
Inferring large-scale gene regulatory networks using a low-order

constraint-based algorithmw

Mingyi Wang,a Vagner Augusto Benedito,ab Patrick Xuechun Zhaoa and

Michael Udvardi*
a

Received 26th August 2009, Accepted 7th January 2010

First published as an Advance Article on the web 19th February 2010

DOI: 10.1039/b917571g

Recently, simplified graphical modeling approaches based on low-order conditional

(in-)dependence calculations have received attention because of their potential to model gene

regulatory networks. Such methods are able to reconstruct large-scale gene networks with a small

number of experimental measurements, at minimal computational cost. However, unlike Bayesian

networks, current low-order graphical models provide no means to distinguish between cause and

effect in gene regulatory relationships. To address this problem, we developed a low-order

constraint-based algorithm for gene regulatory network inference. The method is capable of

inferring causal directions using limited-order conditional independence tests and provides a

computationally-feasible way to analyze high-dimensional datasets while maintaining high

reliability. To assess the performance of our algorithm, we compared it to several existing

graphical models: relevance networks; graphical Gaussian models; ARACNE; Bayesian networks;

and the classical constraint-based algorithm, using realistic synthetic datasets. Furthermore,

we applied our algorithm to real microarray data from Escherichia coli Affymetrix arrays and

validated the results by comparison to known regulatory interactions collected in RegulonDB.

The algorithm was found to be both effective and efficient at reconstructing gene regulatory

networks from microarray data.

Introduction

Massive accumulation of genome-wide gene expression data

for many organisms presents an opportunity and a challenge

to elucidate gene regulatory networks (GRNs) controlling

various biological processes. Graphical models1 are probabilistic

tools to analyze and visualize conditional dependencies

between random variables, and have the potential to identify,

systematically, transcriptional regulatory interactions from a

compendium of microarray expression profiles. Such models

include relevance networks (RNs),2 graphical Gaussian models

(GGMs),3 low-order conditional dependence models4–7 and

Bayesian networks (BNs).8 BNs are capable of identifying

non-linear causal relationships between genes using statistical

methods. The causal relationships derived from this approach

can portray information embedded in microarray data in a

manner that is intuitive and familiar to biologists. Generally,

a BN is a graphical representation of the relationship

(dependence) between multiple interacting entities. This graphical

representation is more commonly called a directed acyclic

graph (DAG). The nodes or vertices of a DAG represent the

random variables in the network, e.g. genes, while the

edges connecting the vertices represent the causal influence of

one node on another. BN-based GRN inference involves

searching through multiple possible DAGs for the one that

best represents the observed data. This task is also called BN

learning. However, in most typical microarray experiments, the

number of genes analyzed far exceeds the number of distinct

expression measurements. This situation challenges BNs

both conceptually and computationally. The main problem

with BN learning is that the number of the possible DAGs

increases super-exponentially with the number of nodes (genes)

in the network, and thus only a small subset of all possible

DAGs can be tested. More importantly, an inaccurate

estimation of conditional dependencies leads to a high rate of

false positive and false negative relationships in the final results.

An interpretation of the BN graph within the Markov

framework (see details in the next section) is rather difficult.

Gene expression databases typically contain measurements for

thousands of genes, but most existing algorithms for learning

BNs do not scale to such high-dimensional datasets. There are

some exceptions,9,10 which use hybrid approaches to improve

computational efficiency. However, the often-exercised

discretization they employ leads to information loss, which

can influence considerably the results obtained. This is

corroborated by a previous study11 on the popular BN method,

which demonstrated that this approach tends to perform poorly

on microarray data.

a Plant Biology Division, The Samuel Roberts Noble Foundation, Inc.,
2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
E-mail: mudvardi@noble.org; Fax: +1 580 224 6692;
Tel: +1 580 224 6655

bGenetics & Developmental Biology Program, Plant & Soil Sciences
Division, West Virginia University, 2090 Agricultural Sciences
Building, Morgantown, WV 26506, USA

w Electronic supplementary information (ESI) available: Additional
information. The software, datasets and three supplementary files can
be downloaded from http://bioinfo.noble.org/manuscript-support/lpc/.
See DOI: 10.1039/b917571g

988 | Mol. BioSyst., 2010, 6, 988–998 This journal is �c The Royal Society of Chemistry 2010

PAPER www.rsc.org/molecularbiosystems | Molecular BioSystems

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online / Journal Homepage / Table of Contents for this issue

https://doi.org/10.1039/b917571g
https://pubs.rsc.org/en/journals/journal/MB
https://pubs.rsc.org/en/journals/journal/MB?issueid=MB006006

To circumvent these problems, simplified graphical models,

such as RNs, GGMs and low-order conditional (in-)dependence

models, have received attention for practical use.12–14 RNs

(or co-expression networks) are the simplest approach, and are

constructed by computing a similarity score for each pair of

genes, e.g., the correlation or mutual information between

expression profiles. If similarity is above a certain threshold,

the pair of genes is connected in the graph, if not, it remains

unconnected. RNs are relatively easy to calculate and reasonably

accurate, even when the number of genes is much larger than the

number of samples. The results from RNs agree well with

functional similarity,15 and many co-expression relationships

are conserved over evolution supporting the conclusion that they

represent biologically-meaningful networks.2 However, RNs

contain only limited information about the underlying biological

mechanisms since the effect of other genes on the relationship

between two genes is ignored. For example, from similarity of

expression profiles alone, we cannot distinguish between direct

and indirect relationships. In contrast, GGMs can identify a

direct correlation between two genes after accounting for the

impact of all other genes in the model. In this mode, each gene

pair is tested for conditional independence (CI) given the data

from all other genes. From these tests, one can tell if the

correlation between two genes is direct or mediated through

other genes. A problem with GGMs is that full conditional

models are hard to estimate if the number of samples is small

compared to the number of genes.3,16 Low-order conditional

dependence models represent a compromise between RNs and

GGMs and are capable of identifying direct and indirect

correlations between any two genes after correcting for the

influence of a third gene only. Thus, in contrast to GGMs,

low-order conditional independence models do not consider the

effects of all other genes on the correlation between any two

genes. This facilitates the study of dependence patterns in a more

complex and exhaustive way than with only pair-wise

correlation-based relationships (i.e.RNs), while maintaining high

accuracy even from few observations. In this approach, modeling

is limited to 0-1 order conditional independencies (thus also

called 0-1 graphs5). This simplification avoids the need to carry

out statistically unreliable and computationally costly searches

for conditional independence in large subsets.

In contrast to BN models, the output from most simplified

graphical models contains undirected edges between nodes/

variables and provides no means to distinguish between

response variables and covariates and, thus, between cause

and effect. This makes it difficult for biologists to discern

regulatory relationships between genes. To redress this difficulty,

we revisited basic concepts used in constraint-based

algorithms,17 an important offshoot of BN learning methods,

in which dependencies and conditional dependencies are tested

in the data and directed graphs are built accordingly. The

PC-algorithm (after its authors Peter and Clark) proposed

in ref. 17 is a well-known example. However, for the

PC-algorithm, in the worst case, all possible combinations of

the conditioning set need to be examined which would require

an exponential number of tests. Consequently, it is hard to

apply the PC-algorithm to large gene expression datasets.

