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Genome-wide gene expression is re-programmed in response to external or internal factors such

as environmental stress or genetic mutation, respectively, or as a function of endogenous

processes such as cell proliferation or differentiation. Here we integrate expression profiling data

that have been collected by our laboratory since 2001 and that interrogate more than 900

different experimental conditions. We take advantage of this large data set to rank all genes based

on their variability in gene expression across the different conditions. The most variable genes

were enriched for functions such as stress response, carbohydrate metabolism and trans-

membrane transport, and these genes were underrepresented for introns and tended to be close

to telomeres. We then compared how overall gene regulation and variability of gene expression

across conditions is affected by environmental or genetic perturbations, and by endogenous

programmes. Meiotic differentiation and environmental perturbations led to substantially greater

gene expression variability and overall regulation than did genetic perturbations and the

transcriptional programme accompanying cell proliferation. We also used the integrated data to

identify gene regulation modules using two different clustering approaches. Two major clusters,

containing growth- and metabolism-related genes on one hand and stress- and differentiation-

related genes on the other, were reciprocally regulated across conditions. We discuss these

findings with respect to other recent reports on the regulation and evolution of gene expression.

Background

Genome-wide gene expression data from a wide range of

biological conditions can be collected using DNA microarrays

and other high-throughput approaches. To obtain insight into

gene regulation, cells are often perturbed in different ways.

These experimental perturbations can involve environmental

factors such as various external stresses, toxins, drugs, or

nutrient levels. Other useful perturbations involve intrinsic

factors such as genome manipulations to delete, change, or

overexpress specific genes. Alternatively, some endogenous

gene expression programmes, including those driving cell

proliferation or development, do not require any stimulus

and can be studied under special conditions, e.g. after cell

synchronization.

We define gene regulation as the amount by which a gene is

up- or down-regulated averaged over different conditions.

With the word variability we indicate the width of the

distribution of these values, expressed by the standard deviation.

The two measures provide different information as a gene

could have a high regulation, in the case where it is found to be

always differentially expressed, while having low variability if

the differential expression is always in the same direction and

of similar amount. Little is known from a global perspective

whether and how the overall regulation and variability of gene

expression differ in response to environmental or genetic

perturbations and during endogenous programmes.

In a pioneering study Hughes at al.,1 determined expression

signatures in budding yeast in response to 300 mutations or

chemical treatments, and this data compendium in turn

allowed to predict the roles of uncharacterized perturbations

and drug targets. These authors did not make a systematic

comparison of any global differences in gene regulation

between environmental or genetic perturbations, Luscombe

et al. uncovered intriguing differences in transcriptional

networks in budding yeast from two types of experiments:

internal cell-cycle regulation, an endogenous programme, and

response to different environmental perturbations, reflecting

exogenous conditions.2 No data from genetic perturbations

were used for this analysis. Recent studies indicate that genes

up-regulated during stress show more variable expression,

which reflects their promoter structure and could be advanta-

geous under changing environments and in turn promote

evolvability of gene regulation.3,4–8

Noisy gene expression can thus provide a driving force for

phenotypic variation and evolutionary innovation and is itself

subject to natural selection.3,9–16

Meta-analyses of genome-wide expression data can help to get

the most from the huge amount of information available.

Various clustering methods have been popular to tease out and

visualize functional gene groups within microarray data sets.17–20
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Simple correlation of gene expression has been applied to

extract biologically meaningful information from gene expression

data21 as well as to reverse-engineer genetic networks.22,23

Here we take advantage of microarray data sets from the

fission yeast Schizosaccharomyces pombe that have been

collected by our laboratory over the past eight years using a

wide range of biological conditions. We explore how different

types of perturbations (environmental vs. genetic) and

endogenous programmes affect the variability and overall

regulation of gene expression on a global scale. We also

describe major regulatory clusters emerging from these data.

