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The increasing interest in Support Vector Machines (SVMs) over the past 15 years is described.
Methods are illustrated using simulated case studies, and 4 experimental case studies, namely mass
spectrometry for studying pollution, near infrared analysis of food, thermal analysis of polymers and
UV/visible spectroscopy of polyaromatic hydrocarbons. The basis of SVMs as two-class classifiers is
shown with extensive visualisation, including learning machines, kernels and penalty functions. The
influence of the penalty error and radial basis function radius on the model is illustrated. Multiclass
implementations including one vs. all, one vs. one, fuzzy rules and Directed Acyclic Graph (DAG)
trees are described. One-class Support Vector Domain Description (SVDD) is described and
contrasted to conventional two- or multi-class classifiers. The use of Support Vector Regression
(SVR) is illustrated including its application to multivariate calibration, and why it is useful

when there are outliers and non-linearities.

1 Introduction

SVMs (Support Vector Machines) were originally proposed by
Cortes and Vapnik! and have become increasingly popular after
their introduction in the late 1990s, particularly within the
Machine Learning community.> After their introduction, SVM
applications have been successfully developed in several areas,
including bioinformatics,” which is probably the most rapidly
growing discipline in terms of new methodologies due to the
recent explosion of data volumes, econometrics® and biometrics.®
More recently, SVMs have been proposed for the analysis of
chemical data'® and have attracted the attention of the chemo-
metrics community, both as a classification technique, and also
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because their use has been successfully extended to solve cali-
bration problems. There is an increasing number of articles
focussing on the comparison of SVMs with more traditional
chemometrics approaches.'’”*® Most applications of SVMs are
applied to datasets with relatively small numbers of variables to
those typically obtained in analytical chemistry; however, there is
no inherent reason why they cannot be extended to highly
multivariable datasets, often, however, requiring a prior variable
reduction step such as PCA (Principal Component Analysis) first.

The tremendous expansion of interest in SVM methods can be
shown by citations to Cortes and Vapnik® and Cristianini and
Shawe-Taylor* totalling around 2000 and 3000 citations as
recorded by ISI since first cited in 1995 and 2000 respectively.
This compares with a total of around 7000 articles citing papers
from J. Chemom. since 1990 when first entered in the ISI data-
base and 15 000 from Chemom. Intell. Lab. Syst. since 1986, the
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Fig. 1 Citations of refs 1 and 4 since first cited compared to the two
chemometrics journals.

two main chemometrics journals at time of writing. This rapid
acceptance of Support Vector methods is illustrated in Fig. 1,
where the citations of both articles and journals are plotted
against year after they received their first recorded citation over
a 12 year period (or 9 for Cristianini and Shawe-Taylor) at time
of writing (15 July 2009). This shows a remarkable interest in
such approaches. Whether this momentum will be maintained
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remains to be seen, but certainly at the moment SVMs and
related kernel methods are very widespread.

Within applications to analytical chemistry, the growth of
SVM approaches has been much slower. One of the issues is the
lack of graphically user-oriented packaged software that is suit-
able for laboratory based chemists, unlike older and more
established methods such as PLS (Partial Least Squares),'* ' so
whereas there is big potential in SVMs many hands-on labora-
tory chemists are reluctant to use the method. In areas such as
biology or economics there is a much better established tradition
of separate data analysis sections with dedicated staff who
would be comfortable using scripts, e.g. in Matlab. Hence SV
approaches, whilst of significant interest and the subject of
numerous papers, have been slow to take off in mainstream
analytical chemistry. Yet one issue is that many problems
encountered by the modern analytical chemist are non-linear,
and approaches such as PLS find it hard to cope. Take an
example in metabolomic profiling where we use compound
concentrations to determine whether a patient has a disease or
not. A model might be formed between disease state and
compound concentration: we do not expect this model to be
linearly related to concentrations of compounds and so tradi-
tional linear methods are not necessary appropriate. This
contrasts to traditional applications in analytical chemistry,
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Fig. 2 Simulated case studies L1 to L4.
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e.g. calibration in atomic spectroscopy or ultraviolet/visible
spectroscopy in order to determine accurately the concentration
of analytes in a mixture: providing that the experiment has been
done well and spectra are within the Beer—Lambert limits we
expect a linear relationship between concentration and signal
and, as such, methods such as PLS that are founded on linearity
perform very well.