Therefore, we developed an algorithm that estimates causal

relationships based on a low-order constraint-based approach,

in which low-order CI tests rather than full-order CI tests are

required. The algorithm has high computational efficiency but

still finds most causal relationships.

Methods

Definitions and preliminaries

To illustrate our new algorithm, some formal notions,

definitions and assumptions are needed, which can be found

in most books on BNs.18

Let V denote a non-empty finite set of random variables.

A Bayesian network (BN) for V is defined by a pair hG,Hi. The
structural model is a directed acyclic graph (DAG) G = (V,E),

in which nodes represent variables in V (in BN, variable and

node can then be used interchangeably) and the set of edges E

is all edges between nodes in V. We use the notation X - Y

if and only if there is a directed edge between two nodes

X and Y, and X–Y if and only if there is an undirected edge

betweenX andY. The parents of a nodeX (written Parents(G,X))

is the set of nodes that have directed edges to X. The adjacency

set of a node X in graph G, denoted by Adjacencies(G,X), are

all nodes that are directly connected to X by an edge.

The elements of Adjacencies(G,X) are also called neighbors of

X or adjacent to X. We call the set of edges connecting the k

nodes a path from X1 to Xk. Y is called a descendant of X, and

X is called an ancestor of Y is there is a path from X to Y, and

Y is called a non-descendant of X if Y is not a descendant

of X. For each node there is a probability distribution at

that node given the state of its parents in G, denoted by

P(X|Parents(G,X)). H are parameters specifying all these

probabilities. BNs follow theMarkov condition, stating that given

its parents each variable is independent of its non-descendants.

Under the Markov assumption, each BN specifies a decomposi-

tion of the joint distribution over all distributions of the nodes, in

a unique way: P(V) = PXAV P(X|Parents(G,X)).

It is necessary to give a brief description of the conditional

independence (CI) relation. X and Y are said to be conditionally

independent given S (where X A V, Y A V and S D V\{X,Y})

if P(S) a 0 and one of the following holds: (1) P(X|Y,S) =

P(X|S) and P(X|S) a 0, P(Y|S) a 0; (2) P(X|S) = 0 or

P(Y|S) = 0. This CI relation is denoted by I(X,Y|S). A CI

relation is characterized by its order, which is simply the

number of variables in the conditioning set S.

A criterion called d-separation captures exactly the CI

relationships that are implied by the Markov condition. We

say X and Y are d-separated by a node set SD V\{X,Y} in G if

every path between X and Y is blocked by S. A path between X

and Y is blocked by S if one of the following holds: (1) W A S

and W does not have converging arrows along the path

between X and Y, or (2) W has converging arrows along the

path and neither W nor any of its descendants are in S. Here,

we say a node W has converging arrows along a path if two

edges on the path point to W. A probability distribution H on

V is said to be faithful with respect to a graph G if conditional

independencies of the distribution can be inferred from

so-called d-separation in the graph G and vice-versa. More

precisely, faithfulness of H with respect to G means: for any

X,Y A V with X a Y and any set S D V\{X,Y}, X and Y are

This journal is �c The Royal Society of Chemistry 2010 Mol. BioSyst., 2010, 6, 988–998 | 989

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online

https://doi.org/10.1039/b917571g

conditionally independent given S if and only if node X and

node Y are d-separated by the set S.

The nodesW, X and Y form a v-structure in a DAG G when

X - W ’ Y is the subgraph of G induced by W, X and Y.

Two DAGs are equivalent if and when they represent the same

d-separation statements. The equivalence class of a DAG G is

the set of DAGs that are equivalent to G. Even given an

infinite number of observations, we cannot distinguish among

the different DAGs of an equivalence class. Using published

results,19 we can characterize equivalent classes more precisely:

two DAGs are equivalent if, and only if, they have the same

skeleton and the same v-structures. The skeleton of any

DAG is the undirected graph resulting from ignoring the

directionality of every edge. A common tool for visualizing

equivalence classes of DAGs is a partial directed acyclic graph

(PDAG), which is a graph that contains both directed and

undirected edges. There may be more than one PDAG that

correspond to the same equivalence class because extra

undirected edges can be oriented sometimes. Thus, completed

PDAG (CPDAG) is proposed to represent an equivalence class

uniquely.20 The CPDAG corresponding to an equivalence

class is the PDAG consisting of a direct edge for every

compelled edge in the equivalence class, and an undirected

edge for every reversible edge in the equivalence class.

A directed edge X - Y is compelled in G if for every DAG G0

equivalent to G, X - Y exists in G0. CPDAGs are also called

maximally oriented graphs.21 Several orientation rules21 can be

used to generate a CPDAG. The connections (edges) in a BN

can be used to interpret causal relationships between nodes.8

Algorithm

In this section, we present a new algorithm for learning a

PDAG from a database D with n nodes and m cases (called

sample size). In our case, D represents a microarray dataset

with n genes andmmeasurements/chips. The algorithm adopts

similar procedures to those used in the classical PC-algorithm

but requires only low-order CI tests and is, therefore, named a

low-order PC-algorithm, or LPC. This LPC-algorithm

consists of two phases: CI tests and an orientation phase.

Only low-order CI tests are performed in our algorithm

because their results are more reliable than higher-order

tests.17 In the CI definition, to test P(X|S), if there are many

variables in the conditioning set S, there may be very few

examples in the dataset that satisfy a particular value assignment

for S, and P(X|S) may be inaccurate if there is noise in the

examples. Similar issues may occur for P(X|Y,S). Thus, the

high-order CI tests are hard to estimate if the sample size is

small. The other benefit of low-order tests is restrained

computational complexity. To guarantee that causal relationships

inferred by this algorithm are correct, we perform extra tests in

the orientation phase. The formal pseudocode of the

LPC-algorithm is presented in Appendix A (Table 2). In this

algorithm, it receives a dataset D, significance level e, and

maximal order k of CI tests as input, and returns a PDAG as

output.

In the first phase, G is initiated as a fully connected

undirected graph. For example, suppose we have a simple

DAG with only five nodes (Fig. 1a), a complete graph is

produced (Fig. 1b) in the first step of our algorithm. Then,

iterative CI tests are performed for each connected node pair

given a node subset S taken from neighbor nodes of the

connected node pairs. Under the DAG faithful assumption,

correlations or non-correlations, direct or indirect correlations

between node pairs can be distinguished by CI tests. In this

procedure, we used depD(X,Y|S) as a measure of the strength

of the conditional dependence between X and Y given S with

respect to D. In order to decide if I(X,Y|S) is true or not,

depD(X,Y|S) runs a partial correlation coefficient calculation

when D is continuous and then uses e as the significance level.
In our algorithm, the partial correlation coefficient calculation

follows the method previously used17,22 and is described in

Appendix C.

