k;

25: until no more edges in G can be oriented

B o=

= =0 00 M1 L

B

X and Y that does not pass through any node in Parents(G, Y).
There must be a node Z having converging arrow along the 7,
otherwise it would be a path from Y to X. Consider Z is closest
to X on path n, Z cannot be an ancestor or parent of any node
in Parents(G,Y) and Z ¢ Parents(G,Y) because otherwise we
have a cycle. Clearly, any path between X and Y are blocked
by Parents(G,Y) according to the d-separation definition.
Adjacencies(G, Y)/X, which completes the proof.. .

Lemma 2

In a faithful BN, let G = (V,E) be a DAG and X,Y € V
and |Adjacencies(G,X)\{Y}| < |Adjacencies(G,Y)\{X}|) and
|Adjacencies(G,X)\{Y}| = k. Then if X and Y are d-separated
by some set, they are d-separated by a set S such that
S < Adjacencies(G,X)\{Y} and [S| < k.

Proof

Follows from Lemma 1, if X and Y are d-separated by some
set, they are d-separated by a subset (denoted as S) of
Adjacencies(G,X)\{Y}. Since |Adjacencies(G,X)\{Y}| <
|Adjacencies(G,Y)\{X}| and |Adjacencies(G,X)\{Y}| = k, the
cardinality of any subset of Adjacencies(G,X)\{Y} is no more
than k because |Adjacencies(G,X)\{Y}| = k. Hence X and Y are
d-separated by the set S such that S < Adjacencies(G,X)\{Y}
and [S| < k..".

Theorem 1 (soundness)

Under faithful assumption, the set of all undirected edges
returned by the LPC-algorithm is a superset of undirected
edges in the CPDAG. Any directed edge created by the
LPC-algorithm is a directed edge in the CPDAG.

Proof

The first phase of our algorithm is similar to the PC-
algorithm,!” only difference is only 0—k order CI tests were
performed (in line 14 of Table 2). The edges in skeleton can be
broken by higher-order CI tests in the PC-algorithm will be
kept in the LPC-algorithm. All the edges broken by 0—k order
CI tests in the LPC-algorithm also can be broken by the
PC-algorithm. Follows from Th. 5.1, Ch. 13 in ref. 17 which
claims the correctness of the skeleton from the PC-algorithm.
Hence, the set of all edges returned by the LPC-algorithm is a
superset of edges in the CPDAG.

In the second phase of the LPC-algorithm, for each orientation
rule, the numbers of adjacencies of each node per node
pair (denoted by X and Y) are examined (in line 16 and
lines 21-24 of Table 2), it follows from Lemma 2 and
min(|Adjacencies(G,X)\{Y}|, |Adjacencies(G,Y)\{X}|) < Kk,
without loss of generality, X and Y is also adjacent in CPDAG
because otherwise the edge between X and Y are removed by
0—k order CI tests in the phase 1. The conditions of all the
orientation rules in phase 2 are still satisfied. It follows from
Theorem 2 in ref. 21 that all the orientation rules are still
sound. Hence, all the directed edges inferred from the orientation
phase in LPC are also presented in CPDAG..".

Appendix C: partial correlation calculations

For conditional independence (CI) tests used in our algorithm,
we followed the partial correlation calculation used in ref. 17
and 22, that is, the sample partial correlation p, for any Z € S,

Px,y|S\z — Px,z8\zPY,z|S\Z (1)

Pxy|s =
\/(1 - p%v,ymz) <1 - p%«nsw)

The zeroth-order partial correlation py y@ is defined to be
the regular Pearson correlation coefficient py y. Actually, the

This journal is © The Royal Society of Chemistry 2010

Mol. BioSyst., 2010, 6, 988-998 | 997

https://doi.org/10.1039/b917571g

Open Access Article. Published on 19 February 2010. Downloaded on 1/23/2026 12:37:14 PM.

View Article Online

k-th order partial correlation (i.e., with [S| = k) can be easily
computed from three (k — 1)th order partial correlations. Thus
the sample partial correlation py ylsz can be calculated
recursively by using eqn (1).

For testing whether a partial correlation is zero or not, we
apply Fisher’s Z-transformation of the partial correlation:

Vm =S =3|Z(X, Y|S)| > &~ '(1 —a/2) (2)

Classical decision theory yields the following rule when
using significance level «. Reject the null-hypothesis
Hy(X,Y|S): pxys = 0 against the two-sided alternative
HAXYIS): pyys # 0if

1 1+p
Z(X,Y|S) = 5 log - 2XYIS\Z 3)
2 1 - Px,y|S\z

where ®(-) denotes the cumulative distribution function of a
Gaussian distribution with zero mean and unit standard
deviation and m is the sample size. Thus, the left-hand side
of eqn (3) is used as depp(X,Y|S) and the right-hand side of
eqn (3) is used as the threshold ¢ in LPC.

Acknowledgements

This research was funded by the National Science Foundation
(Grant No. DB-0703285), Oaklahoma Centre for the
Advancement of Science Technology (Project No. PSB09-032)
and the Samuel Roberts Noble Foundation.

Notes and references

1 S. L. Lauritzen, Graphical Models, Oxford University Press,
New York, USA, 1996.

2 J. M. Stuart, E. Segal, D. Koller and S. K. Kim, Science, 2003, 302,
249-255.

3 J. Schafer and K. Strimmer, Bioinformatics, 2005, 21, 754-764.

4 A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G.

Stolovitzky, R. Dalla Favera and A. Califano, BMC Bioinformatics,

2006, 7(Suppl 1), S7.

A. Wille and P. Buhlmann, Stat. Appl. Genet. Mol. Biol., 2006, 5,

Article 1.