We will illustrate the methods described in this paper using
a variety of case studies as discussed below.

2 Case studies
2.1 Simulations L1 to L4: classification using two variables

The simulations are used to illustrate methods for classification.
They consist of two classes or groups of samples characterised by
two variables. Each class, A and B, consists of 20 samples, so the
datasets can be arranged in a 40 x 2 matrix and are illustrated in
Fig. 2.

e Case study L1 represents two linearly separable classes.

e Case studies L2 and L3 represent two classes that are not
linearly separable, based on case study L1, but moving class
B closer to class A.

e Case study L4 represents the situation where class B
surrounds class A, so although it is visually obvious which class is
which, a curved boundary is necessary that encloses class A.

2.2 Simulations C1 and C2: calibration

Simulation CI involves 21 points that are approximately linearly
related and characterised by 2 variables, x and ¢, as illustrated in
Fig. 3.

Usually in calibration we try to predict ¢ from Xx, e.g.
a concentration from a spectroscopic or chromatographic
measurement. In this paper we use the x/c notation®? rather than
the tradition x/y notation because x and y tend to get swapped
around: for univariate calibration x is usually the property (e.g.
concentration — represented by the horizontal axis) and y the
measured variable (e.g. a chromatographic peak-height), but in
multivariate chemometrics these are changed with X representing
a spectral matrix and y a concentration vector, for example.
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Fig. 3 Simulated case study CI for calibration.
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Fig. 4 Simulated case study C2 for calibration.

Simulation C2 involves 63 points characterised by one
measured variable (x) and an underlying property we wish to
predict (¢). In dataset C2, there is a curvilinear relationship
between x and ¢, the aim being to predict ¢ = f{x) where the *
means predicted. There is one point that is a clear outlier that
may have an influence on the model under certain circumstances.
This dataset is illustrated in Fig. 4.

2.3 Experimental case studies R1 to R3 for classification

For the experimental case studies although we have several
variables we project onto the first 2 or 3 Principal Components
(PCs)** prior to performing classification, which is done in the
space of the scores of the most significant PCs. Of course, clas-
sification could be performed in the space of the original vari-
ables, but the aim of this article is to illustrate the methods
visually. We do not necessarily advocate that PCA has to be
performed prior to classification. Only brief essential details of
preprocessing are discussed below. More details are in the
references cited below and in a recent text on Pattern Recogni-
tion.2® PC plots of the scores of the first 2 and 3 PCs are presented
in Fig. 5.

2.3.1 Case study R1: environmental pollution studied by
headspace mass spectrometry. This dataset consisted of 213
samples of soil and sand analysed by headspace mass spec-
trometry (HS-MS), with an aim to determine whether the
samples are polluted or not. More details are presented else-
where.!” Of these, 179 were spiked with oil in the laboratory at
different levels, representing polluted samples, and 34 were clean,
representing unpolluted samples. For the purpose of this paper
we are primarily concerned with determining whether a sample
comes from the polluted group (class A) or the unpolluted group
(class B), rather than the extent of pollution. We are trying to ask
whether it is possible to distinguish polluted from unpolluted
samples using MS and pattern recognition and then to determine
how well we can classify samples into one of these two groups.
Mass spectra are recorded from m/z 49 to 160. Data pre-
processing has to take this into account and the following steps
are performed The MS intensities are first square rooted. Each
square rooted MS is then row scaled to a total of 1. Finally the
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Fig. 5 Scores of the first 2 and 3 PCs for case studies R1 to R3.
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columns (each variable) are standardized to allow each m/z value
to have equal influence on the resultant pattern recognition.

For this particular dataset quite a variety of preprocessing
options could be employed, most giving comparable answers (in
other cases a correct choice of preprocessing is essential), but for
this paper we stick to one protocol as the aim is primarily to
illustrate how Support Vector methods work in classification
studies.

From the PC scores plots (Fig. 5) we can see that the two
groups are mainly separable although not linearly in the space of
PCs 1 and 2; however, there is a small subgroup of samples from
class A buried within class B.