For a given connected node pair X, Y in Fig. 1b, the

conditioning set is taken from neighbors of X or Y, i.e., any

subset S (SD Adjacencies (G,X)\{Y}). The size of S (|S|) is the

Fig. 1 Given relations in the original DAG (a), the LPC-algorithm

starts with a complete graph (b), then creates undirected graphs after

0-order CI tests (c), 1st-order CI tests (d), and 2nd-order CI tests (e) in

the first phase, and infers directions (f)–(h) using the orientation rules

in the second phase.

990 | Mol. BioSyst., 2010, 6, 988–998 This journal is �c The Royal Society of Chemistry 2010

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online

https://doi.org/10.1039/b917571g

order of CI tests and is controlled by l in our algorithm. Thus,

in this case, 0-order CI test depD(T,Y|Ø) is performed when

l = 0. The 1st-order CI tests depD (T,Y|X), depD (T,Y|W) and

depD (T,Y|Z) are performed when l = 1. For 2nd-order CI

tests (l = 2), depD (T,Y|W,Z), depD (T,Y|W,X) and

depD (T,Y|X,Z) are performed. All the connected node pairs

in G are checked given l (lines 3–12 of Table 2). The order of

CI tests is iteratively increased from 0 to the maximal order k.

In this procedure, if a connected node pair T and Y are

conditionally independent given S, then the edge between

T and Y will be removed and S will be recorded into Sepset,

which is used to store the conditioning set. From our example

in Fig. 1, suppose we set k = 2, from d-separations given

in Fig. 1a, X–W can be broken from 0-order tests because

I(X,W| Ø). No link can be broken from 1st-order CI tests and

thus Fig. 1d is unchanged. {X,Z} blocks each path between

T and W and each path between T and Y, that is,

I(T,W|{X,Z}) and I(T,Y|{X,Z}). Thus, T–W and T–Y are

removed after 2nd-order CI tests (Fig. 1e), and the conditioning

sets are saved (i.e., Sepset(T,W) = {X,Z} and Sepset(T,Y) =

{X,Z}). This procedure is repeated until the order of CI tests

l is increased to k or no more conditioning sets can be found

(lines 2–14 of Table 2). The highest order of CI tests is limited

by k specified by the user, thus avoiding an exponential

increase in the number of CI tests with the number of

neighbors. After the first phase, the skeleton of a PDAG

(Fig. 1e in our example) is generated and the weights of all

edges are assigned the minimal conditional dependence values

for each node pair calculated from all the CI tests.

In the second phase, orientation rules are applied to orient

the graph skeleton. First, the v-structures are determined (lines

15–19 of Table 2) for triple nodes X, Y and Z, if X and Y, and

Y and Z are connected while X and Z are not connected and

Y e Sepset(X,Z), then we can infer directionality X- Y ’ Z

(any one of the three alternatives X - Y - Z, X ’ Y ’ Z

and X ’ Y - Z will lead to I(X,Z|Y) and Y A Sepset(X,Z),

and thus cause a contradiction). In our example, we

have I(X,W| Ø), Z e Ø and min(|Adjacencies(G,X)\{Z}|,

Adjacencies(G,Z)\{X}|) = 2 and min(|Adjacencies(G,W)\{Z}|,

Adjacencies(G,Z)\{W}|) = 1, thus X - Z and W - Z can be

inferred according to the v-structure rule in our algorithm.

Similarly, X - Y and W - Y can be inferred. The other four

orientation rules are given in lines 21–24 of the LPC-algorithm

(Table 2). Next, the orientation rules (R1–R4) are repeatedly

used (lines 20–25 of Table 2) to determine the directions of

undirected edges until no more edges can be oriented. The

basic idea is to make sure that all other undirected edges also

can be oriented based on the DAG assumption. The details

can be found in Appendix A (lines 21–24 of Table 2). According

to the orientation rule 1 (line 21 of Table 2), Z - T can be

determined (Fig. 1g) because W - Z and Z–T while W and

T are not connected and |Adjacencies(G,T)\{Z}| = 1 (rk).

According to the orientation rule 2 (line 22 of Table 2), by

satisfying X- Z and Z- T and min(|Adjacencies(G,X)\{T}|,

Adjacencies(G,T)\{X}|) = 1(rk), we can infer X - T. No

other rules can be applied in this case. Fig. 1h is the final

structure inferred from the LPC-algorithm.

In the second phase, the key point of the LPC-algorithm

is that the neighbor number for linked node pairs is

checked before applying each orientation rule, i.e.,

min(|Adjacencies(G,X)\{Y}|, Adjacencies(G,Y)\{X}|)r k given

the node pair between X and Y must be satisfied. This is a

non-trivial step that must be completed before applying the

orientation rules in the second phase. The goal of this step is to

ensure that the orientation rules in the second phase are still

correct when only 0–k low-order CI tests are performed in

the first phase. Theoretical proofs of soundness are provided

in Appendix B. Thus, we can extend the use of the

classical constraint-based algorithm to datasets with large

variable numbers because only polynomial runtime is used.

The number of CI tests in the first phase is bounded by

O((n4 � 4n3 + 7n2 � 4)/4) in the worst case when k = 2

and time efficiency is maintained. This is particularly

important for microarray data when the number of genes is

much higher than the number of samples because conditional

dependencies are generally hard to estimate with only limited

samples and high orders.17,22

Because only low-order CI tests are performed, some false

edges may be retained in the skeleton and some directions are

missed. This is the price that the LPC-algorithm pays to reduce

runtime. Note that if k is increased to n � 2, the LPC-algorithm

is equivalent to the classical PC-algorithm. Thus, the LPC-

algorithm can be viewed as a special case of the PC-algorithm.

Results

Because we have insufficient knowledge to construct complete,

large-scale models of real gene regulatory networks, it is

necessary to employ simulated datasets with known network

structures to test novel algorithms.

Synthetic data

To assess the performances of our algorithm, we compared it

to several existing methods, using well-defined synthetic datasets.

We followed previous studies4,23 to generate hypothetical or

synthetic data, using the reaction kinetics-based system of

coupled non-linear continuous time ODEs introduced in

ref. 24. Gene expression levels are taken as state variables xi,

i = 1, . . ., n. The influence on the transcription of each gene

due to all other genes is described by the n � n (sparse) matrix

of adjacencies G, and the rate law for mRNA synthesis of a

gene is obtained by multiplying together the sigmoidal-like

contributions of the genes identified as its inhibitors and

activators. Consider the i-th column of G, i = 1, . . ., n and

choose randomly a sign to its non-zero indices in this column.

Denote by j1, . . ., ja the indices with assigned positive values

(activators of the i-th gene) and by k1, . . ., kb the negative ones

(inhibitors of the i-th gene) in the i-th column of G. The ODE

for xi is then

dxi

dt
¼ Vi

Y
j2fj1;...;jag

1þ
A

hj
j

A
hj
j þ yhjj

 ! Y
k2fk1;...;kbg

yhkk
I
hk
k þ yhkk

 !

� lixi

where the activator Aj and inhibitor Ik act independently of

each other. Vi is a basal rate of transcription, i.e., when there is

no action of inhibitors or activators. The constants yj and yk
represent concentrations at which the effect of the activator or

This journal is �c The Royal Society of Chemistry 2010 Mol. BioSyst., 2010, 6, 988–998 | 991

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online

https://doi.org/10.1039/b917571g

inhibitor is half of its saturating value. The exponents hj and hk
are the activation and inhibition Hill coefficients and li the
degradation rate constants. We set yj and yk as 100, Vi, hj and

hk as 1, li as 0.1.
23

For fairness of directed graph comparisons under BN

frameworks, we used DAGs as the network structures. It will

not affect the conclusions for the evaluation of undirected

graphs if other structures are chosen (such as scale-free

networks—see results in the ESIw). We generated 10 DAGs

G with 100 nodes, which have different topology structures but

have a fixed edge number of 500. The maximal degree of a

node in these DAGs is 10. For each G, seven different datasets

with different sample sizes (10, 20, 50, 100, 200, 500 and 1000)

were generated separately using the above formula. To further

evaluate the performances of our algorithm under other

network structures, we also generated 10 scale-free networks

with feedback loops. The test results for scale-free networks

are presented in the ESIw.

Evaluation

In order to evaluate our algorithm, we compared it to several

others that are commonly used, including GGMs, BNs, PC,

RNs and ARACNE4 (an algorithm based on low-order CI

tests). The implementation of GGM, the BN learning method,

PC and ARACNE were taken from ref. 3, 4, 22, and 25

respectively. We chose the BN learning method used in ref. 25

because it can accept continuous data and is a scoring and

searching method,18 an offshoot of BN learning methods that

serves as a good reference for our constraint-based algorithm.

While the true network is a directed graph, the competitive

methods may lead to undirected, directed, or partially directed

graphs. To assess the performance of our algorithm, we

applied two criteria in different approaches. The first

approach, referred to as the undirected graph evaluation,

discarded information about the edge direction. The second

approach, referred to as the directed graph evaluation,

compared the predicted structures with original directed

graphs for LPC, PC and BN because only these three methods

can output edge directions. For these comparisons, we ran

LPC, PC, BN, RN GGM and ARACNE over 70 synthetic

datasets consisting of 10 DAGs with 7 different sample sizes,

generated as described above. For the LPC and PC

algorithms, we set a = 0.05 for CI tests (see Appendix B)

because it achieved the best performance.

Evaluation of undirected graphs

Although the main goal of the LPC-algorithm is to identify a

directed network, the skeleton itself already contains interesting

information. Hence, initially, we compared the LPC-algorithm

to other methods without directions. Since genetic networks

are sparse, i.e., most gene pairs are not connected by a

direct regulatory link, the numbers of true negative (TN)

instances (NTN) far exceed the true positive (TP) numbers

(NTP). Traditional receiver operator characteristic (ROC)

analysis is insensitive to the false positive rate (1-specificity:

NFP/(NFP + NTN)) and, therefore, inappropriate for the

final area-under-the-curve (AUC) calculation. Therefore, we

adopted the Precision versus Recall (PvsR) curves4 and the

TP number with fixed FP numbers25 as measures of the

quality of network reconstruction. For a PvsR curve,

precision (NTP/(NTP + NFP)) is plotted against the recall

(NTP/(NTP + NFN)), where precision and recall are computed

over a range of pruning thresholds, then AUC value is

obtained as a measurement score, with higher scores indicating

better performance. Each of the five reverse engineering

methods compared in this study generates a matrix of scores

associated with the edges in a network. These scores are of

different nature: absolute values of Pearson correlation

coefficients for RNs, partial correlation coefficients for GGMs,

LPC and PC, marginal posterior probabilities for BNs and

conditional mutual information for ARACNE. However, all

these scores define a ranking of edges. We compared each weight

matrix with the real adjacency matrix DAGs under different

thresholds. The mean values of AUC(PvsR) and TP for a fixed

acceptable FP (here 20) run over 10 datasets under equal

conditions at same sample sizes are presented in Fig. 2a and b.

From the AUC(PvsR) evaluation (Fig. 2a), the

performances of LPC and PC were better than other methods

at sample sizes of 100 and 1000, while GGM outperformed all

other algorithms at other sample sizes. The average

AUC(PvsR)s were low when sample sizes were only 10, 20

and 50, meaning that very few TPs were captured in such

cases. In terms of AUC(PvsR)s, the performances of LPC, PC

and BN improved steadily with increasing sample sizes,

whereas, AUC(PvsR)s of RN stabilized and of GGM

decreased with sample sizes above 200. This indicates that

simple graphical models (such as RNs) can detect connections

well, and better than the sophisticated models LPC and PC at

very low sample size but their performance improves relatively

little when sample sizes increase. GGM achieved best

performance overall in the AUC(PvsR) evaluation. This can

be attributed to a small sample stable estimation procedure

used in GGM for genomic data with small sample sizes.3

From TP for fixed FP tests (Fig. 2b), the LPC-algorithm

was superior to RN, GGM, ARACNE and BN at almost all

sample sizes and was also slightly better than PC. Overall,

LPC and PC outperformed RN, ARACNE and BN in this

test. For ARACNE, the major reason for its poor

performance was the non-linear similarity measures employed,

which were less precise for this simulated data. This is also

corroborated by a previous study.23

Evaluation of directed graphs

LPC, PC and BNs, yield directed graphs and we compared

their predicted graphs with true graphs to evaluate the quality

of structure prediction. We adopted the structure hamming

distance (SHD) metric10 to evaluate the predictive powers of

these methods. Briefly, the SHD counts the number of

edge insertions, deletions, and flips required to convert the

estimated PDAG into the correct representation (CPDAG) of

the original DAG.20 Thus, a large SHD indicates a poor fit,

while a small SHD indicates a good fit. SHD comparisons are

presented in Fig. 2c, while the distribution of structure errors,

such as the numbers of missing, extra, and flipped edges are

shown in Fig. 2d–f.

992 | Mol. BioSyst., 2010, 6, 988–998 This journal is �c The Royal Society of Chemistry 2010

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online

https://doi.org/10.1039/b917571g

In terms of SHD metrics, the LPC-algorithm performed

similarly to the PC-algorithm and much better than BN. LPC

outperforms PC for sample sizes greater or equal to 100 while

it performs worse than PC for sample sizes smaller than 100

(Fig. 2c). The major prediction errors for both methods were

from missing edges, the numbers of which varied from B480

to 220 at different sample sizes. This indicates that some

associations are difficult to detect by partial correlation

calculations. The LPC-algorithm produced more spurious

edges than the PC-algorithm (Fig. 2e) and fewer missing edges

(Fig. 2d), presumably because higher-order CI tests were not

performed in LPC. PC is slightly better than LPC in direction

prediction (Fig. 2f), as more directions are missed when only

limited-order CI tests are performed as in LPC. Overall,

however, prediction accuracy of LPC was similar to that of

PC (Fig. 2c).

In both tests described above, the BN learning method

performed poorly compared to other methods as most edges

were not be recovered by this method (Fig. 2d and e). Apart

from the reasons mentioned above, we presume that the

implementation of the BN learning method is very restrictive

for some data types because it is based on the multivariate

Gaussian assumption.25,26 Scoring and searching methods

for continuous data are further stumbling blocks for the

BN community because they are computationally expensive

and lack the causality-related theoretical correctness

guarantee.27

Effects of order on the LPC-algorithm

We evaluated the effect of the order k chosen in the

LPC-algorithm on computational expense and quality as

follows. The number of CI tests performed is indicative of

the computational effort spent for this algorithm. Using

simulated datasets with varying sample sizes, we calculated

the average number of CI tests performed in LPC when k

varied from 0 to 9 or the highest order reached in the

algorithm at each sample size (Fig. 3a). The average numbers

of CI tests versus the order k for different sample sizes

(SS in short) are plotted in Fig. 3a. The error bars represent

one standard deviation across 10 datasets at each sample size.

For SS = 10 and 20, the highest orders reached in the

LPC-algorithm are only 4 and the numbers of CI tests are

much lower than other sample sizes. The numbers of CI tests

Fig. 2 The performance comparisons between several methods. For (a) and (b), the average AUC(PvsR)s and true positives under the fixed

20 false positives were plotted for LPC, GGM, BN, RN, PC and ARACNE under 7 different sample sizes. For (c)–(f), the predictive errors

comparing between LPC, PC and BN. The average errors over 10 datasets under 7 sample sizes: (c) total SHDs; (d) missing edges; (e) extra edges;

(f) reversed edges or missing directions.

This journal is �c The Royal Society of Chemistry 2010 Mol. BioSyst., 2010, 6, 988–998 | 993

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online

https://doi.org/10.1039/b917571g

are basically unchanged after k is above 2 for SS = 10 and 20,

thus, the curves for those sample sizes (SS = 10, 20 and 50) are

almost flat and indistinguishable in Fig. 3a because they

overlap. The highest order varied according to sample sizes,

indicating that increased sample sizes increase sensitivities and

help identify more hypothetical neighbors for each node. For

datasets with low sample sizes (10, 20, 50 and 100), there was

little increase in the number of CI tests with increasing k

(Fig. 3a). However, CI test numbers increased substantially

with increasing order k at big sample sizes (200, 500 and 1000).

Setting k = 2 reduced the numbers of CI tests by 26.2%,

63.5% and 81.5% for datasets with sample sizes of 200, 500

and 1000, respectively. Clearly, low-order tests can reduce

computational time significantly for sample sizes greater

than 200.

To confirm the time efficiency of our LPC-algorithm,

runtime comparisons were done on a Pentium Xeons,

2.33 GHz and 4 GB RAM running Windows XP. The average

processor times for estimating the CPDAG under different

sample sizes are given in Table 1. For every sample size, the

LPC-algorithm ran faster than PC on average. The difference

increased with higher sample sizes. The explanation for this is

that the relative number of CI tests is reduced in our

algorithm, compared to PC, at higher sample sizes (Fig. 3a

and Table 1), while this is not the case for the PC-algorithm,

which has no limit on k. We do not list runtime for the BN

learning method because it is much slower than LPC and PC.

The BN method required more than 2 days to complete the

same tests for each sample size.

Notice that this test was based on moderate-sized networks

of 100 nodes each. Many more CI tests would be spared by our

LPC-algorithm compared to the PC-algorithm when networks

are scaled up to several thousand nodes. However, due to the

computational complexity, it was not feasible to perform

these tests using the PC-algorithm (or set k values high in

the LPC-algorithm) for networks having over 1000 nodes.

We also examined the effect on performance of limited

(0–k) order CI tests in LPC. We compared average SHD

measurements at different orders, i.e., k is varied from 0 to 9

(Fig. 3b). From Fig. 3b, we can see that the average SHDs

are decreased considerably after initial low-order CI tests

(when k is varied from 0 to 4 at most). For SS = 10, 20, 50

and 100, the SHD remains constant after k > 2. Even for the

sample size 1000, the SHD are not improved further for k> 4.

This shows that the major performance improvement of

LPC comes from low-order CI tests. SHD values decreased

with increasing order, although performance improved only

from order k = 1–3. Little was gained by increasing to higher-

order (k > 4) CI tests at all sample sizes. Therefore, limitation

of our algorithm to order 2 or 3 is justified on the grounds of

greater efficiency.

Fig. 3 The average numbers of CI tests performed in the LPC-algorithm over 10 independent DAGs when the order k is varied from 0 to 9. The

average numbers and standard deviations (error bars) are shown in (a). The average SHDs and their standard deviations from the LPC-algorithm

versus the order k are plotted in (b). Each sample size (SS) is depicted by one color curve (see legend) in these two sub-figures.

Table 1 Average processor time for estimating graph structures
(in seconds, with standard errors in brackets at each sample size).
Maximal k in PC means the highest order of CI tests performed in the
PC-algorithm

Sample size LPC (k = 2) PC Maximal k in PC

10 1.11(0.38) 1.39(0.07) 4
20 1.09(0.41) 1.41(0.06) 4
50 1.23(0.46) 1.41(0.07) 6
100 1.46(0.45) 1.78(0.65) 9
200 2.74(0.50) 11.24(15.11) 10
500 36.7(38.31) 138.99(106.99) 12
1000 641.10(757.97) 1430.92(1380.84) 14

994 | Mol. BioSyst., 2010, 6, 988–998 This journal is �c The Royal Society of Chemistry 2010

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online

https://doi.org/10.1039/b917571g

Escherichia coli network inference

To test the ability of LPC to scale up to thousands of genes in

a dataset, we applied our algorithm to real microarray data.

We downloaded E. coli gene expression data from M3D

(http://m3d.bu.edu/norm/). This dataset consists of 445 arrays

from 13 different collections corresponding to various treatments,

including different growth media, environmental stresses

(e.g. DNA damaging drugs, pH changes), genetic perturbations,

and growth phases. The experiments were all carried out using

Affymetrix GeneChip E. coli Antisense Genome arrays,

containing 4345 gene probe-sets. Since transcription factors

(TFs) are the primary regulators of gene expression in a cell,

we used 328 validated or computationally-predicted transcription

factors (TFs) as prior knowledge, and only links between

these 328 TFs and all other genes (including TF–TF links)

were allowed for the initial graph pattern used by the

LPC-algorithm, instead of the fully connected graph. We set

k = 3 and a = 0.001 for this inference.

