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Kinetic Monte Carlo simulations of flow-induced
nucleation in polymer melts

Richard S. Graham*a and Peter D. Olmstedb
Received 26th January 2009, Accepted 27th February 2009

First published as an Advance Article on the web 15th August 2009

DOI: 10.1039/b901606f
We derive a kinetic Monte Carlo algorithm to simulate flow-induced nucleation

in polymer melts. The crystallisation kinetics are modified by both stretching and

orientation of the amorphous chains under flow, which is modelled by a recent

non-linear tube theory. Rotation of the crystallites under flow is modelled by

a simultaneous Brownian dynamics simulation. Our kinetic Monte Carlo

approach is highly efficient at simulating nucleation and is tractable even at low

under-cooling. The simulations predict enhanced nucleation under both transient

and steady state shear. Furthermore the model predicts the growth of shish-like

elongated nuclei for sufficiently fast flows, which grow by a purely kinetic

mechanism.
1 Introduction

Semi-crystalline polymers make up a very significant fraction of the world’s produc-
tion of synthetic polymers. Unlike simple molecules, the connectivity of polymer
molecules causes them to crystallise into a composite structure of crystalline and
amorphous regions. The proportion of amorphous and crystalline material, along
with the arrangement and orientation of the crystals, is collectively known as the
morphology. The crystal morphology strongly influences strength, toughness,
permeability, surface texture, transparency and almost any other property of prac-
tical interest. Furthermore, polymer crystallisation is radically influenced by the
types of flow that are ubiquitous in polymer processing. Such flows drastically
enhance the rate at which polymers crystallise and have a profound effect on their
morphology. Flow distorts the configuration of polymer chains and, it is believed,
this distortion breaks down the kinetic barriers to crystallisation and directs the
resulting morphology. However, the molecular mechanisms underlying these
processes have yet to be established. As a result, there is no predictive molecular
model of flow-induced crystallisation (FIC). The impact of such a model on the
polymer industry would be considerable since it would allow control over the
crystalline properties of polymer products by simply tailoring their processing
conditions.

It has long been known that flow can radically enhance the rate of polymer nucle-
ation and can cause the formation of highly aligned, elongated crystals, known as
shish-kebabs.1 There have been numerous recent experimental studies, focusing
mainly on entangled polymers. These have quantified the effect of flow on nucle-
ation,2 have illuminated details of shish-kebab formation3–5 and have highlighted
the role of blend concentration,6 molecular architecture7 and molecular relaxation
aSchool of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
E-mail: richard.graham@nottingham.ac.uk
bSchool of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK. E-mail:
p.d.olmsted@leeds.ac.uk

This journal is ª The Royal Society of Chemistry 2010 Faraday Discuss., 2010, 144, 71–92 | 71

https://doi.org/10.1039/b901606f


O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
A

ug
us

t 2
00

9.
 D

ow
nl

oa
de

d 
on

 1
/1

5/
20

25
 1

2:
59

:3
4 

PM
. 

View Article Online
time.8 Almost all of these experiments have been performed at low undercooling,
where crystallisation in the absence of flow is too slow to be measured, as often
the most pronounced flow-induced effects are seen in this temperature regime.

Existing theoretical approaches for FIC fall broadly into two extremes of coarse-
graining, highly simplified semi-empirical models9–13 and detailed simulations at the
level of molecular dynamics14,15 or simulations with slightly higher coarse-grain-
ing.16–19 Simplified coarse-grained models follow a semi-empirical approach,9–13 con-
taining some molecular elements but also requiring ad hoc arguments to describe
experimental phenomena. Such approaches also require numerous pre-averaging
or closure approximations, which neglect the delicate coupling between the under-
lying stochastic processes. Finally, these models invariably use oversimplified flow
models that cannot predict the full range of molecular deformation in a melt. The
accuracy of the constitutive model is tacitly assumed to be ensured by simple param-
eter fitting to rheological measurements. However, this approach cannot accurately
model the melt’s high molecular weight tail, which is known to dominate the FIC
behaviour.6–8 At the opposite extreme of coarse-graining, molecular dynamics
(MD) simulations14,15 provide a more rigorous approach to crystallisation. While
these MD simulations have provided much useful information on the growth phase,
they can only access a limited range of timescales and so are not well-suited to model
nucleation. Faster alternatives, with higher coarse-graining, include kinetic Monte
Carlo16–18 and Langevin dynamics simulations.19 Nevertheless, these simulations still
have difficulty modelling primary nucleation, forcing them to focus on high degrees
of undercooling. In contrast, recent experiments show that insight into low under-
cooling is essential to both a fundamental and practical understanding of
FIC,3,5,7,8 as the most pronounced flow-induced effects occur at these temperatures.
Finally, the algorithms for predicting the effect of flow on the non-crystalline chain
configurations used in these simulations has not been verified against relevant
measurements such as mechanical stresses20 and neutron scattering.21 It appears
that, to progress, an intermediate level of coarse-graining, between semi-empirical
approaches and detailed simulations, is required.

In this paper we develop a coarse-grained simulation algorithm for flow-induced
nucleation in polymers. The algorithm is intended to capture the dominant physical
processes while remaining tractable at all relevant temperatures, including low
undercooling. Simulating nucleation is problematic, especially at low undercooling,
because it is a rare event. Much simulation time can be spent resolving the evolution
of small nuclei, far from the critical size. In contrast to previous Monte Carlo
approaches16–18 we address this issue by using a kinetic Monte Carlo algorithm
with variable step size,22 known in some fields as the Gillespie algorithm.23 Although,
this method has successfully been applied to quiescent crystal growth in dilute poly-
mers,24 its intrinsically adaptive nature is especially suited to nucleation; large time-
steps are automatically taken when the nucleus is small whereas larger nuclei receive
more time resolution. In addition we use a recently derived molecular flow model,25

which has been extensively validated against data from non-crystalline polymer
fluids under strong flow for both mechanical stress20,25–27 and small angle neutron
scattering.21,28–30
2 Simulation algorithm

Our coarse-grained simulation for flow induced crystal nucleation in polymer melts
aims to describe how bulk flow affects nucleation density, nucleus aspect ratio and
nucleus orientation. The algorithm tracks the time evolution of three processes. The
first is stretching and orientation of the amorphous chains due to flow. This is calcu-
lated using the Graham-Likhtman and Milner-McLeish (GLaMM) model.25 The
second part is the attachment and detachment of chain segments to the nucleus,
which were modelled by a kinetic Monte Carlo simulation. The final part is rotation
72 | Faraday Discuss., 2010, 144, 71–92 This journal is ª The Royal Society of Chemistry 2010
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of the crystal nucleus by the bulk flow, and this is tracked by Brownian dynamics
simulation.