2.3.2 Case study R2: near infrared analysis of food. This study
involves trying to assign samples of vegetable oils into one of four
classes, using NIR (Near Infrared) spectroscopy, a traditional
technique for the application of chemometrics. The dataset has
been kindly supplied by Camo AS and is described further in
their training manual.?’

The data consist of 72 spectra from:

(1) 18 samples of Corn Oils (class A),

(2) 30 samples of Olive Oils (class B),

(3) 16 samples of Safflower Oils (class C),

(4) 8 samples of Corn Margarines (class D).

Note that the number of Corn Margarine samples is quite low
and there can be problems in modelling groups with few samples.

In this dataset the following steps are used to prepare the data.
The NIR data are baseline corrected using an approach called
MSC (Multiplicative Scatter Correction). A region of the spec-
trum between 600 and 1500 nm wavelength is used for pattern
recognition. The data are mean-centred because some regions are
more intense than others, but the variability at each wavelength
is very similar.

The MSC corrected spectra are illustrated in Fig. 6. It can be
seen that there are some small differences between spectra of the
groups, for example, at around 700 nm the safflower oils appear

to exhibit more intense absorbance followed by the corn oil;
however, these differences are quite small and there is a little bit
of spread within each group (as expected), so it would be quite
hard to identify an unknown oil, by eye, using a single NIR
spectrum, and pattern recognition techniques can be employed to
determine whether the groups can be distinguished, which spec-
tral features are best for discrimination and how well an
unknown can be assigned to a specific group.

This particular application is very much one of classical che-
mometrics and is a classification problem, but unlike that of case
study R1, there are 4 rather than 2 classes, in addition these are
particular issues about dealing with data when there are more
than two groups in the data. Furthermore, in addition to having
a multiclass structure, there also is a problem in that the number
of corn margarines is very small. However, all groups are very
well separated as can be seen in the scores plot (Fig. 5), but this is
an example of a multiclass problem.

2.3.3 Case studies R3a and R3b: thermal analysis of polymers.
Most commercial plastics are polymers. The aim of this study is
to be able to determine the group a plastic belongs to using its
thermal properties. Commercial plastics have different proper-
ties, as their structure changes when heated, and each type of
plastic has a different use so will have different characteristics.
The changes involve going from a solid to a glass to a liquid state.
By applying an oscillating force and measuring the resulting
displacement, the stiffness of the sample can be determined,
which will change as the polymer is heated, using the technique of
Dynamic Mechanical Analysis (DMA). Several parameters can
be measured, but in this study we use the Loss Modulus (E"),
which is related to the proportion of the energy dissipated or
non-recoverable per cycle, as a force is applied.

The temperature range studied is from —51 °C until the
minimum stiffness is reached, after which no further meaningful
data can be collected. Measurements are made approximately
every 1.5 °C. Each raw trace curve consists of between 99 and
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Fig. 6 MSC corrected NIR spectra of the four groups of oils.
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215 data points dependent on the highest recordable data point
of the polymer. After the highest recordable temperature, in
order to ensure a similar temperature range for each sample,
values (which were not recorded) are replaced by the value of E”
obtained at the highest measurable temperature. Because the
measurements for different samples are not performed at the
same equally spaced temperatures the data are linearly interpo-
lated to 215 equally spaced data points corresponding to an
interpolated E” value for each of the temperatures between
—51°C and 270 °C in increments of 1.5 °C.

293 samples are used to give a data matrix X of dimensions
293 x 215, which is first centred. An interest in this dataset is that
there are two ways in which the polymers can be classified, either
into type by their main physical properties (amorphous or semi-
crystalline) to two main classes, or into nine groups according to

Table 1 Samples for case study R3

Type Group

polymeric material as listed in Table 1. Note in the class lettering
system we will use, that class A (polymer type) is different from
class A (polymer group). The classification is hierarchical in
nature, as a particular polymeric group is all of one type. This
dataset can be viewed either as a two-class problem (as in case
study R1) which we will denote as R3a or a multiclass problem
(as in case study R2) which we will denote as R3b. The aim is to
determine the origins of a polymer using DMA. There are many
potential reasons for this: one possible area is waste recycling of
industrial plastics, where plastics have to be treated in different
ways for environmentally safe disposal. More details are avail-
able in several papers.?®-32

From the scores plots (Fig. 5) we can see that the two main
types are almost separable in the space of the first 2 PCs, with just
a little overlap, but there is quite a lot of overlap between the
groups. Some of the nine groups are separated into subclasses as
they consist of several grades. This dataset is an example of both
a two-class and a nine-class problem.

2.4 Experimental case study S1 for calibration: UV/vis spectra

Amorphous A 92 Polystyrene (PS) A 35 of polyaromatic hydrocarbons
Acrylonitrile- Butadiene-Styrene B 47
b gABSg (PCatb) c 10 The experimental case study for this application is of the UV/vis
olycarbonate (PCar : ‘o : : .
Semi-crystalline B 201 Low Density Polyethylene (LDPE) D 56 (ultravplet visible) spectra of a serles' of mixtures of 10 p_oly
Polypropylene (PP) E 45 aromatic hydrocarbons (PAHs) which has been described
High Density Polyethylene F 30 previously.?2? Table 2 is of the concentrations of these PAHs in
(HDPE) 25 spectra; for the purpose of this paper we take the spectral
gg%ﬁﬁﬁiﬁé%ﬁfﬁphthalate (PBT) S %g %ntensities over waveleng.ths between 220 anq 350 nm at 5 nm
Polyethylene Terephthalate (PET) 1 40 intervals, forming a matrix that has 25 rows (individual spectra)
and 27 columns (individual wavelengths). The aim is to
Table 2 Concentrations of polyarenes in dataset A for case study Sl
PAH? concentration/mg L'

Spectrum Py Ace Anth Acy Chry Benz Fluora Fluore Nap Phen
1 0.456 0.120 0.168 0.120 0.336 1.620 0.120 0.600 0.120 0.564
2 0.456 0.040 0.280 0.200 0.448 2.700 0.120 0.400 0.160 0.752
3 0.152 0.200 0.280 0.160 0.560 1.620 0.080 0.800 0.160 0.118
4 0.760 0.200 0.224 0.200 0.336 1.080 0.160 0.800 0.040 0.752
5 0.760 0.160 0.280 0.120 0.224 2.160 0.160 0.200 0.160 0.564
6 0.608 0.200 0.168 0.080 0.448 2.160 0.040 0.800 0.120 0.940
7 0.760 0.120 0.112 0.160 0.448 0.540 0.160 0.600 0.200 0.118
8 0.456 0.080 0.224 0.160 0.112 2.160 0.120 1.000 0.040 0.118
9 0.304 0.160 0.224 0.040 0.448 1.620 0.200 0.200 0.040 0.376

10 0.608 0.160 0.056 0.160 0.336 2.700 0.040 0.200 0.080 0.118

11 0.608 0.040 0.224 0.120 0.560 0.540 0.040 0.400 0.040 0.564

12 0.152 0.160 0.168 0.200 0.112 0.540 0.080 0.200 0.120 0.752

13 0.608 0.120 0.280 0.040 0.112 1.080 0.040 0.600 0.160 0.376

14 0.456 0.200 0.056 0.040 0.224 0.540 0.120 0.800 0.080 0.376

15 0.760 0.040 0.056 0.080 0.112 1.620 0.160 0.400 0.080 0.940

16 0.152 0.040 0.112 0.040 0.336 2.160 0.080 0.400 0.200 0.376

17 0.152 0.080 0.056 0.120 0.448 1.080 0.080 1.000 0.080 0.564

18 0.304 0.040 0.168 0.160 0.224 1.080 0.200 0.400 0.120 0.118

19 0.152 0.120 0.224 0.080 0.224 2.700 0.080 0.600 0.040 0.940

20 0.456 0.160 0.112 0.080 0.560 1.080 0.120 0.200 0.200 0.940

21 0.608 0.080 0.112 0.200 0.224 1.620 0.040 1.000 0.200 0.752

22 0.304 0.080 0.280 0.080 0.336 0.540 0.200 1.000 0.160 0.940

23 0.304 0.200 0.112 0.120 0.112 2.700 0.200 0.800 0.200 0.564

24 0.760 0.080 0.168 0.040 0.560 2.700 0.160 1.000 0.120 0.376

25 0.304 0.120 0.056 0.200 0.560 2.160 0.200 0.600 0.080 0.752

“ Py = Pyrene; Ace = Acenaphthene; Anth = Anthracene; Acy = Acenaphthylene; Chry = Chrysene; Benz = Benzanthracene; Fluora = Fluoranthene;

