Issue 14, 2017

In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden–Popper phase with exsolved Fe nanoparticles as an anode for SOFCs

Abstract

A highly stable electrode material of Ruddlesden–Popper structure, La1.2Sr0.8Mn0.4Fe0.6O4 (RPLSMF), is prepared from La0.6Sr0.4Mn0.2Fe0.8O3 (LSMF) perovskite by in situ annealing in flowing H2 at the operation temperature of solid oxide fuel cells. The crystallinity, morphology, and oxidation states of each element and electrochemical properties of RPLSMF are characterized. Doping Mn into the B-site of RPLSMF improves the phase stability of the structure in H2 to prevent formation of La2O3. The XPS results also suggest that improved phase stability promotes formation of Fe2+/3+ pairs that facilitate fuel oxidation by redox coupling. Additionally, during phase transition to RPLSMF, metallic Fe nanoparticles form, which enlarge H2 chemisorption and oxidation sites. Consequently, RPLSMF exhibits outstanding and stable electrochemical activity with a maximum power density of 0.72 W cm−2 at 1073 K when used as an anode material in LSGM electrolyte-supported cells. As the phase transition between the RPLSMF and LSMF is reversible under a redox environment, RPLSMF/GDC is applied as an electrode in the symmetrical cell of RPLSMF-GDC/LSGM/LSMF-GDC. It exhibits a substantial power density of 0.64 W cm−2 with a total polarization resistance of 0.51 Ω cm2.

Graphical abstract: In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden–Popper phase with exsolved Fe nanoparticles as an anode for SOFCs

Supplementary files

Article information

Article type
Paper
Submitted
09 Nov 2016
Accepted
12 Feb 2017
First published
28 Feb 2017

J. Mater. Chem. A, 2017,5, 6437-6446

In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden–Popper phase with exsolved Fe nanoparticles as an anode for SOFCs

Y. S. Chung, T. Kim, T. H. Shin, H. Yoon, S. Park, N. M. Sammes, W. B. Kim and J. S. Chung, J. Mater. Chem. A, 2017, 5, 6437 DOI: 10.1039/C6TA09692A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements