Sustainable selective oxidations using ceria-based materials

Jurriaan Beckers and Gadi Rothenberg*

Received 6th January 2010, Accepted 19th February 2010
First published as an Advance Article on the web 9th April 2010
DOI: 10.1039/c000191k

This Perspective covers sustainable oxidation processes using doped cerias, ceria-supported catalysts and ceria-based mixed oxides. Firstly, we consider the general properties of ceria-based catalysts. We outline the advantages of the ceria redox cycle, and explain the dynamic behaviour of these catalysts in the presence of metal additives and dopants. We then review three types of catalytic oxidation processes: preferential CO oxidation (PROX), oxidative dehydrogenation and the selective oxidations of hydrocarbons and inorganics. The preferential oxidation of CO from hydrogen-rich mixtures is interesting for fuel cell applications. Copper-ceria catalysts, where the copper species are well dispersed and interact strongly with the ceria surface, show good selectivity and activity. The oxidative dehydrogenation of small alkanes is another important potential application. To avoid mixing oxygen and hydrocarbons at high temperatures, one can run the dehydrogenation over a conventional Pt/Sn catalyst while burning the hydrogen formed using the ceria lattice oxygen. This safer redox process allows separate tuning of the dehydrogenation and hydrogen combustion stages. A combinatorial screening showed good results for ceria doped with Pb, Cr or Bi, amongst others. Finally, we also discuss the catalytic selective oxidation of various hydrocarbons, oxygenates and inorganic molecules (H₂S, H₂ and NH₃). The goal here is either product valorisation or waste stream purification. Ceria-based materials show promise in a variety of such selective oxidations.

1. Introduction

Cerium was discovered in 1803 by Jöns Jakob Berzelius and Wilhelm Hisinger in Sweden, and Martin Heinrich Klaproth in Germany.¹ It was named after the dwarf planet Ceres, discovered in 1801, that was, in turn, named after the Roman goddess of agriculture (particularly the growth of cereals).² A light rare-earth element, Ce is the main component of the minerals Bastnasite (USA, China), Monazite (Australia) and Loparite (Russia).³ Cerium or cerium oxide (“ceria”) is used in various applications, such as removing free oxygen and sulfur from the iron casting melts, as a polishing agent for glass and as a glass decolourant.⁴ Due to their good ionic conduction, ceria-based materials are also applied as electrolytes in solid oxide fuel cells.⁵ Since the 1980s, the most successful industrial

Jurriaan Beckers (Reimerswaal, 1972) obtained his bachelor’s degree at the Hogeschool Zeeland in Vlissingen, after which he worked in the research departments of several companies and governmental institutes. In 2009, he obtained his PhD at the University of Amsterdam. Dr Beckers is now working as a senior technologist at Avantium, a research and technology company based in Amsterdam that focuses on high throughput catalysis research.

Gadi Rothenberg (Jerusalem, 1967) is Professor and Chair of heterogeneous catalysis and sustainable chemistry at the University of Amsterdam, and teaches courses on catalysis, thermodynamics and scientific writing. He has published over 100 papers in peer-reviewed journals and discovered two catalysts, for which he received the Marie Curie Excellence Award in 2004 and the Paul Rylander Award in 2006. Rothenberg also invented a method for monitoring pollutants in water, and co-founded the companies Sorbisense and Yellow Diesel. In 2007, he was voted teacher of the year by the chemistry students. He is married, owns no car, and has a black belt in Shaolin Kung-Fu.
The redox cycle can lead to a strong metal–support interaction.

Phase segregation and/or changes in phase composition can occur for ceria-based solid solutions and mixed oxides. Thus, the actual active site often changes during catalysis. For example, when nickel supported on ceria is reduced at 750 °C, the nickel crystallites can spread over the reduced support (see Scheme 1). Conversely, at too-high doping levels or temperatures, surface enrichment or phase segregation can occur. Confusingly, the spreading of nickel crystallites over the ceria surface, in the case of a ceria support, and surface enrichment, in the case of nickel-doped ceria, can lead to similar surface structures. These effects also complicate catalyst characterisation. Lattice doping can be seen by using XRD, EXAFS or EPR. This does not exclude, however, that the surface where catalysis takes place may be dopant enriched. Surface sensitive techniques such as LEIS and XPS can detect surface enrichment, and in case of XPS, oxidation states. Their signal, however, is still the average of the entire catalyst surface, which can complicate the analysis when several types of surface species are present.