Results

Overview of experiments and conditions

The Bähler laboratory, in collaboration with many other

groups, has collected a large amount of genome-wide expression

data for fission yeast using the same custom-spotted DNA

microarray platform.24 These data represent a wide range of

experimental conditions, including global gene regulation in

response to environmental stresses such as oxidants, heavy

metals, heat shock, high osmolarity, ionizing radiation,

changes in growth media such as iron, copper, and zinc levels,

and exposure to drugs such as cisplatin, methylmethane

sulfonate, and 3-aminotriazole.25–34

Other experiments have interrogated intrinsic gene

regulation programmes during cell proliferation and meiotic

differentiation.35–38 Most of these data have been sampled

using time courses to study the dynamic changes of gene

expression during the different biological processes. In

addition, many of these gene expression programmes have

also been studied after different genetic perturbations such

as deletion, mutation, or overexpression of genes. Gene

expression signatures of numerous genetic perturbations have

also been analyzed in steady-state conditions compared to

wild-type cells.14,39–55 Furthermore, in the analyses below we

also include several unpublished microarray data sets. This

large collection of data is unique in that all the experiments

were performed in the same laboratory using standardized

conditions. In total, the data set encompasses 1272 microarray

hybridizations (including replicate hybridizations), which

provide 188 different steady-state experiments and 153 different

timecourse experiments, encompassing 778 time points

(Fig. 1). The raw microarray data are normalized as described

in ref. 56 and gene expression levels are relative to wild-type

reference samples.

Ranking and functional analysis of genes based on expression

variability

We first ranked the S. pombe genes based on their variability in

relative expression levels across conditions. For this analysis,

the different time points of time course experiments were

treated as different conditions, but the main results were

validated including only a single time point for each time

course. In some time course experiments, the first time point

corresponds to untreated wild-type cells (identical to reference),

and these time points were not used as they may bias

the analysis of gene variability. The distributions of the

logarithms of relative gene expression levels for single genes

across conditions were uni-modal and close to normal

(Fig. S1, ESI).z We therefore calculated the standard

deviations of these distributions as a simple measure for the

variability in gene expression. Supplementary Table S1 (ESI)z
provides a list of genes ranked by their expression variability

across conditions.

The transcripts showing the most variable expression across

conditions included a sequence orphan (SPAC23H3.15c),

small heat-shock protein genes (hsp16 and hsp9), the

metallothionein gene zym1,57 the uracil regulatable gene

urg131 and thiamine-regulatable gene nmt1.58 Two non-coding

transcripts, prl65 and prl44, also showed highly variable

expression levels, although these transcripts were only present

in a later version of our microarrays and were therefore

measured in fewer conditions. The range of relative expression

levels for these highly variable transcripts was between

3200-fold for urg1 and > 64 400-fold for SPAC23H3.15c.

This value was found for a few late time points of the same

experiment and it corresponds to the dynamic range of the

microarray scanner, suggesting that the relative values

recorded for this gene in those conditions are even lower than

the sensitivity of the instrument. The second most variable

transcript was that of nmt1 (>53 000-fold). In comparison, the

least variable transcripts only ranged in relative expression

levels between 3- to 6-fold across all conditions. Among the

least variable genes were ppb1, encoding the calcineurin

phosphatase catalytic subunit,59ssr4, encoding a SWI/SNF

and RSC complex subunit,53usp106 and usp107, encoding

U1 snRNP-associated proteins, and vps45 and snx3, with

likely functions in protein sorting and secretion.60

We next pulled out lists of the 500 most and 500 least

variable genes, followed by examination for Gene Ontology

(GO) enrichments.61 The most variable genes were mainly

enriched for terms relating to response to stress or stimulus

(p = 10�38), carbohydrate catabolic processes (p = 10�9) and

transmembrane transport (p = 10�6). The least variable genes

included terms relating to mRNA metabolic processes

(p = 10�11), mitochondrial translation and organization

(p = 10�6), intracellular protein transport (p = 10�5), vesicle

mediated transport and protein localization (p = 10�3)

(Supplementary Tables S2 and S3, ESI).z
The top-500 genes were also analysed for enrichments with

gene lists produced in different microarray experiments as well

as for different properties of genes or proteins. Notably, the

Fig. 1 Microarray experiment summary showing the number of

conditions in different experimental categories.
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most variable genes were significantly closer to the telomeres