6 A. Reverter and E. K. Chan, Bioinformatics, 2008, 24,
2491-2497.

7 S. Lebre, Stat. Appl. Genet. Mol. Biol., 2009, 8, Article 9.

8 N. Friedman, M. Linial, I. Nachman and D. Pe’er, J. Comput.
Biol., 2000, 7, 601-620.

9 M. Wang, Z. Chen and S. Cloutier, Comput. Biol. Chem., 2007, 31,
361-372.

10 I. Tsamardinos, L. E. Brown and C. F. Aliferis, Mach. Learn.,
2006, 65, 31-78.

11 D. Husmeier, Bioinformatics, 2003, 19, 2271-2282.

12 S. Ma, Q. Gong and H. J. Bohnert, Genome Res., 2007, 17, 1614-1625.

13 K. Basso, A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera
and A. Califano, Nat. Genet., 2005, 37, 382-390.

14 A. Wille, P. Zimmermann, E. Vranova, A. Furholz, O. Laule,
S. Bleuler, L. Hennig, A. Prelic, P. von Rohr, L. Thiele, E. Zitzler,
W. Gruissem and P. Buhlmann, Genome Biol., 2004, 5, R92.

W

15

16

18

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

C. J. Wolfe, 1. S. Kohane and A. J. Butte, BMC Bioinformatics,
2005, 6, 227.

F. Markowetz and R. Spang, BMC Bioinformatics, 2007,
8(Suppl 6), S5.

P. Spirtes, C. Glymour and R. Scheines, Causation, Prediction, and
Search, MIT Press, 2000.

R. Neapolitan, Learning Bayesian Networks, Prentice Hall
Upper Saddle River, NJ, 2004.

T. Verma and J. Pearl, in Proceedings of the Sixth Annual
Conference on Uncertainty in Artificial Intelligence, ed.
M. Herion, R. Schachter, L. Kanal and J. Lemmer, 1990, 255-270.
D. Chickering, J. Mach. Learn. Res., 2002, 2, 445-498.

C. Meek, Proceedings of the 11th Annual Conference on Uncertainty
in Artificial Intelligence, Montreal, QC, ed P. Besnard and
S. Hanks, 1995, 403-441.

M. Kalisch and P. Bithlmann, J. Mach. Learn. Res., 2007, 8,
613-636.

N. Soranzo, G. Bianconi and C. Altafini, Bioinformatics, 2007, 23,
1640-1647.

P. Mendes, W. Sha and K. Ye, Bioinformatics, 2003, 19(Suppl 2),
ii122-ii129.

A. V. Werhli, M. Grzegorczyk and D. Husmeier, Bioinformatics,
2006, 22, 2523-2531.

D. Geiger and D. Heckerman, in Proceedings of the 10th Annual
Conference on Uncertainty in Artificial Intelligence, ed R. Mantaras
and D. Poole, 1994, 235-243.

J. P. Pellet and A. Elisseeff, J. Mach. Learn. Res., 2008, 9,
1295-1342.

H. Salgado, S. Gama-Castro, M. Peralta-Gil, E. Diaz-Peredo,
F. Sanchez-Solano, A. Santos-Zavaleta, I. Martinez-Flores,
V. Jimenez-Jacinto, C. Bonavides-Martinez, J. Segura-Salazar,
A. Martinez-Antonio and J. Collado-Vides, Nucleic Acids Res.,
2006, 34, D394-397.

J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski,
G. Cottarel, S. Kasif, J. J. Collins and T. S. Gardner, PLoS Biol.,
2007, 5, 8.

F. Mordelet and J.-P. Vert, Bioinformatics, 2008, 24, 176-82.

J. Ernst, Q. K. Beg, K. A. Kay, G. Balazsi, Z. N. Oltvai and
Z. Bar-Joseph, PLoS Comput. Biol., 2008, 4, €1000044.

H. Jiang, L. Shang, S. H. Yoon, S. Y. Lee and Z. Yu, Biotechnol.
Lett., 2006, 28, 1241-1246.

M. S. Kabir, T. Sagara, T. Oshima, Y. Kawagoe, H. Mori,
R. Tsunedomi and M. Yamada, Microbiology, 2004, 150,
2543-2553.

T. A. Blauwkamp and A. J. Ninfa, Mol. Microbiol., 2002, 46,
203-214.

S. Kalir, J. McClure, K. Pabbaraju, C. Southward, M. Ronen,
S. Leibler, M. G. Surette and U. Alon, Science, 2001, 292,
2080-2083.

M. Ochs, A. Angerer, S. Enz and V. Braun, Mol. Gen. Genet., 1996,
250, 455-465.

A. Stiefel, S. Mahren, M. Ochs, P. T. Schindler, S. Enz and
V. Braun, J. Bacteriol., 2001, 183, 162-170.

H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A. L. Barabasi,
Nature, 2000, 407, 651-654.

M. J. Herrgard, M. W. Covert and B. O. Palsson, Genome Res.,
2003, 13, 2423-2434.

E. Szczurek, 1. Gat-Viks, J. Tiuryn and M. Vingron, Mol. Syst.
Biol., 2009, 5, 287.

T. Richardson and P. Spirtes, Computation, Causation, and
Discovery, 1999, pp. 253-304.

K. Murphy and S. Mian, technique report, Modelling Gene
Expression Data using Dynamic Bayesian Networks, University of
California, Berkeley, 1999.

T. E. M. Nordling and E. W. Jacobsen, IET Syst. Biol., 2009, 3,
388-405.

998 | Mol. BioSyst., 2010, 6, 988-998

This journal is © The Royal Society of Chemistry 2010

https://doi.org/10.1039/b917571g