Another type of SMSI is so-called “decoration” by ceria. This is seen upon reduction to 600–700 °C. The supported metal crystals stay intact, but are decorated with a layer of ceria, shielding the metal surface and thereby affecting the catalysis (see Fig. 2). Note that bulk techniques such as X-ray diffraction cannot observe decoration effects.
3. Preferential CO oxidation (PROX)

Electrochemical energy can be obtained from hydrogen by polymer electrolyte (or proton exchange) membrane fuel cells (PEMFC). The hydrogen generally comes from the steam reforming or partial oxidation of light hydrocarbons, followed by a water gas shift reaction. The effluents of these processes contain >100 ppm of CO, which poisons the fuel cell anodes. Because of this, catalytic preferential CO oxidation from hydrogen-rich gas mixtures has gained a lot of attention. It can be achieved by supported noble metal catalysts, such as Pt, Pd or Rh on alumina, or Au on iron oxide. Indeed, commercial systems containing Pt are available, but these are expensive. Alternatively, copper supported on ceria and copper-ceria mixed oxides or copper doped ceria have been studied. Several groups have compared these catalyst types.

Gammarra et al. found higher activities for both CO and H₂ oxidation when using a mixed oxide catalyst instead of copper on ceria. The higher activity of the mixed oxide, however, generally meant a lower selectivity. This was ascribed to a higher copper dispersion and easier oxygen vacancy formation of the mixed oxide, which gives a high activity for both CO and hydrogen oxidation. Characterisation using DRIFTS and XANES showed that the H₂ oxidation occurred after reduction of the copper to Cu⁺, indicating that the active sites are partially reduced dispersed copper species. This was also proposed by Tada et al. and Snytnikov et al. At temperatures >150 °C, the mixed oxide showed the highest selectivity. Testing 30 catalysts, Tada et al. show that high selectivities could be obtained by using both supported and mixed oxide copper-ceria catalysts. The highest activities were found, however, using a mixed oxide catalyst. Avgouropoulos et al. have also compared the effect of the synthesis method on the catalytic properties of copper-ceria catalysts. Their CO PROX data, in the presence of water and CO₂, showed that the highest activity, selectivity and stability were achieved when using mixed oxides. The superior performance of these catalysts was ascribed to well dispersed copper species that strongly interacted with the ceria surface.

Studies on different supports showed that the activity of copper on ceria, and of copper-ceria mixed oxides, was much higher than of copper on alumina or silica, plain copper oxide, or plain ceria. To increase dispersion, alumina was also added to copper-ceria catalysts, but a direct comparison showed that whilst the activity remained high, the selectivity was lower. Replacing either the copper or the ceria by other metal (oxides) resulted in lower activities.

Several authors have studied the effect of adding a third metal to copper-ceria mixed oxides. Iron, nickel or tin can increase the activity and selectivity of copper-ceria catalysts, although the CO oxidation occurs over copper species. Doping copper-ceria with Pt can increase the activity, but no beneficial effect on the selectivity was observed when doping with Pt, Ru, Pd, Ni or Co. Chen et al. found increased activity upon adding zirconia, but only at low concentration (10 mol%).

Although the above reports show that copper-ceria-based catalysts can give high CO PROX activities and selectivities, important parameters for practical application are long term stability (in feeds containing H₂O and CO₂), fast CO conversion and, of course, a low CO effluent concentration. These data are often missing. The CO effluent concentration, for example, is seldom reported. Indeed, this is zero at full CO conversion, but at the typically used feed concentration of 1% v/v, a conversion of 99% yields a CO effluent concentration of 100 ppm, which is at the top of the acceptable 10–100 ppm range for fuel cell feeds (and still much too high for Pt anodes). Stability data is given in some publications, but not always in H₂O and CO₂-containing gas feed. The stability tests with H₂O and CO₂-containing gas feed showed little drop in conversion when performed at full CO conversion (copper-ceria or copper on tin doped ceria catalysts). The selectivity was also not affected. Kim et al., however, did find a significant decrease in activity of a copper-ceria mixed oxide catalyst running at 60% CO conversion. The activity was completely restored, however, by heating for 3 h in an inert gas, possibly due to the accumulation of carbonate species.