The amorphous chain stretching is computed first for the whole simulation time,
through a single deterministic run of the GLaMM model, the results of which are
stored to provide modified kinetics in the subsequent nucleation simulations. The
Monte Carlo simulations and the Brownian dynamics rotation simulations are
then run concurrently, with multiple runs being used to resolve the statistics. The
effect of crystallisation on the amorphous chain dynamics is neglected and, thus,
information from the nucleation process is not fed-back into the model for the amor-
phous chain dynamics. While this may seem to be a crude approximation, experi-
ments on entangled star polymers are beginning to indicate that star arm
relaxation is quite similar to linears under non-linear flow,31,32 justifying somewhat
this assumption for chains participating in a single crystallite. Also essential to the
model derivation is the separation of timescales between the local crystallisation
dynamics s0 and chain dynamics at the entanglement lengthscale se. We denote
this ratio of the flow and crystallisation timescales S ¼ se/s0. Local crystallisation
is taken to be fast compared to the Rouse time of an entanglement segment
(s0 << se). Also, although the flow rate _g is non-linear, it will be small compared
to the entanglement relaxation time ( _gse < 1).
2.1 The GLaMM model

In the GLaMM model a linear chain is divided into Z entanglement segments, each
containing Ne Kuhn steps (‘‘monomers’’) of length b. The GLaMM model computes
the following tube tangent correlation function,

f
�
s; s

0� ¼ �vRðsÞ
vs

vR
�
s
0�

vs
0

�
; (1)

where R(s) is the space-curve describing the tube shape, s ¼ 0.Z is a continuous

variable, labelling tube segments and all lengths are measured in terms of
ffiffiffiffiffiffi
Ne

p
b,

which is the tube diameter. The numerical solution of the GLaMM model provides

f(s,s) for each entanglement segment. This tangent vector correlation f(s,s) is effec-

tively the local end-to-end vector correlation of each tube segment

fz
D

DR
Ds

DR
Ds

E
¼ hrri since r ¼ DR and Ds ¼ 1. By this method the GLaMM model

provides a set of microscopic strains for each subchain through fi, where i labels

the tube segment number, running from 0 to Z (see Fig. 1). Finite chain extensibility

is included by replacing the Gaussian spring force with Cohen’s approximation33 for

the non-linear spring force. We use Ne ¼ 100 throughout this paper.

2.1.1 Segment free energy and orientation. The deformation of the amorphous
chains, contained in f, modifies the nucleation kinetics in two ways: the increase in
monomer free energy upon stretching reduces the entropic penalty for crystallisa-
tion; and monomer alignment modifies the probability of compatible alignment
Fig. 1 The end-to-end vector of a tube segment, which defines the microscopic strain hrri.

This journal is ª The Royal Society of Chemistry 2010 Faraday Discuss., 2010, 144, 71–92 | 73
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with the nucleus. In appendix A we show that the change in elastic free energy, DFel,
and the distribution of monomer orientations, w(q), for a chain subjected to the
ensemble average constraint f ¼ hrri can be accurately approximated by essentially
the expressions for a fixed end-to-end vector with |r| replaced by

ffiffiffiffiffiffiffiffiffi
Tr f
p

,

DF elðfÞ ¼ 1

2
Tr f � 1

2
Tr lnf �Ne ln

 
1� Tr f

Ne

!
� G; (2)

wðqÞ ¼
L�1

� ffiffiffiffiffiffiffiffiffi
Tr f
p

=Ne

�
4psinh

�
L�1

ffiffiffiffiffiffiffiffiffi
Tr f
p

=Ne

�� cosh

 
L�1

 ffiffiffiffiffiffiffiffiffi
Tr f
p

Ne

!
cosq

!
; (3)

where L�1 is the inverse Langevin function, G is a constant chosen such that DFel ¼
0 for an equilibrium coil and q is the angle between the monomer and the principle

axis of f. We use Cohen’s approximation for the inverse Langevin function,33

L�1ðxÞzx
3� x2

1� x2
: (4)

2.2 Description of the nucleus

In our coarse-grained simulations we take the minimal nucleus description required
to model anisotropic nucleation. The nucleus comprises of a collection of crystallised
‘‘monomers’’ (Kuhn steps) arranged in stems. Each stem is formed from a single
chain and the simulation tracks the monomer number of the top and bottom crystal-
lised monomer in each stem (ntop, nbot). This defines the total number of stems Ns

and the total number of monomers NT. We assume the nucleus to be spheroidal
and use NT and Ns to provide the two radii. We take the crystallised Kuhn segments
dimensions to be bl � bw � bw, with the bl length always parallel to the spheroid
polar radius L (see Fig. 2). Thus equatorial radius W is given by

W ¼ bw

1ffiffiffiffi
p
p

ffiffiffiffiffiffi
Ns

p
; (5)

since the cross sectional area about W is pW2 and this area contains Ns stems. The

volume is determined by the total number of monomers

V ¼ bw
2blNT. (6)
Fig. 2 Definition of the spheroid nucleus, along with the dimensions of a single Kuhn segment.

74 | Faraday Discuss., 2010, 144, 71–92 This journal is ª The Royal Society of Chemistry 2010
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The polar radius L is obtained from the total volume (V ¼ 4/3pLW2), leading to

L ¼ 3

4
bl

NT

Ns

: (7)

Later on we will require the crystal aspect ratio r ¼ L/W,

r ¼ ar

NT

N
3=2
s

; (8)

where ar ¼
3
ffiffiffiffi
p
p

4

bl

bw
is a dimensionless prefactor that controls the aspect ratio for

a given Ns and NT. We also simulate the nucleus orientation through v̂, a unit vector

parallel to the nucleus polar radius.