(two-sided Wilcoxon rank sum test, p o 10�8) than would be

expected by chance. This bias does not reflect any general

correlation across the chromosomes between expression varia-

bility and distance from telomeres, but rather a specific

enrichment of variable genes close to chromosome ends

(data not shown). Gene clusters close to chromosome ends

are induced in environmental conditions such as nitrogen

starvation and may be regulated by chromatin remodelling.35,40

The telomeric regions might thus be ‘hotspots’ of variability

in gene expression, which could promote cell survival under

changing conditions. Moreover, the most variable genes were

significantly under-enriched for introns (two-sided Wilcoxon

rank sum test, p o 10�8). This observation is consistent with

the finding that highly regulated genes are intron-poor,

possibly reflecting selection against introns in genes whose

expression levels need rapid adjustment to external or internal

challenges.62 As expected, the Core Environmental Stress

Response (CESR) genes were highly enriched amongst the

most variable genes (p o 10�8), with approximately 35% of

the 500 genes being up-regulated and 10% being down-

regulated as part of the CESR. Both environmental and

genetic perturbations frequently lead to activation of the

CESR (e.g.ref. 25,40,63).

Environmental perturbations lead to stronger gene expression

variability than genetic perturbations

We divided our microarray data set into experiments that

applied environmental perturbations, genetic perturbations, or

both perturbations simultaneously (Fig. 1). For this analysis,

we separately analyzed the time course experiments interro-

gating the cell cycle or meiotic differentiation as they reflect

endogenous programmes that can run independently of

environmental or genetic perturbations. We included steady-

state experiments with mutants of genes involved in these

functions as these are treated simply as genetic perturbations.

Fig. 2a shows a comparison of average gene regulation in

response to genetic and environmental perturbations. Gene

regulation between these two situations was correlated,

although environmental conditions seemed to lead to overall

stronger differences in relative expression levels, especially for

up-regulated genes. The majority of the genes tended to be

up-regulated rather than down-regulated, especially in the

environmental perturbations. The variability in gene expression

was also correlated between genetic and environmental

perturbations, but the environmental perturbations produced

more variability than the genetic perturbations (Fig. 2b).

A possible bias in assessing the variability of gene expression

under genetic perturbations is represented by the limited

number of genes that have been perturbed in total (121 genes).

These genes have been chosen for their known or suggested

roles in the biological processes of interest. Accordingly, they

are enriched for GO terms related to regulatory mechanisms,

chromatin modification, and transcriptional control. The

mutated genes do not behave atypically in the scatter plots

of Fig. 2, indicating that the total number of experiments in

which these genes are not perturbed is sufficiently large so

that the perturbed genes do not create any bias. Of the

121 perturbed genes, 11 genes were also used as genetic

perturbations in combination with environmental perturba-

tions. As a control, we have repeated parts of the analysis

eliminating the conditions where mutants of these 11 genes are

exposed to environmental perturbations and found no differ-

ence in the results (Supplementary Fig. S2, ESI).z
Fig. 2c and 2d show gene variability within conditions

belonging to the three perturbation types (genetic, non-genetic

or both), using the distribution of the standard deviation of

regulation over all genes for each perturbation. Whereas in

Fig. 2c all the data from time courses was used in the analysis,

Fig. 2d shows the results of including in the analysis only a

single time point per experiment. The aim was to avoid

possible biases due to the correlation between the different

time points within each experiment. This analysis confirms

that environmental perturbations cause a larger gene

expression response than genetic ones.

The distribution of the log-ratios of transcript levels

averaged over all conditions for each gene was approximately

normal and centred around zero (Fig. 3a), the latter being a

consequence of the normalization procedure applied to the

data.56 This property allowed us to use the standard deviation

of this distribution as a measure for the variability of gene

expression under the different conditions. Environmental

perturbations led to overall more consistent regulation, i.e.

in the same direction, in gene expression across conditions

than genetic perturbations (Fig. 3a), meaning that either

genetic regulation triggered less regulation or it led to more

random changes between conditions, resulting in an average

regulation closer to zero for most genes. The differing standard

deviations show that environmental conditions tended to

affect many genes consistently across conditions (either up-

or down-regulation), whereas genetic modifications produced

less consistent regulation. Combining genetic and environ-

mental perturbations reinforced this bias leading to a wider

distribution. This effect was even more pronounced in meiotic

differentiation, which led to effects similar to a combination

of genetic and environmental perturbations. Cell cycle

progression, however, induced little overall regulation.