4. Oxidative dehydrogenation (ODH)

The demand for small alkenes is high. Worldwide propene demand, for example, is expected to rise to 80 million tonnes in 2010. The main routes to propene are steam cracking, fluid catalytic cracking and catalytic dehydrogenation. The latter enables the on-demand production of alkenes but is equilibrium limited. Oxidative dehydrogenation (ODH), where oxygen is added to the gas feed, allows exothermic, on-demand alkene production. Furthermore, the added oxygen limits coking. It can, however, result in the over-oxidation of hydrocarbons to CO and CO₂. This is a big challenge, since the alkene product is more reactive than the alkane starting material. Thus, specific ODH catalysts have been developed, and until now, (supported) vanadium or molybdenum oxides have held sway. Ethane ODH gives comparable yields to those of steam cracking, but propane ODH yields are still far from being attractive to industry. In both cases, little has been reported on catalyst lifetime. In the search for better ODH catalysts, various ceria-based materials have also been investigated. The results are summarised in the following sections.
Table 1 Ceria-based materials used for ethane ODH

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Catalyst composition</th>
<th>Concentration of added metal</th>
<th>Space velocity/ ml g(^{-1}) h(^{-1})</th>
<th>Ethane conversion (%)</th>
<th>Selectivity towards ethene (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sr/CeO(_2)</td>
<td>10 mol%</td>
<td>6 : 1 (molar)</td>
<td>10200</td>
<td>700</td>
<td>56(^a)</td>
</tr>
<tr>
<td>2</td>
<td>SrCl(_2)/CeO(_2)</td>
<td>30 mol%</td>
<td></td>
<td>800</td>
<td>50</td>
<td>88(^a)</td>
</tr>
<tr>
<td>3</td>
<td>V/CeO(_2)</td>
<td>3 wt%</td>
<td>2 : 1</td>
<td>660</td>
<td>73</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>V/CeO(_2)</td>
<td>1 wt%</td>
<td>1 : 2</td>
<td>1</td>
<td>510</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>V/CeO(_2)</td>
<td>3 wt%</td>
<td></td>
<td>590</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>V/CeO(_2)</td>
<td>1 wt%</td>
<td></td>
<td>590</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>CeO(_2) ref.</td>
<td></td>
<td></td>
<td>550(^d)</td>
<td>66</td>
<td>4</td>
</tr>
</tbody>
</table>

Using CO\(_2\) instead of oxygen:

8	Ce–Ca–O	10 mol\%	1 : 2 (CO\(_2\))	12000	650	98\(^a\)	82
9	CeO\(_2\) ref.			750	25	90	
10	CeO\(_2\) ref.			750	41	71	

Non-ceria-based reference catalyst:

| 11 | Mo–V–Te–Nb | 1 : 0.2 : 0.17 : 0.17 | 9 : 6 | 100 | 400 | 84 | 89 |

\(^a\) CO\(_2\) where applicable. \(^b\) Steam was added at a H\(_2\)O:C\(_2\)H\(_6\) = 1 : 1 molar ratio. \(^c\) The same performance was seen at 510 and 590 °C. \(^d\) This is the value obtained after pre-treating the catalyst at 750 °C under the reaction conditions. The fresh catalyst has a selectivity of ~55%. The increase in selectivity is irreversible. \(^e\) Some of the data is derived from figures, rather than tables, in these references.

4.1 Oxidative dehydrogenation of ethane

Table 1 gives the catalyst composition and catalytic performance of ceria-based materials in ethane ODH. Solid solutions or mixed oxides containing metal M and ceria are denoted as “Ce–M–O”. Metal M supported on ceria is denoted as “M/CeO\(_2\)”. The catalysts generally give a high selectivity at low conversion, and lower selectivities at high conversion. We have incorporated the data of the highest selectivity, highest activity and highest overall performance in the table, where available. Fig. 3 shows an activity vs. selectivity plot.

The data show that the best catalysts, achieving the highest selectivity and activity, are calcium-doped 9, supported strontium 2 and 3, and plain ceria 10. Interestingly, most of these catalysts were tested under special conditions: steam was added in the case of 2, and the ODH was performed with CO\(_2\) instead of oxygen in the cases of 9 and 10.\(^{86,87}\) The ODH of these catalysts was performed at rather high temperatures (≥750 °C), higher than the temperature needed for (endothermic) catalytic dehydrogenation.\(^{82}\) Vanadium-containing catalysts 4–6 ran below 600 °C, but also had lower activities and selectivities. Supported 3 had a rather high selectivity and activity at 660 °C, running without added steam or CO\(_2\).\(^{48}\) However, their performance fell short compared to the best reference catalyst (11), a V- and Mo-containing mixed oxide that also operates at a lower temperature (400 °C), and without steam and/or CO\(_2\) (see Table 1 and Fig. 3). Note that far less research has been performed on ceria-based materials. No data is available, for example, for molybdenum-containing ceras, although the data on Ce–V–O shows that using components of the benchmark reference catalyst does not guarantee good performance.