2.2.1 Surface area. The surface area for a spheroid is computed as follows. The
ellipticity 3 for prolate and oblate spheroids in terms of ar is

3prolate ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

a2
r

N3
s

N2
T

s
; 3oblate ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

r

N2
T

N3
s

r
: (9)

For a prolate spheroid the surface area, S is then given by

S ¼ p

�
2W 2 þ 2 LW

3
arcsin 3

�

¼ b2
w

�
2Ns þ 2ar

NTffiffiffiffiffiffi
Ns

p 1

3
arcsin 3

�
;

(10)

and for an oblate spheroid

S ¼p

�
2W 2 þ L2

3
ln

�
1þ 3

1� 3

��

¼ b2
w

�
2Ns þ a2

r

N2
T

N2
s

1

3
ln

�
1þ 3

1� 3

��
:

(11)

2.2.2 Nucleus free energy. As in classical nucleation theory the nucleus free energy
is a balance of the free energy of crystallisation proportional to the nucleus volume
with a free energy penalty proportional to the spheroid surface area, F*

nuc(NT,Ns) ¼
�3*

BV + m*
SS, where 3*

B and m*
S are the dimensional bulk free energy per unit volume

and surface free energies per unit area, respectively. This can be rewritten as

Fnuc(NT,Ns) ¼ �3BNT + mS
~S, (12)

where Fnuc ¼ F�nuc

kBT
, 3B ¼ blb

2
w

kBT
3�B, mS ¼

b2
w

kBT
m�S and S ¼ b2

w
~S. These dimensionless

parameters control the free energy landscape of the nucleation process. For the

remainder of this paper all free energies will be expressed in units of kBT. Note

that, from the definitions above, the free energy is determined by just the number

of stems, total number of monomers and the aspect ratio parameter ar.
2.3 Kinetic Monte Carlo moves

In the kinetic Monte Carlo simulations two types of basic moves are possible, stem
addition and stem lengthening, both of which add a single monomer (see Fig. 3) and
have a corresponding reverse move.

2.3.1 Stem lengthening. Stem lengthening involves attaching a new monomer to
the top or bottom of the crystal and so increasing the length of an existing stem. The
This journal is ª The Royal Society of Chemistry 2010 Faraday Discuss., 2010, 144, 71–92 | 75
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Fig. 3 The basic Monte Carlo moves of stem addition and stem lengthening.
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number of monomers increases, but the number of stems remains fixed. Thus, the
change in free energy upon adding (+) and removing (�) a monomer from an exist-
ing stem is

DF+
length ¼ F(NT + 1,Ns) � F(NT,Ns), (13)
DF�
length ¼ F(NT,Ns) � F(NT � 1,Ns). (14)

The corresponding move rates k are

kþlength ¼
1

s0

min
	

1; exp
�
�DFþ

length

�

; (15)

k-
length ¼

1

s0

min
	

1; exp
�
�DF�

length

�

; (16)

where s0 is the timescale of a basic crystallisation step, which can be thought of as an

activation energy barrier for hopping between crystal states. This timescale is

assumed to be constant, regardless of the shape or size of the nucleus. Each stem

contributes four moves to the total rate sum, addition and removal at both the

top and bottom of the stem. Thus the contribution from stem lengthening, per

stem, to the total sum over rates is

Klength ¼
XNs

i¼1

 	
k
þtop
length



i
þ
	

k
-top
length



i
þ
	

kþbot
length



i
þ
	

k-bot
length



i

!
: (17)

If a stem contains only one monomer then the removal move is counted as stem

removal and so klength
�top and klength

�bot are both set to zero. On a successful length-

ening move the added monomer is always the next monomer along the chain that

forms the stem as the stem ‘‘zips-up’’ the chain. Thus after a lengthening move the

appropriate monomer number at the top or bottom of the stem (ntop or nbot) is in-

cremented up or down.

2.3.2 Stem addition. Stem addition involves attaching a new stem to the side of
the nucleus. Both the number of stems and the number of monomers increase by
one, so the change in free energy is
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DF+
stem ¼ F(NT + 1,Ns + 1) � F(NT,Ns), (18)
DF�
stem ¼ F(NT,Ns) � F(NT � 1,Ns � 1). (19)

Similarly to stem lengthening the basic move rates are

kþstem ¼
1

s0

min
	

1; exp
�
�DFþ

stem

�

; (20)

k�stem ¼
1

s0

min
	

1; exp
�
�DF�

stem

�

; (21)

For quiescent simulations the monomer number of the newly attached monomer can

be chosen randomly from any point along the attached chain.
The rate of stem addition will be proportional to the nucleus surface area available

to attach new stems. As shown in Fig. 4 there will be substantial excluded volume
from the dangling amorphous chains around the nucleus, which prevents stem addi-
tion across much of the nucleus. We assume that stem addition is restricted to a band
around the spheroid equator, thus the area available for stem addition fadd depends
on the equatorial circumference, and is given by

faddðNsÞ ¼ 2a
ffiffiffiffi
p
p ffiffiffiffiffiffi

Ns

p
; (22)

where a is a constant of proportionality. A value of a¼ 0.4 gives spherical nuclei in the

quiescent limit. The stem removal rate is set to obey detailed balance. Therefore only

stems containing a single monomer are candidates for a stem removal move and these

have a basic removal rate, k�stem. This rate is multiplied by a factor of fadd(Ns� 1)/Ns,

which is the probability that the given stem is at the surface of the nucleus.

2.3.3 Effect of flow. As discussed above, flow modifies the crystallisation kinetics
because chain stretching reduces the entropic penalty for crystallisation and chain
orientation changes the probability of compatible alignment between the nucleus
and any attaching monomers. To account for chain stretching, the change in chain
free energy per monomer on stretching is subtracted from the free energy change of
a Monte Carlo move. We deal with orientation with a similar approach to ref. 12.
We assume that, in order to attach to the nucleus, the candidate monomer must
be oriented within a solid tolerance angle U of the nucleus orientation. All
Fig. 4 Available surface area for stem addition.
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monomers outside this angle are unable to attach. If U is small then the fraction of
monomers within this angle is w(q)U, where q is the angle between the nucleus polar
radius and the sub-chain principle strain axis.

Flow causes a linear chain to stretch and align by different amounts at different
points along its contour. Thus, even for a monodisperse melt we must deal
with a distribution of segment types, with varying degrees of stretch. We take
a melt containing S different species, with species i having volume fraction fi. For
a monodisperse polymer of Z entanglements there are Z species, each with concen-
tration fi ¼ 1/Z. The GLaMM model provides f ¼ hrri for each species, from which
we compute the change in elastic free energy DFel

i and the fraction of monomers in
species i that are compatibly aligned with the nucleus Qi, using eqn (2) and (3) for
each species i.