Fig. 3b shows the distribution of the average of the absolute

value of regulation, revealing that the low regulation for

genetic perturbations and cell cycle was due to generally low

regulation and not to alternating large positive and negative

values compensating each other. Environmental perturbations

produced more regulation than genetic ones, while cell cycle

progression produced little regulation and was similar to the

genetic conditions. Combining genetic and environmental

perturbations produced slightly more regulation than environ-

mental perturbations alone. Finally, meiotic conditions

produced the most regulation.

Fig. 3c shows the distribution of the standard deviation of

gene regulation across conditions, reflecting gene expression

variability. The environmental perturbations produced a

greater variability than the genetic ones and meiotic

differentiation produced the largest variability. Combining

genetic and environmental perturbations produced a

variability comparable to the environmental perturbations

alone. When only the cell cycle progression was taken into

account, the variability in regulation was slightly less than for
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genetic perturbations. The high variability induced by

environmental perturbations was due to both an increase of

single-gene variability (Fig. 3c) and to an increase in the

number of genes that were regulated (Fig. 2a). Notably, the

experiments interrogating the cell cycle, which reflect

endogenous regulatory programmes, showed a similar low

expression variability as did the genetic perturbations, and

accordingly showed much less variability than the environ-

mental perturbations. We conclude that environmental

perturbations lead to stronger gene regulation and greater

variability in gene expression across conditions than genetic

perturbations or endogenous programmes. Meiosis, as an

internal programme induced by external conditions, behaves

more like a strong environmental perturbation.

Identification of gene regulation modules

We next applied clustering to identify biologically relevant

gene regulation modules within our list of the top-500 most

variable genes. Different results can be obtained depending on

the clustering method. In some cases, clustering performs

better when the number of expected clusters is decided a priori,

as would be the case for methods such as k-means64 or Self

Organizing Maps.65 However, the emphasis in our analysis

was exploratory in nature so that the chosen clustering method

did not require any assumptions on the structure of the data.

We present here two types of clustering: a hierarchical cluster-

ing of the genes across conditions and a clustering of the gene

correlation matrix. For each type, we clustered all conditions

together and also separately for genetic and environmental

perturbations.

Fig. 4 shows a hierarchical clustering applied to the top-500

most variable genes, using all the conditions tested. The

conditions were grouped by the main types of experiments.

A GO term enrichment analysis was performed based on

major gene clusters. Depending on the size of the clusters

considered, different enrichments were obtained. A division

between two main clusters was evident: one was enriched for

stress (p o 10�5) and meiotic differentiation (p o 10�3),

generally up-regulated genes, and the other for biosynthesis

Fig. 2 Comparison of gene regulation in response to environmental or genetic perturbations. (a) Plot of the mean regulation of genes (log2 of

expression ratios) across all genetic and environmental perturbations (Spearman correlation = 0.69). Red: 121 genes that were manipulated for

genetic perturbations; yellow: 11 genes that were manipulated for simultaneous environmental and genetic perturbations. (b) Plot of the variability

of gene expression across conditions in response to environmental or genetic perturbations (Spearman correlation = 0.83). Coloured genes as in

(a). Experiments including simultaneous environmental and genetic perturbations were excluded from the analysis in (a) and (b). (c) Comparison

of standard deviation of all genes within one type of perturbation: genetic, environmental, or both. 50% of all conditions are included in the box

(interquartile range), and whiskers extend to 1.5 times of it. (d) Same analysis as (c) but including only a single time point per time course

experiment.
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(p o 10�8) and metabolism (p o 10�2), generally down-

regulated genes. We also notice how these two sets of genes

are broadly regulated in opposite directions, reinforcing the

idea that the stress response and maximal growth programmes

are mutually exclusive in the cell.3 In the conditions tested, the

perturbations are likely to stimulate stress response and

limit cell growth, consistent with what is observed. More

detailed cluster descriptions are provided in Fig. 4 and in

Supplementary Table S5 (ESI).z
The same procedure was carried out using only the genetic

perturbations, only the environmental perturbations, or

combined genetic and environmental perturbations

(Supplementary Fig. S3, ESI).z Clusters enriched for similar

GO terms were evident in all three cases, partially overlapping

with what was found with the combined analysis of Fig. 4.

Similarly, we observed two well separated, major clusters:

genes involved in stress response and meiotic differentiation

on one hand, and genes involved in metabolism and transport

on the other. The different perturbations provided different

information on the regulatory systems. In general, a higher

number of conditions helped to produce richer and more

detailed regulatory modules.

A second approach for the identification of biological

modules involves clustering applied to the gene correlation

matrix. For each gene pair among the top-500 most variable

genes, the Pearson correlation over all the 956 experimental

conditions was calculated. This value was taken as a measure

of the ‘regulatory relatedness’ between different gene pairs.

When clustering the matrix of all the gene-to-gene correla-

tions, we grouped together the genes that showed similar

correlation to all the other genes in the list, thus identifying

gene clusters that showed similar correlation profiles (Fig. 5).

By definition, all elements on the diagonal of the matrix

are equal to unity, as they represent the correlation of a set

of values with itself. Similarly, the appearance of bright yellow

squares along the diagonal indicates clusters of genes with

similar profiles across the experimental conditions. The

dark red areas, on the other hand, show clusters of genes

that are negatively correlated with each other, that is they

tend to be regulated in opposite directions. As before, we

included a GO enrichment analysis (Fig. 5). Again, we see

a distinction between genes related to stress (p = o10�2)

and meiotic differentiation (po 10�4) opposed to biosynthesis

(p o 10�7) and metabolism (p o 10�3). More detailed cluster

Fig. 3 Comparison of different sets of conditions: genetic perturbations (red), environmental perturbations (blue), both environmental and

genetic perturbations (black), cell cycle (yellow) and meiotic differentiation (green). (a) Distribution of average regulation over all conditions.

(b) Distribution of average of absolute value of regulation over all conditions. (c) Distribution of the standard deviation of regulation over all

conditions (gene variability).
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descriptions are provided in Fig. 5 and in Supplementary

Table S6 (ESI).z
We also clustered genes separately using only genetic or

environmental perturbations (Supplementary Fig. S4, ESI).z
Combining all the available conditions in the calculation of

the gene-to-gene correlations produced more clusters with

clear enrichments for GO terms. The clusters obtained were

similar to the ones obtained for hierarchical gene clustering.

Many apparent regulatory modules were not enriched for GO

terms, which could reflect connections between sets of genes

that are not accurately covered by the GO ontology or

heterogeneous in function. It would be interesting to investi-

gate some of these unknown regulatory modules to further

tease out the biological meaning of the structure of the

correlation matrix.

Discussion

We present an overview of fission yeast gene regulation across

more than 900 experimental conditions. The results suggest

that environmental perturbations produce a larger variability

in gene regulation between different conditions than genetic

perturbations. The endogenous cell-cycle programme involves

even less variation than genetic perturbations. The combination

of external and genetic perturbations leads to stronger gene

regulation, while the variability in gene expression is com-

parable to the purely environmental perturbations. The

extent and variability in regulation are highest during meiotic

differentiation, even higher than in combined genetic

and environmental perturbations. Meiotic differentiation

itself is triggered by a strong environmental stress (nitrogen

starvation), followed by an endogenous programme that

culminates in stress-resistant spores. Meiotic differentiation

in yeast can therefore be considered as a sophisticated

stress response. The similarity between the overall gene

expression patterns during meiotic differentiation and stress

responses is consistent with the suggestion that the stress

response is a primordial process for the evolution of cellular

differentiation.3

Whereas in experiments involving environmental perturba-

tions the cells are monitored as they are being exposed to the

threat, in the case of a genetic perturbation the newly created

strains have time to adapt to the new genetic condition over a

few generations. A further assessment should be undertaken as

soon as cells have undergone a genetic modification, to capture

the transient gene expression response as was done for the

environmental perturbations. We predict that this transient

response would be much stronger, similar to responses to

environmental perturbations. Hence, the large difference in gene

regulation observed between genetic and environmental pertur-

bations could reflect the difference in the experimental timing

(transient response vs. steady-state after multiple generations)

rather than the nature of the perturbations themselves.