4.2 Oxidative dehydrogenation of propane

The success of nickel-containing catalysts in propane and isobutane ODH inspired the testing of nickel-ceria catalysts in propane ODH (see Fig. 4).\(^{90,91}\) The group of Barbaux showed that this allows lower reaction temperatures compared to non-ceria-based nickel catalysts (300 °C).\(^{90}\) When comparing ceria-nickel mixed oxides with nickel on ceria, they found that the latter gave higher selectivity but lower conversion (compare 12 with 13 and 14 in Table 2). Nickel-containing mixed oxides...
Table 2: Ceria-based materials used for propane ODH

<table>
<thead>
<tr>
<th>Catalyst composition</th>
<th>Concentration of added metal</th>
<th>Alkane : O₂</th>
<th>Space velocity/ ml g⁻¹ h⁻¹</th>
<th>Propane conversion (%)</th>
<th>Selectivity towards propene (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Ni-K/ CeO₂</td>
<td>Ni : Ce = 1, K : Ni = 0.05³</td>
<td>1 : 2</td>
<td>4, 8</td>
<td>545</td>
<td>300</td>
<td>8</td>
</tr>
<tr>
<td>13 Ce-Ni-O</td>
<td>Ni : Ce = 0.5³</td>
<td>1 : 3</td>
<td>4, 15</td>
<td>30000</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>14 Ce-Ni-O</td>
<td>Ni : Ce = 1³</td>
<td>1 : 3</td>
<td>5, 15</td>
<td>30000</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>15 Ce-Ni-O³</td>
<td>Ni : Ce = 0.5³</td>
<td>1 : 3</td>
<td>5, 15</td>
<td>30000</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>15a²</td>
<td>Ni : Ce = 0.5³</td>
<td>1 : 3</td>
<td>5, 15</td>
<td>30000</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>16 V/CeO₂</td>
<td>12 wt%</td>
<td>1 : 3</td>
<td>5, 15</td>
<td>5000</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>17 V/CeO₂</td>
<td>6 wt%</td>
<td>1 : 3</td>
<td>5, 15</td>
<td>5000</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>18 CeO₂</td>
<td></td>
<td>1 : 1</td>
<td>14, 13⁰</td>
<td>3600</td>
<td>450</td>
<td>17</td>
</tr>
<tr>
<td>19 CeO₂+ TCM</td>
<td>17% v/v TCM</td>
<td>1 : 1</td>
<td>14, 13⁰</td>
<td>3600</td>
<td>450</td>
<td>17</td>
</tr>
<tr>
<td>20 CeO₂+ TCM²</td>
<td>17% v/v TCM</td>
<td>1 : 3</td>
<td>14, 14⁰</td>
<td>3600</td>
<td>450</td>
<td>17</td>
</tr>
<tr>
<td>21 Cs₂O/ CeO₂-2CeF₅⁴</td>
<td>3 wt%</td>
<td>4 : 5</td>
<td></td>
<td>6000</td>
<td>500</td>
<td>41</td>
</tr>
<tr>
<td>Non-ceria-based reference catalyst:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 V/MCF⁵</td>
<td>4.2 wt%</td>
<td>10, 10</td>
<td>72000</td>
<td>550</td>
<td>31</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Catalyst composition</th>
<th>Concentration of added metal</th>
<th>Reactant</th>
<th>Space velocity/ ml g⁻¹ h⁻¹</th>
<th>T/°C</th>
<th>Alkane conversion (%)</th>
<th>Selectivity towards alkene (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>23⁶</td>
<td>CeO₂</td>
<td></td>
<td>Ethylbenzene</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>24</td>
<td>Cr/CeO₂</td>
<td>5–40 Cr atoms nm⁻²</td>
<td>Isobutane⁶</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>24a⁶</td>
<td>Cr–Cr–O</td>
<td></td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>25</td>
<td>Ce-Cr-O</td>
<td>Cr : Ce = 0.2–1.8⁴</td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>25a⁶</td>
<td>Ce-Cr-O</td>
<td>Cr : Ce = 0.2–1.8⁴</td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>26</td>
<td>CeO₂</td>
<td></td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>26a⁶</td>
<td>CeO₂</td>
<td></td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>27</td>
<td>Cr₂O₃</td>
<td></td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>27a⁶</td>
<td>Cr₂O₃</td>
<td></td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
</tbody>
</table>

⁴ These are atomic ratios. ⁵ Reference measurements were performed on ceria and nickel oxide. Ceria: 3% conversion, 2% selectivity (300 °C); 10% conversion, 6% selectivity (400 °C), note: quite close to catalyst 21. NiO 10% conversion, 17% selectivity (350 °C). ⁶ Ni outperforms similar catalysts containing Cr, Co, Cu or Zn. ⁷ These are catalyst 15 tested at higher temperatures. ⁸ This is catalyst 17 tested at a higher temperature. ⁹ The concentration is in kPa instead of %v/v. ¹ At this oxygen pressure, the values for plain ceria are: 7% conversion, 10% selectivity. ¹² This is the GHSV/h⁻¹. ¹³ MCF stands for mesocellular silica foams.