With these modifications the rate of stem attachment for species i becomes

�
kþstem

�
i
¼ 1

s0

fiQi min
�
1; exp

�
�
�
DFþ

stem � DFel
i =Ne

���
; (23)

where DFel
i is the elastic energy of species i, Qi ¼ 4pw(qi) to give agreement with eqn

(20) in the quiescent limit, and a constant of ln(U/4p) has been added to 3B.
Similarly, the rate of removing stem j becomes

�
k�stem

�
j
¼

1

s0

min
	

1; exp
h
�
	

DF-
stem þ DF el

j =Ne


i

; If stem contains 1 monomer

0 Otherwise

8<
:

(24)

where DFel
j is the elastic energy of the monomer species in stem j. Note that there are

no concentration terms for the removal rate.
The rate of lengthening moves at the top of stem j is given by	

k
þtop
length



j
¼ 1

s0

Qjmin
	

1; exp
h
�
	

DFþ
length � DF el

j =Ne


i

; (25)

where DFel
j and Qj are calculated for the species of the next monomer to be added

along the chain at the top of stem k, which is ntop + 1. Note that for stem lengthening

only the next monomer along the chain forming the stem can crystallise. The concen-

tration of this monomer at the nucleus surface where the lengthening event occurs is

taken to be unity, hence the species concentration fj does not appear in eqn (25). The

effective concentration due to relative alignment between the crystal and the chain is

included since correct alignment with of the monomer still required. The lengthening

rate from the bottom of the stem is calculated similarly. The removal rate from the

top of stem j is given by

	
k
�top
length



j
¼

0 If stem contains 1 monomer

1

s0

min
	

1; exp
h
�
	

DF�
length þ DF el

j =Ne


i

Otherwise

8<
:

(26)

where DFel is calculated for the monomer at the top of stem j. Note that, as before,

the concentrations, fj and Qj play no part in the detachment moves. Also, if the stem

has only one remaining monomer then the move becomes a stem removal move and

is accounted for in eqn (24). The removal rate from the bottom of the stem is calcu-

lated similarly.

2.3.4 Sum over all move rates. The variable time step kinetic Monte Carlo algo-
rithm requires a sum over all possible moves.22,23 This sum can be written as
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KTotal ¼ faddðNsÞ
XS

i¼1

kþstemÞ
�

i
þ faddðNs � 1Þ

Ns

XNs

j¼1

k�stemÞ
�

j

þ
XNs

j¼1

 	
k
þtop
length



j
þ
	

k
�top
length



j
þ
	

kþbot
length



j
þ
	

k�length



j

!
: (27)

The first term is a sum over all species and corresponds to stem addition; the second

is a sum over all stems and accounts for stem removal; the final sum is over all stems

and accounts for lengthening and shortening of each stem.
2.4 Kinetic Monte Carlo time-stepping

With the sum over all possible moves KTotal computed from eqn (27), a kinetic
Monte Carlo timestep can be taken. A single move is performed at random, with
the probability of each move being picked being weighted by its rate. That is, the
probability of move i is,

Pi ¼
ki

KTotal

: (28)

If the move is a stem attachment move, the species and entanglement segment

number are known, but the exact monomer to be attached is not and the attached

monomer is chosen randomly and uniformly from all monomers in the given entan-

glement segment. Finally, time is incremented by a stochastically determined interval

given by

Dt ¼ � lnz

KTotal

; (29)

where z is chosen uniformly on 0, 1.23 As time proceeds the amorphous chain config-

uration changes, as pre-calculated by the GLaMM model. For a timestep of Dt, the

GLaMM configuration is incremented forward an interval of Dt/S. Then the values

of DFi
el and Qi are updated, and the change in free energy of the moves recalculated.

2.4.1 Dummy Monte Carlo move. For particularly small nuclei with high energy
barriers the sum over possible moves can be very small. In this case the chain defor-
mation may be evolving faster than the Monte Carlo time step and so will need to be
updated more frequently. Although kinetic Monte Carlo algorithms are available
for time-dependent barriers22 we use a simple solution at this stage. We allow
a dummy Monte Carlo move with rate k0. If this dummy move is selected the crystal
configuration is not changed, but time is still incremented and then the tube config-
uration can be updated. We choose k0 to be similar to the rate at which the tube
configuration evolves, namely 1/se, to ensure that the tube configuration is updated
sufficiently often. For large enough k0 the simulation results are independent of k0

and all results presented herein are converged with respect to increases in k0.
2.5 Brownian dynamics rotation algorithm

After the kinetic Monte Carlo timestep, the rotational dynamics of the nucleus under
flow are iterated over Dt, using a Brownian dynamics algorithm.

2.5.1 Convection term. The rotation rate of a dilute rigid spheroid in a Newtonian
liquid is given by Leal and Hinch34 using the Jeffery algorithm.35 A volume
conserving deformation, with a velocity gradient tensor k, can be split into
a symmetric and antisymmetric part
This journal is ª The Royal Society of Chemistry 2010 Faraday Discuss., 2010, 144, 71–92 | 79
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k ¼ E + U, ET ¼ E, UT ¼ �U. (30)

The bulk flow causes v̂, a unit vector parallel to the nucleus polar radius, to evolve
according to

dv̂

dt
¼ U,v̂þ G

�
E,v̂� v̂

�
v̂,E,v̂

��
; (31)

where G is the shape factor. For a spheroid of aspect ratio r this is given by

G ¼ r2 � 1

r2 þ 1
: (32)

Thus for a timestep Dt the convection term is computed first from

v̂ðtþ DtÞ ¼ v̂þ Dt dv̂
dt
ðtÞ.