We used the E. coliK12 transcriptional network compiled in

the RegulonDB database version 6.328 as the ‘true’ network,

from which we derived a directed graph of 3071 interactions.

We then compared our predicted gene interactions to the true

network. All 16 884 gene pair edges resulting from LPC

analysis were oriented (see results in the ESIw). Importantly,

only 2.9% of gene pairs were directed from non-TF to TF

genes. In other words, 97.1% of all predicted relationships

were directed from TF genes to other genes, including other

TF genes, as expected. Among all the predicted gene inter-

actions, 208 are validated by known regulatory relations listed

in RegulonDB. Of these, 199 TFs were predicted correctly to

regulate known target genes, while the direction of interaction

between TFs and known target genes was incorrectly predicted

in only 9 cases.

We compared the performance of LPC with CLR, a

state-of-the-art method used for gene network reconstruction

that performed well in a large-scale benchmark evaluation.29

When we selected the same number of gene pairs (16 884) from

CLR analysis, based on top-ranking, 209 true interactions

were recovered. Therefore, the performance of LPC (208 true

interactions in our case) was comparable to that of CLR in

terms of undirected graph prediction. However, CLR can only

predict an undirected network while our LPC-algorithm can

also infer the direction of edges connecting nodes (genes). We

did not compare our results to those of two recent studies30,31

using the same E. coli dataset because these previous studies

used (semi-) supervised learning methods to infer TF–gene

regulations. In other words, additional prior data were used to

train the prediction models, making comparisons with our

method of unsupervised learning unfair. It is important to note

that the level of prior knowledge for E. coli is unmatched in

most other species, which would severely handicap supervised

approaches in more complex or less-studied species.

Discussion

The motivation for this work was to develop a time-efficient

algorithm for GRN reconstruction from genome-wide

transcript data, as a basis for hypothesis generation and

experimental testing. Theoretical proofs and the results of

evaluation tests show that our LPC-algorithm is useful for

network inference. This new algorithm is computationally

scalable to high-dimensional datasets, does not require

discretization of transcript levels, and can predict causal

relationships. The algorithm is a good alternative to BN

learning methods for large-scale GRN reconstruction.

As part of our analysis of publicly available E. coli

transcriptome data, a sub-network consisting of the 50 most

significant gene interactions predicted by our algorithm was

generated (Fig. 4). Importantly, the majority of predicted

regulatory relationships have been demonstrated experimentally

in the past, as documented in RegulonDB (blue arrows), while

others are not included in the current version of RegulonDB

(marked in grey in Fig. 4). However, additional published data

are consistent with regulatory relationships between some of

the latter: nac, glnK and amtB are involved in responses to

nitrogen starvation;32–34 and FliA is a sigma factor that is

necessary for transcription of class 3 flagellar genes, such as

flgK.35 Furthermore, the sigma factor FecI and the membrane

proteins ExbB and ExbD act in coordination for iron

uptake.36,37 Thus, there is good agreement between this subset

of our LPC-predicted GRN and previous experimental data

that established gene interactions in E. coli. More importantly,

novel gene regulatory relations predicted by our LPC

Fig. 4 The top 50 transcriptional regulatory relationships inferred by

LPC. Directed edges that have experimental support in RegulonDB

release 6.3 are indicated by blue arrows, edges that are not yet

supported by data in RegulonDB are depicted in grey, and known

edges with incorrectly predicted directions are depicted as undirected

blue lines. TFs are marked by red circles and regulated genes by green

circles. Line width is proportional to the Fisher’s Z-transformed

partial correlation value returned by LPC.

This journal is �c The Royal Society of Chemistry 2010 Mol. BioSyst., 2010, 6, 988–998 | 995

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online

https://doi.org/10.1039/b917571g

algorithm should guide experimental work to confirm and

expand GRNs, not only in E. coli, but in the many other

organisms for which little experimental information beyond

genome and transcriptome data is available.

One reason for the apparent success of the LPC algorithm in

reconstructing E. coli genetic networks is that GRNs are sparsely

connected in most cases,38 i.e., there are far fewer directly

connected genes for each gene than the total number of genes

minus one. Therefore, the LPC-algorithm can infer most causal

relationships in GRNs based on low-order CI tests.

All methods that attempt to reconstruct GRNs based on

transcriptome data are subject to false positive and false

negative errors arising from biological and computational

sources. For example, the regulatory link between a TF and

its target genes, whether it is positive or negative, will be

missed (false negative) if transcriptional regulation of the TF is

not the primary level of control for that gene/protein.39

Thus, if the TF gene is constitutively-expressed and post-

translational modification of the TF protein is the primary

means by which TF activity is regulated, then a correlation

between transcript levels of the TF gene and its target gene

may not exist, and a regulatory link between the two genes

never established, at least in wild-type cells. This may be less

often the case in prokaryotes, where TF genes are often part of

the operons that they control, than in eukaryotes, where this is

not the case. Genetic approaches, especially the use of mutants

defective in specific TF genes could help to overcome this

problem. Use of transcriptome data from defined TF mutants

in our LPC should help to reveal regulatory relationships that

are hidden in wild-type data.

False positive inferences of regulatory relationships can

arise when co-expressed genes are confused as co-regulated.

Consider, for instance, two TFs involved in distinct signaling

pathways with different roles, different environmental stimulation,

and different target genes. If, in a given set of experiments the

target genes have similar expression profiles, they will be

falsely considered as co-regulated (false positive). Moreover,

either of the two TFs could be mistaken as the common

regulator of all the target genes, based on the limited

experimental data, leading to a false inference of transcriptional

regulation.40 To avoid such problems, more informative

experiments should be selected,40 or alternate data sources

such as promoter sequence information or ChIP-on-chip data

should be incorporated with microarray data to enhance GRN

inferences.

False positive and false negative associations between genes

can also arise from the computational methods and

parameters employed. Obviously, the threshold that is set

for CI tests between two genes will have a major impact on

the predicted GRN, with a higher threshold reducing the

number of false positives and increasing the number of false

negatives. This is a problem for all algorithms that rely on

statistical treatment of data, including the LPC-algorithm.

With the accumulation of known regulatory relationships

with gene expression data, it is expected that optimal

threshold values could be determined wisely. Similar to the

PC-algorithm, another limitation of the LPC-algorithm is that

false negatives arising from statistical tests cannot be corrected

at a later stage and will lead to spurious final results.

Another source of errors in predicted GRNs are the

statistical assumptions that are made, which may not correctly

reflect the nature of the regulatory relationship between some

genes. For example, the DAG assumption for transcriptional

regulation does not accommodate more complex relation-

ships, such as feedback loops. This is, in fact, a shortcoming

of all static BN learning methods. Nevertheless, from the two

phases of the LPC-algorithm, the undirected graph returned

from the first phase still makes sense even for the feedback

loop situation. Previous studies41 showed that conditional

independencies are still sound even in directed cyclic graphs

(DCGs) within linear models. Thus, the undirected graph from

LPC would identify regulatory connections between genes.

The simulation tests over scale-free networks with feedback

loops also support this notion (in the ESIw). The second

phase of our algorithm may wrongly assign or fail to

assign directions to edges when the DAG assumption is

broken. However, due to the sparseness of connections in a

GRN, our algorithm is still able to recover causal relationships

when local network structures satisfy the assumptions in

BNs. Furthermore, if sufficient time-series microarray data

are available, the LPC-algorithm can be extended to

dynamic BN models42 to overcome feedback loop problems

encountered in the DAG assumption. As GRN simulation

technology continues to mature (such as inclusion of the

interampatteness property to explain feedback loops,43) and

suitable experimental time-series microarray data become

available, it will be interesting to test the ability of our

approach to model synthetic and real GRNs containing

feedback loops.

Appendix A: pseudocode of the LPC-algorithm

The formal pseudocode of the LPC-algorithm is presented in

Table 2.

Appendix B: proofs for the LPC-algorithm

The correctness of causal relationships identified by the

LPC-algorithm is guaranteed in Theorem 1. The lemmas are

per definition important since they are needed to prove the

theorem.

Lemma 1

In a faithful BN, let G = (V,E) be a DAG and X,Y A V. Then

if X and Y are d-separated by some set, they are d-separated

either by the set consisting of neighbors of X or the set

consisting of neighbors of Y.

Proof

Clearly, if X and Y are adjacent in G, no set d-separates them

as no set can block the path consisting of the edge

between them.

In the other direction, suppose X and Y are not adjacent.

Either there is no path from X to Y or there is no path from Y

to X for otherwise we could have a cycle. Without loss of

generality, assume there is no path from Y to X. We will show

that X and Y are d-separated by the set Adjacencies(G,Y)\X

consisting of neighbors of Y. Consider any path p between

996 | Mol. BioSyst., 2010, 6, 988–998 This journal is �c The Royal Society of Chemistry 2010

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online

https://doi.org/10.1039/b917571g

X and Y that does not pass through any node in Parents(G,Y).

There must be a node Z having converging arrow along the p,
otherwise it would be a path from Y to X. Consider Z is closest

to X on path p, Z cannot be an ancestor or parent of any node

in Parents(G,Y) and Z e Parents(G,Y) because otherwise we

have a cycle. Clearly, any path between X and Y are blocked

by Parents(G,Y) according to the d-separation definition.

Adjacencies(G,Y)/X, which completes the proof.‘

Lemma 2

In a faithful BN, let G = (V,E) be a DAG and X,Y A V

and |Adjacencies(G,X)\{Y}| r |Adjacencies(G,Y)\{X}|) and

|Adjacencies(G,X)\{Y}| = k. Then if X and Y are d-separated

by some set, they are d-separated by a set S such that

S D Adjacencies(G,X)\{Y} and |S| r k.

Proof

Follows from Lemma 1, if X and Y are d-separated by some

set, they are d-separated by a subset (denoted as S) of

Adjacencies(G,X)\{Y}. Since |Adjacencies(G,X)\{Y}| r
|Adjacencies(G,Y)\{X}| and |Adjacencies(G,X)\{Y}| = k, the

cardinality of any subset of Adjacencies(G,X)\{Y} is no more

than k because |Adjacencies(G,X)\{Y}| = k. Hence X and Y are

d-separated by the set S such that S D Adjacencies(G,X)\{Y}

and |S| r k.‘

Theorem 1 (soundness)

Under faithful assumption, the set of all undirected edges

returned by the LPC-algorithm is a superset of undirected

edges in the CPDAG. Any directed edge created by the

LPC-algorithm is a directed edge in the CPDAG.

Proof

The first phase of our algorithm is similar to the PC-

algorithm,17 only difference is only 0–k order CI tests were

performed (in line 14 of Table 2). The edges in skeleton can be

broken by higher-order CI tests in the PC-algorithm will be

kept in the LPC-algorithm. All the edges broken by 0–k order

CI tests in the LPC-algorithm also can be broken by the

PC-algorithm. Follows from Th. 5.1, Ch. 13 in ref. 17 which

claims the correctness of the skeleton from the PC-algorithm.

Hence, the set of all edges returned by the LPC-algorithm is a

superset of edges in the CPDAG.

In the second phase of the LPC-algorithm, for each orientation

rule, the numbers of adjacencies of each node per node

pair (denoted by X and Y) are examined (in line 16 and

lines 21–24 of Table 2), it follows from Lemma 2 and

min(|Adjacencies(G,X)\{Y}|, |Adjacencies(G,Y)\{X}|) r k,

without loss of generality, X and Y is also adjacent in CPDAG

because otherwise the edge between X and Y are removed by

0–k order CI tests in the phase 1. The conditions of all the

orientation rules in phase 2 are still satisfied. It follows from

Theorem 2 in ref. 21 that all the orientation rules are still

sound. Hence, all the directed edges inferred from the orientation

phase in LPC are also presented in CPDAG.‘

Appendix C: partial correlation calculations

For conditional independence (CI) tests used in our algorithm,

we followed the partial correlation calculation used in ref. 17

and 22, that is, the sample partial correlation r, for any ZA S,

rX ;Y jS ¼
rX;Y jSnZ � rX;ZjSnZrY ;ZjSnZffi
1� r2

X;Y jSnZ

� �
1� r2

X ;Y jSnZ

� �r ð1Þ

The zeroth-order partial correlation rX,Y|Ø is defined to be

the regular Pearson correlation coefficient rX,Y. Actually, the

Table 2 Low-order PC-algorithm: LPC

This journal is �c The Royal Society of Chemistry 2010 Mol. BioSyst., 2010, 6, 988–998 | 997

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online

https://doi.org/10.1039/b917571g

k-th order partial correlation (i.e., with |S| = k) can be easily

computed from three (k� 1)th order partial correlations. Thus

the sample partial correlation rX,Y|S\Z can be calculated

recursively by using eqn (1).

For testing whether a partial correlation is zero or not, we

apply Fisher’s Z-transformation of the partial correlation:

ffi
m� S� 3
p

jZðX;Y jSÞj > F�1ð1� a=2Þ ð2Þ

Classical decision theory yields the following rule when

using significance level a. Reject the null-hypothesis

H0(X,Y|S): rX,Y|S = 0 against the two-sided alternative

HA(X,Y|S): rX,Y|S a 0 if

ZðX ;Y jSÞ ¼ 1

2
log

1þ r̂X ;Y jSnZ
1� r̂X ;Y jSnZ

 !
ð3Þ

where F(�) denotes the cumulative distribution function of a

Gaussian distribution with zero mean and unit standard

deviation and m is the sample size. Thus, the left-hand side

of eqn (3) is used as depD(X,Y|S) and the right-hand side of

eqn (3) is used as the threshold e in LPC.