Table 3: Ceria-based materials used for ethylbenzene and isobutane ODH

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Catalyst composition</th>
<th>Concentration of added metal</th>
<th>Reactant</th>
<th>Space velocity/ ml g⁻¹ h⁻¹</th>
<th>T/°C</th>
<th>Alkane conversion (%)</th>
<th>Selectivity towards alkene (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>23⁶</td>
<td>CeO₂</td>
<td></td>
<td>Ethylbenzene</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>24</td>
<td>Cr/CeO₂</td>
<td>5–40 Cr atoms nm⁻²</td>
<td>Isobutane⁶</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>24a⁶</td>
<td>Cr–Cr–O</td>
<td></td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>25</td>
<td>Ce-Cr-O</td>
<td>Cr : Ce = 0.2–1.8⁴</td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>25a⁶</td>
<td>Ce-Cr-O</td>
<td>Cr : Ce = 0.2–1.8⁴</td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>26</td>
<td>CeO₂</td>
<td></td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>26a⁶</td>
<td>CeO₂</td>
<td></td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>27</td>
<td>Cr₂O₃</td>
<td></td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>27a⁶</td>
<td>Cr₂O₃</td>
<td></td>
<td>Isobutane¹</td>
<td>—</td>
<td>325</td>
<td>45</td>
<td>94</td>
<td>96</td>
</tr>
</tbody>
</table>

² These are (bulk) atomic ratios. ³ Reference measurements were performed on ceria and nickel oxide. Ceria: 3% conversion, 2% selectivity (300 °C); 10% conversion, 6% selectivity (400 °C). ⁴ Ni outperforms similar catalysts containing Cr, Co, Cu or Zn. ⁵ These are catalyst 15 tested at higher temperatures. ⁶ This is catalyst 17 tested at a higher temperature. ⁷ The concentration is in kPa instead of %v/v. ⁸ At this oxygen pressure, the values for plain ceria are: 7% conversion, 10% selectivity. ¹² This is the GHSV/h⁻¹. ¹³ MCF stands for mesocellular silica foams.

4.3 Oxidative dehydrogenation of other hydrocarbons

Besides ethene and propane, ceria-based materials have been applied in isobutane and ethylbenzene ODH (see Table 3). High selectivity and conversion at temperatures lower than those at which commercial catalysts are used were obtained for ethylbenzene ODH over plain ceria 23, using N₂O as the oxidant.⁶ The high activity was attributed to a high concentration of Ce⁴⁺–O⁻–Ce⁴⁺ defect sites. Both doped and supported chromium-ceria catalysts were applied in isobutane ODH (see Fig. 5).⁷ The chromium-containing catalysts showed better results than plain ceria. The activity of chromium supported on ceria is higher than that of plain chromium oxide and chromium-ceria mixed oxide (both at 270 and 300 °C). Conversely, the selectivity of the chromium on ceria is somewhat lower compared to the mixed oxide and plain Cr₂O₃. Note that well dispersed Cr⁶⁺–O⁻, and not Cr₂O₃, was proposed as the active site.⁹

4.4 Combined dehydrogenation and selective hydrogen combustion

Another type of ODH has been industrially implemented. Here, the dehydrogenation is performed over a conventional dehydrogenation catalyst, and a second catalyst is added to...
selectively combusted part of the hydrogen formed. The process may therefore be viewed as a “two-step ODH” (Scheme 2). Selective hydrogen combustion (SHC) generates heat and shifts the equilibrium to the products side, yielding the same benefits as “conventional” ODH. The use of two catalysts and/or two reactors, however, allows separate tuning of the dehydrogenation and hydrogen oxidation reactions, and the advantage of this over conventional ODH is proven by the industrial implementation of the process. For example, the steam active reforming (STAR) oxydehydrogenation process is implemented in two plants for the ODH of isobutane to MTBE.

Styrene monomer advanced reheat technology (SMART) is in operation in five plants for the ODH of ethylbenzene to styrene. These processes use a co-fed approach, where small amounts of oxygen are added to the gas feed (Scheme 3, left). The mixing of gaseous oxygen with hydrogen and hydrocarbons at elevated temperatures is, however, a safety risk, which is avoided in redox-mode (Scheme 3, right). Here, no gaseous oxygen is added, but the lattice oxygen of the selective hydrogen combustion catalyst is used. High hydrogen combustion selectivities can be obtained for several supported oxides (e.g. Sb₂O₄, In₂O₃ and Bi₂O₃). These are, however, unstable under high temperature redox cycling. Conversely, ceria is stable under redox cycling and has a good oxygen storage capacity. The selectivity of plain ceria is low, but doping with metals such as Pb, Cr or Bi can overcome both the problems of low selectivity and low stability.