2.5.2 Brownian rotation step. For the Brownian diffusion step, an axis of rota-
tion is chosen by generating a random unit vector, û. Then a random angle f is
generated from a Gaussian distribution with the following moments,

hfi ¼ 0

f2
�
¼ 6Dt

srot

; (33)

where srot is the crystal rotation relaxation time, related to the rotational diffusion

constant by Drot ¼ 1/srot. The crystal vector is then rotated through an angle f

around the axis û, using the rotation formula

v̂(t + Dt) ¼ v̂cosf + û(û$v̂)(1 � cosf) + (v̂ � û)sinf. (34)

The rotation relaxation time will increase with both the size and the aspect ratio of
the spheroid. Leal and Hinch36 use a result from the Jeffery algorithm,35

Drot ¼
kBT

4hsVHðrÞ; (35)

where hs is the solvent viscosity, V is the spheroid volume, r is the spheroid aspect

ratio and

HðrÞ ¼ r2 þ 1

r3

ðN
0

1

ðr2 þ lÞ3=2ð1þ lÞ
dlþ r

ðN
0

1

ðr2 þ lÞ1=2ð1þ lÞ2
dl

: (36)

The integrals in eqn (36) can both be performed analytically for the two cases r > 1

and 0 < r < 1. Defining srot¼ 1/Drot and using our expression for the nucleus volume

(eqn (6)) we obtain

srot ¼
4hsb

2
wbl

kBT
NTHðrÞ: (37)

There is some uncertainty in the pre-factor in this expression when used in our

modelling since the solvent is non-Newtonian, the nucleus is not a perfect spheroid

and the dangling amorphous chains attached to the nucleus will contribute some

drag. Therefore we replace this pre-factor with an unknown dimensionless param-

eter a, such that

srot ¼ as0NTH(r), (38)
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which maintains Jeffery’s scaling of the rotational diffusion with volume and aspect
ratio and ensures srot � s0 when NT ¼ 1.

3 Results

In our kinetic MC simulations we follow a single nucleus beginning with a single
monomer. The algorithm is especially effective at simulating nucleation at low
undercooling since for small nuclei the sum of rates is small, meaning that large
time steps are automatically taken.

3.1 Quiescent results

The simulated quiescent nucleation time can be accurately described by an analytical
calculation of the free energy landscape. Without flow the amorphous chains of all
species have the same equilibrium configuration and therefore the same move rates.
In effect a single species of concentration f ¼ 1 is available to attach to the nucleus.
This simplification allows the nucleus free energy to be calculated by the following
method. The crystal nucleus is defined by the number of stems, Ns, and the total
number of monomers, NT, in the crystal. For each NT and Ns, there will be several
ways of distributing the NT monomers amongst the Ns strands, subject to the
constraint that each stem must contain at least one monomer. Thus after one mono-
mer has been placed in each stem, the number of ways of distributing the remaining
NT � Ns monomers is,

uðNT ;NsÞ ¼
ðNT � 1Þ!

ðNT �NsÞ!ðNs � 1Þ!: (39)

Thus the free energy of all possible nuclei with NT monomers and Ns stems is given by

f(NT,Ns) ¼ F(NT,Ns) � ln(u(NT,Ns)). In principle, this can be used in a two-dimen-

sional diffusion calculation of the first passage of time for a particle over this two-

dimensional barrier. However, below we will show that the simulated nucleation times

can be accurately approximated by projecting this landscape onto one degree of

freedom, the total number of monomers NT. The partition function ZN for a nucleus

of NT monomers is obtained by summing over all possible strand numbers,

ZN ¼
XNs

n¼1

uðNT; nÞexpð �FnucðNT; nÞÞ; (40)

where Fnuc(NT,Ns) is given by eqn (12). The total free energy Df for a nucleus of NT

monomers is

Df(NT) ¼ � ln ZN + ln Z1, (41)

where the free energy is set to zero for a crystal of one monomer. This free energy can
also be extracted from a single long simulation by logging the fractional amount of
time spent with each number of total monomers. The fraction of time spent with NT

monomers tNT/ttotal is proportional to the Boltzmann factor of Df,

tNT

ttotal

¼ Aexpð�Df ðNTÞÞ; (42)

from which Df(NT) can be obtained. The constant A is set so that Df(1) ¼ 0. Fig. 5

shows the agreement between the calculated and simulated free energies and illus-

trates how the critical nucleus size n* and the nucleation barrier Df* can be extracted

from these calculations. In these simulations, moves that grow the nucleus beyond

some maximum number of monomers Nmax > n* are prevented to allow good reso-

lution of the landscape around n*.
This journal is ª The Royal Society of Chemistry 2010 Faraday Discuss., 2010, 144, 71–92 | 81
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Fig. 5 Comparison of calculated and simulated quiescent free energy landscape for two sets of
parameters. 3B ¼ 0.3 in both cases and mS ¼ 0.25, 0.22 for a and b, respectively.

Fig. 6 Quiescent nucleation rate against nucleation barrier.
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A series of simulations provides the nucleation time sN, which is taken as the first
time the polar and equatorial radii simultaneously exceed the critical radius

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3n�=4p3

p
. The average simulated nucleation time is well described by the Boltz-

mann factor of the nucleation barrier, hsNi ¼ s0exp(Df*), over a wide range of free
energy parameters, as shown in Fig. 6. Fig. 6 also illustrates the efficiency of the algo-
rithm at simulating nucleation even for very large nucleation barriers. We obtained
good statistics for nucleation over a barrier of�25kBT in�50 h on a single processor,
giving a nucleation time of�1011s0. Finally, the distribution of nucleation times is Pois-

sonian, meaning that a well-defined quiescent nucleation rate is given by _N0 ¼ 1/hsNi.

3.2 Flow results

3.2.1 Enhanced nucleation. We examine first shear that is slow compared to the
nucleus angular relaxation time. By setting a sufficiently small that _gsn*

rot� 1, where
sn*

rot ¼ an*H(1)s0 is the angular relaxation time of a critical nucleus, no significant
nucleus alignment occurs before the nucleus reaches the critical size and so align-
ment effects make no contribution to the nucleation time. We simulate the effect
of steady shear by holding the amorphous chains fixed at the steady state GLaMM
model predictions for a given shear rate throughout the whole simulation and
82 | Faraday Discuss., 2010, 144, 71–92 This journal is ª The Royal Society of Chemistry 2010
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Fig. 7 (a) The steady shear nucleation time against shear rate for a range of chain lengths (Z)
and free energy parameters: 3B ¼ 1.9 (solid symbols) 3B ¼ 1.7 (striped symbols) 3B ¼ 1.5 (open
symbols). (b) A closer view of the 3B ¼ 1.7 data, showing the double exponential behaviour. In
both cases the lines are from fitting eqn (43).
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simulating the average nucleation time. Fig. 7(a) shows the average nucleation time
against shear rate for a range of free energy parameters, with the surface energy fixed
at mS ¼ 1.9 and the bulk free energy varied to simulate the effect of varying under-
cooling. Values of 3B ¼ 1.9, 1.7 and 1.5 were used, leading to nucleation barriers of
Df* ¼ 11.1, 13.9 and 18.0, respectively. The results as plotted are independent of the
separation of shear and crystallisation timescale S. Fig. 7(b) shows the Df* ¼ 13.9
data on a shorter y-axis, which shows the double exponential behaviour of the nucle-
ation time. All of the data in Fig. 7 have this double exponential shape and can be
fitted by the following semi-empirical expression

sN

s0

¼ Fz exp

�
� _gsd

W
�
d

�
þ ð1� FzÞexp

�
� _gsR

W
�
R

�
: (43)