However, we can explain these observations in the light of

previous studies. Although genetic perturbations are clearly

more deeply imposed on the organism, as they are inheritable,

they seem to disrupt the cellular expression programme less

than external factors. The sub-division between genetic and

environmental perturbations analyzed here may be related to

the distinction between endogenous and exogenous conditions

introduced in ref. 2. These authors observe that two types of

conditions elicit the activation of different parts of the

regulatory network. When dealing with endogenous

conditions, the response is based on a highly combinatorial

control of multiple transcription factors that regulate few

targets, creating a sub-network with high in-degrees, long path

lengths and high cluster coefficients. In contrast, the response

to exogenous conditions involves a sub-network with high

out-degrees, short path lengths and low levels of clustering.

Biologically, this difference might represent a rapid large-scale

Fig. 4 Hierarchical clustering of top-500 most variable genes including all microarray experiments. The colour legend shows the entire range of

observed regulation (log2 of expression ratios). Selected GO categories that were enriched in clusters are highlighted as follows. Cluster 1

(magenta): iron related functions, cluster 2 (dark green): cytokinesis, cluster 3 (orange): translation, cluster 4 (blue): vitamins and thiamine, cluster

5 (cyan): metabolism, cluster 6 (yellow): stress response, cluster 7 (grey): protein folding, cluster 8 (green): conjugation, and cluster 9 (red): meiosis.

The experimental conditions are divided in major groups as indicated on top: starvation, treatment with drugs, cell-cycle, meiosis and stress. The

unassigned conditions are from various other experiments, mainly addressing chromatin modification, transcription, and mRNA decay. See

Supplementary Table S5 (ESI)z for more details. The clusters with no number did not present any biological significant enrichment.
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response to external perturbations opposed to a carefully

coordinated rearrangement for internal programmes.

If we assume a parallel between endogenous conditions and

genetic perturbations on one side with exogenous conditions

and environmental perturbations on the other, we can

compare the topological network features and the variability

and regulation of gene expression measured here. The higher

levels of variability in gene expression observed for environ-

mental perturbations and meiotic differentiation partially

reflect an increase in the number of genes being regulated.

A faster and more extensive gene expression response,

propagating through a less tightly controlled network, could

explain such patterns. Meiotic differentiation leads to gene

expression patterns more similar to a strong environmental

perturbation than to an endogenous programme. Just like the

conditions where genetic and environmental perturbations are

combined, meiotic differentiation may combine both exogenous

and endogenous aspects of the regulatory network, thus

leading to strong changes in the expression programmes.

We speculate that there are two ways in which cells respond

to challenges and threats to their survival. If the threat comes

from an internal genetic perturbation that will endure over

generations, the cells compensate and prepare a permanent

adjustment of the regulatory network, helping them cope with

the disruption in the long term. This adaptation, which may

follow stronger short-term gene expression responses similar to

those triggered by environmental perturbations, is probably

optimized to involve only the minimal necessary changes, as the

endogenous sub-network of the cell is bound to be tightly

regulated. A drastic and permanent change in the expression

programme would possibly jeopardize the state of dynamic equili-

brium inside the cell, leading to compromised growth or even

death. In the case of external challenges, for example in the form of

potentially damaging changes to the cells’ environment, the

response is immediate but transient to deal with the emergency.

If the stress persists, however, global gene regulation will also

adjust to new steady-state levels that are closer to, but distinct from

the situation in unstressed cells.25,66 This steady-state condition

may then be similar to cells living with a genetic perturbation.