5. Various other selective oxidations

Besides the applications described in the previous sections, ceria-based materials have been used in various selective oxidations of hydrocarbons, oxygenates and inorganic molecules. An overview of this work is presented in Table 4. The common goal of these selective oxidations is product valorisation. The exceptions are catalytic wet air oxidation (CWAO, entries 10, 11, 14 and 15), which is used for waste water treatment, and sulfur oxidation (entry 12), which is used to recover sulfur from process gas.

Reactions with hydrocarbons involve coupling into larger molecules (entries 1 and 2, oxidative coupling of methane, OCM) and aldehyde formation (entry 3 and 4). Using ceria-based materials for OCM was studied by several groups, with either O₂ or CO₂ (a reference of each is given in Table 4). Using O₂, plain ceria mainly combusted the methane, but the C₂ yield increased when adding BaF₂. Similar results were obtained when supporting BaF₂ on Pr₂O₃ or Tb₂O₃ supports. Comparing Li, Na, K, Mg, Ca, Sr and Ba supported on ceria, Wang et al. found that Ca/CeO₂ was the best catalyst for OCM, using CO₂ as the oxidising agent.

Reactions with oxygenates include alcohol esterification (entry 5), aldehyde formation (entry 6 and 7) and acid formation from alcohols (entry 8) or aldehydes (entry 9). Gold is often used (entries 7, 8 and 9). Gold supported on ceria shows better performance in the selective oxidation of aliphatic and aromatic aldehydes compared to gold on iron oxide, Au/TiO₂ or Pt/C/Bi-based catalysts. Catalyst activity was correlated to the gold and ceria particle size. Starting from alcohols, using a gold-ceria mixed oxide catalyst primarily yielded the corresponding aldehydes. Gold on a more acidic support, such as iron oxide, yielded carboxylic acids that esterify the alcohol feed.

Reactions with oxygenates can include alcohol esterification (entry 5), aldehyde formation (entry 6 and 7) and acid formation from alcohols (entry 8) or aldehydes (entry 9). Gold is often used (entries 7, 8 and 9). Gold supported on ceria shows better performance in the selective oxidation of aliphatic and aromatic aldehydes compared to gold on iron oxide, Au/TiO₂ or Pt/C/Bi-based catalysts. Catalyst activity was correlated to the gold and ceria particle size. Starting from alcohols, using a gold-ceria mixed oxide catalyst primarily yielded the corresponding aldehydes. Gold on a more acidic support, such as iron oxide, yielded carboxylic acids that esterify the alcohol feed.

Besides gold, other metals, such as rhenium, platinum and rhodium, can be added to ceria to achieve the selective oxidation of oxygenates (entries 5 and 6). Oxidising methanol to methyl formate, for example, can be performed with high selectivity using rhenium (entry 5). The reaction is most efficient when
Ceria-based materials for various selective oxidations