The fitting parameters W*
d and W*

R are characteristic Weissenberg numbers with

respect to the chain reptation and Rouse times, respectively, which define the Weis-

senberg numbers for the onset of enhanced nucleation due to tube orientation and

chain stretch, respectively. The two exponentials correspond to the effect of tube

orientation and chain stretching on the nucleation time. The former is controlled

by the chain reptation time sd, which was calculated using the Likhtman and McLe-

ish model,37 and the latter is the chain Rouse time sR ¼ Z2se. The balance of these

two contributions is controlled by FZ, which is the fractional reduction in the nucle-

ation time due to orientation. FZ is also fitted to the simulation data. Tables 1 and 2

contain the parameters obtained by fitting the data in Fig. 7. The Weissenberg

numbers depend only on Df* and not Z, indicating that the contributions from

tube orientation and chain stretching scale with Z in the same way as the appropriate

relaxation time. Table 1 shows that, while the reptation Weissenberg number has

a weak dependence of Df*, the Rouse Weissenberg number reduces significantly as

Df* rises, indicating that the nucleation becomes more sensitive to chain stretching

as the degree of undercooling is reduced. Table 2 shows that FZ depends weakly

on both Df*, increasing slightly with both increasing Z and Df*.
Table 1 Weissenberg numbers used to fit the steady state nucleation results

Df W*
d W*

R

11.1 6.7 41.5

13.9 6.9 31.1

18.0 8.0 23.3
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Table 2 Values of FZ obtained by fitting to the steady state nucleation data. FZ is the frac-

tional reduction of the nucleation time due to tube alignment for a range of degrees of under-

cooling and molecular weights

Z FZ[Df* ¼ 11.1] FZ[Df* ¼ 13.9] FZ[Df* ¼ 18.0]

10 0.055 0.08 0.08

25 0.09 0.12 0.15

50 0.105 0.13 0.15

Fig. 8 Steady state nucleation time with and without the effect of nucleus rotation, S ¼ 10 in
both cases.
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Fig. 8 shows the effect of nucleus rotation on the nucleation time. The data for
Df ¼ 11.1 with a ¼ 0 is compared with data where a ¼ 110. For the larger value
of a the critical nucleus Weissenberg number exceeds 1 for shear rates _gse > 0.03,
as shown in Fig. 8. Beyond this shear rate the a¼ 110 data show a progressive depar-
ture from the a ¼ 0 data as nucleus alignment now occurs below the critical nucleus
size and so contributes to accelerating the nucleation. When nucleus rotation is
included the decay of the nucleation time with shear rate is faster than exponential.

The simulations can also compute the nucleation time during a transient flow, by
updating the chain configuration during the simulations as detailed in section 2.4. A
nucleation rate _N can be obtained from these data via

_NðtÞz 1

1� nðtÞ
nðtþ DtÞ � nðt� DtÞ

2Dt
; (44)

where n(t) is the cumulative fraction of successful nucleation events at time t. Fig. 9

shows this transient nucleation rate for a 25 entanglement monodisperse linear melt

under start-up shear at _gse¼ 0.1, both with and without nucleus rotation. The nucle-

ation rate rises from the quiescent value up to a maximum occurring at around the
84 | Faraday Discuss., 2010, 144, 71–92 This journal is ª The Royal Society of Chemistry 2010
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Fig. 9 Transient nucleation rate for a 25 entanglement monodisperse linear melt with 3B ¼ 1.9
and mS ¼ 1.9 under start-up shear at _gse ¼ 0:1; S ¼ 3 for both curves.
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same time as the overshoot in the shear stress, indicating the strong correlation

between nucleation rate and chain configuration. When nucleus alignment is

included (a ¼ 5.0), the overshoot in the nucleation rate is increased as monomer

alignment also makes a substantial contribution at this high shear rate. In both cases

the transient maximum nucleation rate is a factor of�10 higher than the steady state

value.

3.2.2 Shish nuclei. Our model predicts strongly anisotropic growth under certain
conditions. In our simulations shish-like nuclei are especially prevalent in melts of
short chains blended with a small amount of very long chains, a system widely
used in experiments to enhance shish formation.4–8 We simulated a melt of
Fig. 10 Nucleus aspect ratio at the point of nucleation against shear rate for a 2% high molec-
ular weight blend, with a ¼ 5.0 and 3B ¼ 3.0 mS ¼ 2.5 and a fixed shear time of 120se.

This journal is ª The Royal Society of Chemistry 2010 Faraday Discuss., 2010, 144, 71–92 | 85

https://doi.org/10.1039/b901606f


O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
A

ug
us

t 2
00

9.
 D

ow
nl

oa
de

d 
on

 1
/1

5/
20

25
 1

2:
59

:3
4 

PM
. 

View Article Online
15 entanglement chains blended with 2wt% of 52 entanglement chains, with the flow
predictions provided by a recent generalisation of the GLaMM model to bimodal
blends.30 A surface energy of mS ¼ 2.5 was used as we found that rare nucleation
enhances the anisotropy. Fig. 10 shows the average nucleus aspect ratio (L/W) at the
point of nucleation, against shear rate. High shear rates produce very elongated nuclei,
due to a purely kinetic mechanism where the shish length grows faster than the width.
The shish widen by adding new stems for which any monomer from the melt can attach.
In contrast, the shish length increases by adding monomers along an existing stem.
Therefore the concentration of monomers from stretched segments at the growth
surface is greater for lengthening than for widening, provided the nucleus contains
a disproportionate number of stretched segments. Fast flow conditions are required
for this disparity to overcome the significant surface area cost of elongated nuclei.
4 Conclusions

We present an efficient kinetic Monte Carlo algorithm suitable for modelling poly-
mer nucleation even at low undercooling. The configuration of the non-crystalline
chains under flow is computed using the deterministic GLaMM model, the nucle-
ation is modelled by a kinetic Monte Carlo algorithm and the nucleus rotation is fol-
lowed by a Brownian dynamics simulation. Flow modifies the basic Monte Carlo
move rates in two ways: the entropic penalty for crystallisation is reduced by the
flow induced change in chain free energy and the probability of compatible align-
ment between the nucleus and an attaching monomer is modified by flow induced
molecular alignment.