Environmental challenges are likely to stimulate gene

expression variability between single cells within the

population through noisy gene regulation, which can promote

survival of some cells that ‘‘get it right’’.3,10,12,14 An interesting

question is how these large rearrangements in gene expression

are compatible with the observed high levels of robustness and

cell survival. An analysis of the possible origins of this

robustness from an evolutionary point of view is presented

in ref. 15, where robustness is defined as how likely a system

is to undergo random changes without impairment in

its function. Two types of robustness are distinguished:

Fig. 5 Hierarchical clustering of the correlation matrix of the top-500 most variable genes including all experimental data. Selected GO categories

that were enriched in clusters are highlighted as follows. Cluster 1 (grey): protein folding, cluster 2 (purple): amino acid biosynthesis and nitrogen-

related terms, cluster 3 (orange): translation, primary metabolism and biosynthesis, cluster 4 (green): conjugation, cluster 5 (yellow): response to

stress, cluster 6 (red): meiosis and cell cycle, cluster 7 (pink): cell differentiation and sporulation. Note that the figure is symmetric on one diagonal,

and the bright yellow squares reflect regulatory modules. The colour legend shows the correlation values from inverse (dark red) to positive

(bright yellow) along with the distribution of the matrix values. The clusters with no number did not present any biological significant enrichment.

See Supplementary Table S6 (ESI)z for more details.
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robustness to genetic change such as random mutations in the

genome, and robustness to non-genetic changes such as noise in

cellular processes and changes in the environment.67 Ref. 15

argues that robustness to genetic change is not an adaptation to

genetic mutation but a secondary effect of acquired robustness to

non-genetic changes, which are more ubiquitous and have

stronger effects in the variation of phenotypes.68 Robustness

against non-genetic change also increases fitness against genetic

change and, importantly, it seems to be inheritable. It is therefore

possible that cellular adaptation to internal noise and changing

environmental conditions is at the origin of cells’ robustness to

the genetic modifications. Although it has been suggested that

noise has been selected against, possibly constraining the

evolvability of gene expressionfor dosage sensitive genes,69 noise

in development is seen as a fundamental factor in explaining the

increase of organisms’ robustness through evolution.70

We ranked genes based on their expression variability across

conditions. The most variable genes were related to stress

response, meiotic differentiation, and metabolism. Two cluster-

ing approaches were used to identify biological modules within

the most variable genes. In both cases, the GO term enrichment

analysis highlights a general sub-division of the genome into two

large gene clusters that are reciprocally regulated: genes related

to stress response and meiotic differentiation on the one hand,

and genes related to biosynthesis, metabolism, and translation

on the other. This finding reflects the bipolar transcriptome

(growth vs. stress response) that needs to balance between rapid

cell proliferation, but relative stress sensitivity, or maximal stress

resistance, but slow growth or quiescence.3–6,63,71,72

Ideally, the clusters obtained should be analyzed in a broader

framework that is less restrictive than the GO categories.

Recently, an alternative classification scheme was suggested

where identified gene modules were found to be biologically

highly relevant, although they were not sharing GO

annotation.73 Some clusters, especially among the ones

obtained by clustering the gene correlation matrix, remain

biologically unexplained. This could either point to new biology

which is not adequately covered by the current GO annotation,

or to functionally heterogeneous regulatory modules.

One shortcoming of the presented approach is the

assumption that time points within time course experiments

can be treated as independent conditions. A more rigorous

approach would entail measuring gene correlation through the

time course in different experiments. Current work is being

devoted to the development of an adaptation of the algorithm

presented in ref. 74, which could be used to measure gene-to-

gene correlation. Preliminary results show that this technique

could identify targets of the same transcription factor.

To conclude, the method presented can be easily used to

mine large sets of gene expression data or, as it becomes more

and more available, to RNA-seq data75 and is immediately

applicable to other organisms as well as to entire ecosystems.76

Experimental

Data preprocessing

Gene expression was measured with two-colour DNA

microarrays for fission yeast cells in different experimental

conditions. All experiments used isogenic control strains as a

reference. The raw ratios of signals were normalised to wild

type as described in ref. 56. The assumption behind this

normalization step is that the raw values are normally

distributed, which is true in most cases and widely assumed.

The up- or down-regulation of genes is assessed as a relative

measure compared to wild type. A better method to introduce

an external control would have been to use spikes of known

mRNA value in the arrays but this was not done for all of the

arrays and hence could not be used across the whole dataset.