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Catalyst composition*</th>
<th>Reactants</th>
<th>Desired products</th>
<th>Feed composition (% v/v)</th>
<th>T/C °</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BaF2/CeO2</td>
<td>Hydrocarbons</td>
<td>Methane</td>
<td>Ethane, ethene</td>
<td>CH4 : O2 = 3 : 1*</td>
<td>800</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>(Li, Na, K, Mg, Ca, Sr, or Ba)/CeO2</td>
<td></td>
<td>Methane</td>
<td>Ethene, ethene</td>
<td>CH4 : CO2 = 1 : 1*</td>
<td>780–900</td>
<td>124</td>
</tr>
<tr>
<td>3</td>
<td>Mo/CeO2</td>
<td>Isobutene</td>
<td>Methacrolein</td>
<td></td>
<td>i-C4H9 : O2 : N2 = 8 : 19 : 72</td>
<td>400</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>Ce–Mo–O</td>
<td>Toluene</td>
<td>Benzaldehyde</td>
<td>Benzoic acid</td>
<td>C6H5O : air</td>
<td>400</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>Re/CeO2</td>
<td>Oxygenates</td>
<td>Methanol</td>
<td>Methylfornate</td>
<td>MeOH : O2 : He = 6 : 11 : 84</td>
<td>240</td>
<td>127</td>
</tr>
<tr>
<td>6</td>
<td>Pt/CeO2, Rh/CeO2</td>
<td>Oxygenates</td>
<td>Ethanol</td>
<td>Ethanal</td>
<td>EtOH/O2/N2 : EtOH : O2 = 2 : 1</td>
<td>200–800</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>Ce–Au–O</td>
<td>Benzylalcohol</td>
<td>Benzylaldehyde</td>
<td></td>
<td>Solvent free, 2 bar pure O2</td>
<td>100</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>Au/CeO2</td>
<td>Octanol</td>
<td>Octanal Citral Propionate</td>
<td>1.5 M alcohol in water, 1 bar pure O2</td>
<td>60</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Au/CeO2</td>
<td>Propylene glycol</td>
<td>Lactate</td>
<td>Glycerate</td>
<td>Aldehyde/acetonitrile/ air</td>
<td>50–65</td>
<td>116</td>
</tr>
<tr>
<td>10</td>
<td>(Ru, Pd, Pt or Ir)/CeO2</td>
<td>Oxygenates</td>
<td>Phenol</td>
<td>Acetic acid</td>
<td>Aqueous solution, 1–10 bar, O2 : stearic acid = 0.1–16*</td>
<td>160–230</td>
<td>119</td>
</tr>
<tr>
<td>11</td>
<td>(Ru, Pd or Pt)/CeO2</td>
<td>Oxygenates</td>
<td>Carboxylic acids</td>
<td>CO2</td>
<td>5 g L⁻¹ (aq)</td>
<td>160, 200</td>
<td>118</td>
</tr>
<tr>
<td>12</td>
<td>Ce–V–O</td>
<td>S</td>
<td></td>
<td>1% H2S in He O2/H2S = 0–2.7</td>
<td>200–300</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Pd/CeO2</td>
<td>H2</td>
<td>H2O2</td>
<td>0.02 M H2SO4, 2.8% H2 in O2</td>
<td>22–27</td>
<td>122,123,130</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>(Ru, Pd or Pt)/CeO2</td>
<td>Inorganic molecules</td>
<td>NH3</td>
<td>N2</td>
<td>50 mmol L⁻¹ (aq)</td>
<td>160, 200</td>
<td>118</td>
</tr>
<tr>
<td>15</td>
<td>(Ru, Pd or Pt)/CeO2</td>
<td>Various</td>
<td>CO2, N2</td>
<td>5 g L⁻¹ (aq)</td>
<td>160, 200</td>
<td>118</td>
<td></td>
</tr>
</tbody>
</table>

* Solid solutions or mixed oxides containing metal M and ceria are denoted as “Ce–M–O”. Metal M supported on ceria is denoted as “M/CeO2”.

This process is applied in waste water treatment. Ideally, complete combustion into CO2 and H2O, with N2 formation, occurs. Alternatively, more easily biodegradable products can form, such as small carboxylic acids. Indeed, using Pt/CeO2 favours the full combustion of stearic acid, whilst Ru/CeO2 has a higher affinity for C–C bond splitting, followed by oxidation into acetic acid.119 Barbier Jr. et al. showed that Ru/CeO2 is unselective in oxidising ammonia into N2, but that adding a small amount of Pd enhanced both activity and selectivity.118 Interestingly, Ru dispersion was higher on low surface area ceria (see Fig. 6). This is because there was more room on the larger ceria crystals for supporting and stabilising small Ru crystals (Fig. 6, right). High surface area ceria consists of smaller ceria crystals that cannot accommodate the Ru particles (Fig. 6, left).

Due to their high toxicity, the removal of nitrogen-containing aromatic compounds, such as aniline, is an important step in waste water purification. A comparison of Ru, Pd and Pt on ceria showed (entry 15) that Ru/CeO2 is very selective towards CO2. Besides the metal dispersion, the activity was correlated to oxygen transfer from the ceria towards the Ru. Concerning their selectivity and activity towards the formation of molecular nitrogen, however, both Pd and Pt outperform Ru.

Besides the conversion of organic compounds, the selective oxidation of H2S, H2 and NH3 by ceria-based catalysts was studied (the NH3 oxidation was described above). Yaserli et al. showed that cerium-vanadium mixed oxides can selectively convert H2S to elemental sulfur (entry 12), and that both the selectivity and stability are higher than plain ceria.120 Recently, they also studied the application of cerium-manganese mixed oxides as high temperature H2S sorbents.121 Chaudhary et al.