The model confirms that the changes in chain free energy produced by non-linear
flow are sufficiently large to produce a drastic enhancement of the nucleation rate.
Our simulations of steady shear show that the reduction in nucleation time can be
separated into two contributions; from tube orientation and chain stretching, with
chain stretching being the dominant effect. The characteristic shear rate for the onset
of these two processes have the same scaling with molecular weight as the appro-
priate relaxation times from the tube model. Furthermore, the free energy changes
are also sufficient to induce a purely kinetic mechanisms of shish growth, in which
the lengthening of existing stems is sufficiently faster than the rate of attachment
of new stems to produce highly elongated nuclei, despite the high surface energy
cost of this morphology.

While the model has many of the qualitative features of experiments on FIC,
a direct quantitative comparison is not possible since virtually all literature measure-
ments are on polydisperse materials and many of the features seen in the simulations
will be smoothed out by this polydispersity. Generalising the crystallisation
algorithm to polydisperse systems is straightforward as a range of effective species,
with separate degrees of stretching, is already required for monodisperse melts.
The limiting factor is in flow modelling of polydisperse melts. There is currently
no sufficiently detailed model for non-linear flows of polydisperse melts at the level
of the GLaMM model, although this is an area of intensive work and such models
are nascent. This step would make possible an extensive comparison with literature
data, allow the effect of molecular weight distribution on FIC to be modelled and
would lead to a model of FIC suitable for industrial polymer resins.

A Constrained average

The flow-induced deformation of the non-crystalline chains modified the kinetic
Monte Carlo moves through both the increase in monomer free energy upon stretch-
ing and changes in the monomer orientation. To calculate the change in elastic free
energy, DFel, for a chain subjected to the ensemble average constraint f ¼ hrri,
Olmsted and Milner introduced a field conjugate to f to the Gaussian chain partition
function and made a Legendre transform.38 Although this calculation is not possible
86 | Faraday Discuss., 2010, 144, 71–92 This journal is ª The Royal Society of Chemistry 2010
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analytically for finitely extensible chains, we expect DF elðhrriÞ to converge towards
DFel(r2) at large stretching since fluctuations are suppressed in highly stretched chains
by the steep gradients in the free energy. Thus we expect an expression that crosses
over from the Olmsted and Milner result for small Tr f to Cohen’s33 approximation
with r2 ¼ Tr f at high stretching, to describe the free energy’s dependence on f,

DF el ¼ 1

2
Tr f � 1

2
Tr lnf �Ne ln

�
1� Tr f

Ne

�
þ G; (45)

where G is a constant chosen such that DFel ¼ 0 for an equilibrium coil f ¼ 1/3I. We

refer to this expression as the modified Cohen formula. We expect a similar result to

hold for the monomer orientation.

A.1 Numerical free energy change. To test this idea we perform the required
Legendre transform numerically and compare the results to eqn (45). We show that
the result holds for a uniaxial deformation and then assume that it will also be true
for biaxial deformations such as shear. Introducing the tensorial field P conjugate
to the end-to-end vector r into the finitely extensible chain partition function gives

Z½P� ¼
ð

Pðr;NeÞ expðr:P:rÞdr; (46)

where P(r, Ne) is the probability of end-to-end vector r for a finitely extensible chain

of Ne steps. From here the chain free energy can be defined

F½P� ¼ �lnZ½P�: (47)

Differentiating eqn (47) and using eqn (46) leads to

vF

vPij

¼Wij ; (48)

where Wij ¼ �hrirji. Thus P and W are a conjugate pair and the free energy can be

expressed as a function of W by a Legendre transform. The transformed free energy,

Fel, can be written as

F el½W� ¼ F½PðWÞ� �P : W: (49)

We will perform this transform numerically for a uniaxial deformation, which W
is diagonal and Wyy ¼Wzz. The final part implies that Pyy ¼Pzz so we must numer-
ically find the solution of the following coupled system of non-linear equations

Wxx ¼
vF

vPxx

�
Pxx;Pyy;Pyy

�
; (50)

Wyy ¼
vF

vPyy

�
Pxx;Pyy;Pyy

�
; (51)

to obtain Pxx and Pyy from a given Wxx and Wyy. We first seek an expression for Z.

Switching the integral in eqn (47) into spherical polar co-ordinates, with the axis in

the x-direction gives

Z½P� ¼
ðffiffiffiffiNe
p

0

r 2Pðr;NeÞ
ðp
0

ð2p

0

�exp
�
r2
�
Pxx cos2qþPyysin2

q cos2fþPzz sin2
q cos2f

��
sinqdfdqdr;

(52)
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Using Pyy ¼ Pzz significantly simplifies the exponential and allows the integral over

f to be performed

Z½P� ¼ 2p

ðffiffiffiffiNe

p

0

r 2Pðr;NeÞ
ð1
�1

exp
�
r 2
�
Pxxu 2 þPyy

�
1� u 2

���
dudr; (53)

where the substitution u ¼ cosq has been made. The inner integral can now be per-

formed.

Z½P� ¼ 2p 3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pxx �Pyy

p ðffiffiffiffiNe
p

0

rPðr;NeÞePyyr2

Erfi
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pxx �Pyy

p
r
�
dr; (54)

which uses the imaginary error function ErfiðxÞ ¼ 2expðx2ÞDðxÞ=
ffiffiffiffi
p
p

, where D(x) is

Dawson’s integral.39 This leaves a one dimensional integral over r which can be eval-

uated numerically. Differentiation of eqn (54) leads to

vZ
vPxx

¼ � Z

2
�
Pxx �Pyy

�þ 2p

Pxx �Pyy

ðffiffiffiffiNe

p

0

r2Pðr;NeÞePxxr2

dr; (55)

which can be evaluated numerically, to give Wxx since

Wxx ¼
1

Z

vZ
vPxx

: (56)

The differentiation required to produce Wyy (eqn (51)) must be performed before the

Pxx ¼ Pyy result is used. Therefore differentiating eqn (52) gives

vZ
vPyy

¼
ðffiffiffiffiNe

p

0

r4P ðr;NeÞ
ðp
0

ð2p

0

sin2
q cos2f

�exp
�
r2
�
Pxx cos2qþPyy sin2

q cos2fþPzz sin2
q cos2f

��
sinq dfdqdr:

(57)