For most time courses, all data is normalized to time point 0

of the isogenic reference; these time point 0 measurements

were discarded as they were normalised to themselves yielding

a high number of values equal to 1, which would create a bias

for expression variability in the subdivision between genetic

and non-genetic conditions. All the available biological

replicates and dye swaps were averaged, a total of 1272

hybridizations. The logarithm of the normalized ratios was

taken and no further scaling was performed. The data was

then filtered to leave only experiments where more than 85%

of the genes were measured and only genes that were measured

in at least 80 conditions, eliminating zero time points in time

courses, leaving 4939 genes and 956 conditions.

Genes ranking

The genes were ranked based on the standard deviation of the

fold changes across conditions. The standard deviation was

calculated for all genes (5166). The lists of most and least

variable genes were analysed with the GO term finder,61

choosing the category biological process and a background

distribution given by the whole genome. The range was also

calculated for each gene, taking the difference between the

maximum and minimum value of relative expression through

all conditions. These two measures are both affected by the

number of missing values in the data, which might affect the

data for the genes that were only recently included in the arrays

and therefore have measurements in fewer conditions. Whereas

the range of expression values would be very high for genes that

are particularly regulated in just a single condition, the standard

deviation would consider highly variable only those genes that

are considerably regulated in a large number of conditions. Thus

we choose the standard deviation as a measure of variability.

Global test

A pairwise global test77 was employed to check whether the

gene expression patterns of the three subgroups (genetic,

environmental, both) were significantly different (Fig. 2c,d).

The analysis was repeated using only one time point per

time course to ensure the statistical independence of the

measurements. The test was performed in an implementation

of R (version 2.90), based on a logistic model and 10 000

permutations.

Comparison between genetic and environmental perturbations.

Frequency histograms were generated to show how many

genes have a certain regulation value averaged over all con-

ditions. Moreover, the distribution of the absolute regulation

values for all genes was calculated. The statistics of the
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distributions in Fig. 3a are as follows (std = standard deviation):

mesiosis, mean = 0.029, std = 0.61; genetic and environ-

mental: mean = 0.065, std = 0.43; environmental: mean =

0.008, std = 0.25; genetic: mean = �0.006, std = 0.11;

cell cycle: mean = �0.006, std = 0.10. The statistics of the

distributions in Fig. 3b are as follows: mesiosis, mean = 0.72,

std = 0.45; genetic and environmental: mean = 0.53, std =

0.33; environmental: mean = 0.43, std = 0.22; genetic:

mean = 0.29, std = 0.15; cell cycle: mean = 0.26, std =

0.15. The statistics of the distributions in Fig. 3c are as follows:

mesiosis, mean= 0.82, std = 0.48; genetic and environmental:

mean = 0.65, std = 0.37; environmental: mean = 0.62, std =

0.33; genetic: mean = 0.47, std = 0.25; cell cycle: mean =

0.37, std = 0.22.

Biological modules

The Agnes (agglomerative hierarchical clustering) function

was used in R to perform hierarchical clustering of the data.78

The Euclidean distance and the Ward method were applied.

The Ward method minimizes the sum of squares of two

clusters at each step of the clustering procedure.79 Clustering

was first applied to the 500 most variable genes. The lists of

genes in each cluster were analysed with the GO term finder

described in ref. 61 using the list of top-500 genes as a back-

ground distribution. Clustering was also performed after

separating genetic and environmental conditions.

Pearson correlation

Pearson correlation was calculated across all the experimental

conditions (956) considering each time point in time course

experiments as a separate condition. The values were stored in

a correlation matrix. It must be noted that for this analysis all

the conditions were merged, including steady-state and time

course time points. This raises the issue of applying the

Pearson correlation to time course data. The statistical

assumptions underlying this method, namely the independence

of the time points as single conditions, are not satisfied in this

case. Aware of this methodological problem, we seek to

investigate whether making the simplifying assumption can

lead to biologically interesting results.

Although there are more advanced methods to treat this

type of data,80 we decided for now to make this simplifying

assumption, and we plan to address the issue in further work.

Clustering of the correlation matrix

The symmetric correlation matrix of the top-500 most variable

genes, where correlation is measured by Pearson correlation,

was clustered using the Euclidean distance measure and the

Ward method as above.

Acknowledgements

The authors would like to acknowledge the contribution of

Amy Li, Sergei Manakov, Oliver Stegle, Valerie Wood for

help with data integration and analysis, and Luis López-
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