Acknowledgements

This research was funded by the National Science Foundation

(Grant No. DB-0703285), Oaklahoma Centre for the

Advancement of Science Technology (Project No. PSB09-032)

and the Samuel Roberts Noble Foundation.

Notes and references

1 S. L. Lauritzen, Graphical Models, Oxford University Press,
New York, USA, 1996.

2 J. M. Stuart, E. Segal, D. Koller and S. K. Kim, Science, 2003, 302,
249–255.

3 J. Schafer and K. Strimmer, Bioinformatics, 2005, 21, 754–764.
4 A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G.
Stolovitzky, R. Dalla Favera and A. Califano, BMC Bioinformatics,
2006, 7(Suppl 1), S7.

5 A. Wille and P. Buhlmann, Stat. Appl. Genet. Mol. Biol., 2006, 5,
Article 1.

6 A. Reverter and E. K. Chan, Bioinformatics, 2008, 24,
2491–2497.

7 S. Lebre, Stat. Appl. Genet. Mol. Biol., 2009, 8, Article 9.
8 N. Friedman, M. Linial, I. Nachman and D. Pe’er, J. Comput.
Biol., 2000, 7, 601–620.

9 M. Wang, Z. Chen and S. Cloutier, Comput. Biol. Chem., 2007, 31,
361–372.

10 I. Tsamardinos, L. E. Brown and C. F. Aliferis, Mach. Learn.,
2006, 65, 31–78.

11 D. Husmeier, Bioinformatics, 2003, 19, 2271–2282.
12 S.Ma, Q. Gong andH. J. Bohnert,Genome Res., 2007, 17, 1614–1625.
13 K. Basso, A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera

and A. Califano, Nat. Genet., 2005, 37, 382–390.
14 A. Wille, P. Zimmermann, E. Vranova, A. Furholz, O. Laule,

S. Bleuler, L. Hennig, A. Prelic, P. von Rohr, L. Thiele, E. Zitzler,
W. Gruissem and P. Buhlmann, Genome Biol., 2004, 5, R92.

15 C. J. Wolfe, I. S. Kohane and A. J. Butte, BMC Bioinformatics,
2005, 6, 227.

16 F. Markowetz and R. Spang, BMC Bioinformatics, 2007,
8(Suppl 6), S5.

17 P. Spirtes, C. Glymour and R. Scheines, Causation, Prediction, and
Search, MIT Press, 2000.

18 R. Neapolitan, Learning Bayesian Networks, Prentice Hall
Upper Saddle River, NJ, 2004.

19 T. Verma and J. Pearl, in Proceedings of the Sixth Annual
Conference on Uncertainty in Artificial Intelligence, ed.
M. Herion, R. Schachter, L. Kanal and J. Lemmer, 1990, 255–270.

20 D. Chickering, J. Mach. Learn. Res., 2002, 2, 445–498.
21 C. Meek, Proceedings of the 11th Annual Conference on Uncertainty

in Artificial Intelligence, Montreal, QC, ed P. Besnard and
S. Hanks, 1995, 403–441.

22 M. Kalisch and P. Bühlmann, J. Mach. Learn. Res., 2007, 8,
613–636.

23 N. Soranzo, G. Bianconi and C. Altafini, Bioinformatics, 2007, 23,
1640–1647.

24 P. Mendes, W. Sha and K. Ye, Bioinformatics, 2003, 19(Suppl 2),
ii122–ii129.

25 A. V. Werhli, M. Grzegorczyk and D. Husmeier, Bioinformatics,
2006, 22, 2523–2531.

26 D. Geiger and D. Heckerman, in Proceedings of the 10th Annual
Conference on Uncertainty in Artificial Intelligence, ed R. Mantaras
and D. Poole, 1994, 235–243.

27 J. P. Pellet and A. Elisseeff, J. Mach. Learn. Res., 2008, 9,
1295–1342.

28 H. Salgado, S. Gama-Castro, M. Peralta-Gil, E. Diaz-Peredo,
F. Sanchez-Solano, A. Santos-Zavaleta, I. Martinez-Flores,
V. Jimenez-Jacinto, C. Bonavides-Martinez, J. Segura-Salazar,
A. Martinez-Antonio and J. Collado-Vides, Nucleic Acids Res.,
2006, 34, D394–397.

29 J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski,
G. Cottarel, S. Kasif, J. J. Collins and T. S. Gardner, PLoS Biol.,
2007, 5, e8.

30 F. Mordelet and J.-P. Vert, Bioinformatics, 2008, 24, i76–82.
31 J. Ernst, Q. K. Beg, K. A. Kay, G. Balazsi, Z. N. Oltvai and

Z. Bar-Joseph, PLoS Comput. Biol., 2008, 4, e1000044.
32 H. Jiang, L. Shang, S. H. Yoon, S. Y. Lee and Z. Yu, Biotechnol.

Lett., 2006, 28, 1241–1246.
33 M. S. Kabir, T. Sagara, T. Oshima, Y. Kawagoe, H. Mori,

R. Tsunedomi and M. Yamada, Microbiology, 2004, 150,
2543–2553.

34 T. A. Blauwkamp and A. J. Ninfa, Mol. Microbiol., 2002, 46,
203–214.

35 S. Kalir, J. McClure, K. Pabbaraju, C. Southward, M. Ronen,
S. Leibler, M. G. Surette and U. Alon, Science, 2001, 292,
2080–2083.

36 M. Ochs, A. Angerer, S. Enz and V. Braun,Mol. Gen. Genet., 1996,
250, 455–465.

37 A. Stiefel, S. Mahren, M. Ochs, P. T. Schindler, S. Enz and
V. Braun, J. Bacteriol., 2001, 183, 162–170.

38 H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A. L. Barabasi,
Nature, 2000, 407, 651–654.

39 M. J. Herrgard, M. W. Covert and B. O. Palsson, Genome Res.,
2003, 13, 2423–2434.

40 E. Szczurek, I. Gat-Viks, J. Tiuryn and M. Vingron, Mol. Syst.
Biol., 2009, 5, 287.

41 T. Richardson and P. Spirtes, Computation, Causation, and
Discovery, 1999, pp. 253–304.

42 K. Murphy and S. Mian, technique report, Modelling Gene
Expression Data using Dynamic Bayesian Networks, University of
California, Berkeley, 1999.

43 T. E. M. Nordling and E. W. Jacobsen, IET Syst. Biol., 2009, 3,
388–405.

998 | Mol. BioSyst., 2010, 6, 988–998 This journal is �c The Royal Society of Chemistry 2010

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

9
Fe

br
ua

ry
 2

01
0.

 D
ow

nl
oa

de
d

on
 1

/2
3/

20
26

 1
2:

37
:1

4
PM

.
View Article Online

https://doi.org/10.1039/b917571g