Similarly to above, using Pyy ¼Pzz, performing the integral over f and substituting

u ¼ cos q gives

vZ
vPyy

¼ p

ðffiffiffiffiNe

p

0

r4Pðr;NeÞ
ð1
�1

ð1� u2
�

exp
�
r2
�
Pxxu 2 þPyy

�
1� u 2

���
dudr: (58)

Again, despite appearances, the integral over u can be performed to give

vZ
vPyy

¼ p

2
�
Pxx �Pyy

�2

ðffiffiffiffiNe

p

0

Pðr;NeÞr
h
� 2r

�
Pxx �Pyy

�
ePxxr

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pxx �Pyy

p
e P yy r

ffiffiffiffi
p
p �

1þ 2
�
Pxx �Pyy

�
r 2
�
Erfi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pxx �Pyy

p
r
�i

dr:

(59)

In order to evaluate the integrals for Z and vZ/vPxx and vZ/vPyy we require

the probability distribution for a finitely extensible chain P(r, Ne). Ref. 40 gives

this as
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Pðr;NeÞ ¼ A exp �
ffiffiffiffiffiffi
Ne

p
rL�1

 
rffiffiffiffiffiffi
Ne

p
!" # sinhL�1

 
rffiffiffiffiffiffi
Ne

p
!

L�1

 
rffiffiffiffiffiffi
Ne

p
!

0
BBBB@

1
CCCCA

Ne

; (60)

where we use Cohen’s approximation to the inverse Langevin function L�1 (eqn (4))

and A is a normalisation constant whose value is not needed since it merely adds

a constant to the free energy. To perform the Legendre transform, eqn (50) and

(51) are solved numerically using Broyden’s method41 with numerical evaluations

of eqn (54), (55) and (59). This provides Pxx and Pyy corresponding to a prescribed

hr2
xi and hr2

yi pair, which can then be used to calculate Fel with eqn (49). The numer-

ical results shown in Fig. 11 were generated by incrementally increasing hr2
xi, using

the previous value of Pxx and Pyy to provide a good initial guess for the subsequent

calculation. Our results depend only on hr2i not the individual values of hr2
xi and

hr2
yi.

A.2 Monomer orientation. Similarly, we expect that the distribution of monomer
orientations, w(q), can be approximated by modifying the expression for w(q)12 with
a direct constraint on r. That is, we expect to accurately approximate the monomer
orientation distribution for a chain with a constrained average end-to-end vector, f
by

wðqÞ ¼ L�1ð
ffiffiffiffiffiffiffiffiffi
Tr f
p

=NeÞ
4p sinh

�
L�1

ffiffiffiffiffiffiffiffiffi
Tr f
p

=Ne

�� cosh

 
L�1

 ffiffiffiffiffiffiffiffiffi
Tr f
p

Ne

!
cosq

!
; (61)

where L�1 is the inverse Langevin function and q is the angle with the principle axis

of f. To check this we numerically calculate the true values of w(q) by extending the

methods above and compare this to eqn (61). We begin by constraining the partition

function so that one of the monomers uj has vector w (with |w| ¼ 1|)
Fig. 11 Comparison between numerical computations of the free energy of a uniaxially
deformed finitely extensible chain of constrained average end-to-end vector, with Ne ¼ 100,
and the modified Cohen formula (eqn (45)). Also shown is the exact result for Gaussian
chains.38

This journal is ª The Royal Society of Chemistry 2010 Faraday Discuss., 2010, 144, 71–92 | 89

https://doi.org/10.1039/b901606f


O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
A

ug
us

t 2
00

9.
 D

ow
nl

oa
de

d 
on

 1
/1

5/
20

25
 1

2:
59

:3
4 

PM
. 

View Article Online
Z½P;w� ¼
ð ð

d
�
uj � w

�
W0

�
uj

�
Pðr� w;Ne � 1Þ expðr:P:rÞdrduj ; (62)

where W0(u)¼ d(|u| � 1)/4p is the probability distribution of a freely rotating mono-

mer.38 Carrying out the integral over uj and substituting r0 ¼ r � w gives

Z½P;w� ¼ 1

4p

ð
Pðjr0j;Ne � 1Þ expððr0 þ wÞ:P:ðr0 þ wÞÞdr0: (63)

We switch to spherical polar co-ordinates along the x-axis. However, because of the

uniaxial symmetry of P we can choose the azimuthal angle f so that fw ¼ 0. In this

co-ordinate system wy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wx

p
and

ðr0 þ wÞ:P:ðr0 þ wÞ ¼ r
0 2
�
Pxx cos 2qþPyy sin2

q
�
þ w 2

x Pxx þ
�
1� w 2

x

�
Pyy

þ2r0
�
Pxxwx cosqþPyy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wx

p
sinq cosf

�
:

(64)

Substituting in eqn (64) gives

Z½P;w�¼ 1

4p
exp
�
w2

xPxx þ
�
1� w2

x

�
Pyy

�
ðNe�1ffiffiffiffi
Ne
p

0

r
02Pðr0;Ne � 1Þ

ðp
0

exp
�
r0 2
�
Pxx cos2qþPyy sin2

q
�
þ 2r0Pxxwx cosq

�

ð2p

0

exp
�
2r0Pyy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wx

p
sinq cosf

�
df sinqdqdr

0
:

(65)

Carrying out the integral over f and substituting u ¼ cosq gives

Z½P;w� ¼ 1

2
exp
�
w2

x Pxx þ
�
1� w2

x

�
Pyy

� ð
Ne�1ffiffiffiffi

Ne
p

0

r
0 2Pðr0;Ne � 1Þ

ð1
�1

exp
�
r
0 2
�
Pxxu 2 þPyy

�
1� u 2

��
þ 2r0Pxxwxu

�

�I0

�
2r0Pyy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

x

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u 2
p �

dudr0;

(66)

where I0 is the modified Bessel function of the first kind.39 The probability of a mono-

mer making an angle q with the x-axis is given by

wðqÞ ¼ 2p

Z½P� Z½P;wx ¼ cosðqÞ�; (67)

where the factor of 2p arises by integrating eqn (66) over all possible azimuthal

angles of wx. For a given hr2
xi and hr2

yi pair, the corresponding Pxx and Pyy are

already known from the Legendre transform and this allows eqn (66) to be evaluated

by numerical computation of the remaining double integral, leading to w(q). Eqn

(61) agrees closely with numerical evaluations, as expected.
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