This journal is © The Royal Society of Chemistry 2010.
showed that palladium supported on ceria can selectively oxidise \(\text{H}_2 \) into \(\text{H}_2\text{O}_2 \), given that an oxidising agent such as perchloric acid is present.\(^\text{12}\) The activity of ceria supported palladium was higher compared to thoria or gallia supports, but carbon and alumina supports were even better. Chloride or bromide anions can further improve yield and selectivity.\(^\text{13}\)

Acknowledgements

We thank Dr O. Touret (Rhodia) for permission to use Fig. 1, Prof. A. Caballero (University of Seville) for permission to use Scheme 1, Prof. J. M. Pintado and Dr J. J. Calvino (University of Cádiz) for permission to use Fig. 2 and Prof. J. Barbier Jr. (University of Poitiers) for permission to use Fig. 6.

References

Fig. 6 A TEM image of Ru supported on high surface area ceria (~7 nm ceria crystallites, 160 m\(^2\) g\(^{-1}\), left) and low surface area ceria (~25 nm ceria crystallites, 40 m\(^2\) g\(^{-1}\), right). Reproduced with permission of the author.\(^\text{14}\)
43 A. S. Firsova, T. I. Khomenko, A. N. Il’ichev and V. N. Korchak,

44 K. Y. Kim, J. Han, S. W. Nam, T. H. Lim and H. I. Lee,

48 M. V. Martínez-Huerta, J. M. Coronado, M. Fernández-García, A.
Iglesias-Juez, G. Deo, J. L. G. Fierro and M. A. Bañeres, J. Catal.,
2004, 225, 240.

49 M. V. Martínez-Huerta, G. Deo, J. L. G. Fierro and M. A. Bañeres,

50 M. V. Martínez-Huerta, G. Deo, J. L. G. Fierro and M. A. Bañeres,

52 P. Boizumault-Moriceau, A. Pennequin, B. Grzybowska and Y.

53 W. Daniell, A. Ponchel, S. Kuba, F. Anderle, T. Weingand, D. H.

54 L. Jalowiecki-Duhamel, A. Ponchel, C. Lamontier, A. D’Huysser

55 S. Sugiyama, Y. Iizuka, E. Nitta, H. Hayashi and J. M. Moffat,

51, 161.

57 M. M. Liu, W. L. Feng, T. C. Li, H. Yi, H. W. Dai, W. Huang, Y.

58 B. Murugan and A. V. Ramasswamy, J. Am. Chem. Soc., 2007,
129, 12064.

59 P. Moriceau, B. Grzybowska, Y. Barbaux, G. Wrobel and G.

60 P. Moriceau, B. Grzybowska, L. Gengembre and Y. Barbaux,

61 www.uhde.eu.

3.

66 E. A. de Graaf, A. Andreini, E. J. M. Hensen and A. Blixt,

67 E. A. de Graaf, G. Zwanenburg, G. Ronthenberg and A. Blixt,

68 G. Ronthenberg, E. A. de Graaf and A. Blixt, Angew. Chem., Int.

69 J. H. Blank, J. Beckers, P. F. Collignon and F. Clerc,

70 J. H. Blank, J. Beckers, P. F. Collignon and G. Ronthenberg,

71 X. L. Zhang, C. S. M. Lee, D. M. P. Mingos and D. O. Hayward,

72 A. G. Dedov, A. S. Loktev, I. I. Moiseev, A. Aboukais, J. F.

73 D. I. Enache, D. W. Knight and G. J. Hutchings,

74 D. I. Enache, D. W. Knight and G. J. Hutchings,

75 D. I. Enache, D. W. Knight and G. J. Hutchings,

76 Y. Y. Chen, B. J. Liaw and H. C. Chen, Int. J. Hydrogen Energy,
2006, 31, 2337.

77 Y. Z. Chen, B. J. Liaw and H. C. Chen, Int. J. Hydrogen Energy,

78 P. K. Cheekatamarla, W. S. Epling and A. M. Lane, J. Power Sources,
2005, 147, 178.

79 E. Moretti, M. Lenarda, L. Storaro, A. Talon, R. Frattini, S. Polizzi,
72, 149.

81 P. Ratnasamy, D. Srinivas, C. V. V. Satyanarayana, P. Manikandan,
R. S. S. Kumaran, M. Sachin and V. N. Shetti, J. Catal., 2004,
221, 81.

168.

83 E. Y. Ko, E. D. Park, W. K. Seo, H. C. Lee, D. Lee and S. Kim,

84 C. R. Jung, A. Kundu, S. W. Nam and H. I. Lee, Appl. Catal., A,
2007, 331, 112.

85 P. V. Snytnikov, A. I. Stadnichenko, G. L. Semin, V. D. Belyaev, A. I.

232, 107.

88 G. Avgouropoulos, T. Ioannides, C. Papadopoulos, J. Batista, S.

113.

94 R. X. Valenzuela, G. Bueno, A. Solbes, F. Sarpiña, E. Martínez and

148.