Fluore = Fluorene; Nap = Naphthalene; Phen = Phenanthracene.
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Class B

Fig. 7 llustration of two-class classifiers, applied to two separable
groups: (top) a linear classifier, and (bottom) a curvilinear classifier.

determine the concentration of individual PAHs in the mixture
spectra. Because there are 27 variables it is not possible to
represent the spectra in the 27 dimensional dataspace formed by
these variables graphically.

We will illustrate the method for SVR primarily for the
determination of the benzanthracene concentration. The use of
PLS as an alternative has been discussed in previous publications
as referenced above.

3 Support vector machines as two-class classifiers

We will assume that we are trying to find a model in a series of
samples that form a training set. Note that much of the termi-
nology of Support Vector Machines was developed by the
machine learning community, where autopredictive models, that
is models formed on an entire dataset, are usual, whereas in the
chemometrics and analytical chemistry literature it is more
common to divide data into a training set, on which the model is
formed, and a separate test set which is used to determine how
well the model performs.?® The descriptions in this section will be
based on training set or autopredictive models.

SVMs are usually introduced as a solution to a two-class
problem — how can we differentiate between samples that are
members of two groups? The description of the SVM algorithm
below is in three parts. First, the basic definitions for linearly
separable classes; second, the extension to the non-linearly
separable case with the use of kernel functions; and third, the
generalised solution with the incorporation of the trade-off
pernalty parameter to control complexity. Two-class classifiers
attempt to form a boundary between two groups. This boundary
may be of varying types, and two possible classifiers are illus-
trated in Fig. 7. Note that almost all classifiers can be expressed
in the form of boundaries, and although SVMs are normally
defined in terms of boundary problems and some other

approaches not, in fact most two-class classifiers (sometimes
called hard models) can be visualised in terms of boundaries

3.1 Linear learning machines

The simplest type of classifier is a linear classifier. However,
SVMs treat linear classification problems somewhat differently
to the other common methods such as Linear Discriminant
Analysis (LDA)**25 and Partial Least Squares Discriminant
Analysis (PLS-DA).3¢%® Whereas for two linearly separable
classes the method is probably overkill, if first understood this is
an initial conceptual building block for understanding SVMs and
the extension to more complex problems.

Consider a binary classification problem where samples, each
of whose experimentally measured variables are represented by
a row vector x, have been obtained that have membership of
two classes g (= A or B) with labels ¢ = +1 for class A and —1
for class B and are perfectly linearly separable. These samples
can be used to determine a decision function to separate two
classes, which in its simplest form can be expressed by a linear
boundary

J
g(x;) = sgn(wx; + b) = sgn (b + Z w,xﬁ>
J=1

where w and b are often called weight and bias parameters that
are determined from the training set. In this paper we will denote
x for an individual sample to be a row vector rather than
a column vector, but otherwise adopt notation that is common in
the SVM literature. It is important to understand the relationship
between different common approaches, and that the SVM when
expressed in its simplest linear form has analogies to PLS-DA
which also is related to LDA, but advocates of SVM would argue
that SVM is a more generalised and universal approach,
although one which carries risks of overfitting and unnecessary
complexity if one is not careful, and which forms a boundary
using a different criterion to LDA or PLS-DA. However, this
simple classification function corresponds to representing the
border between two classes as a hyperplane, or a line if x is
characterised by two variables. The sign of g determines which
class a sample is assigned to: if positive class A and if negative
class B. Any generic hyperplane (w, b) can be defined by coor-
dinates x satisfying the condition wx’ + » = 0 which divides the
dataspace into two regions opposite in sign. In Fig. 8 we illustrate
a variety of different hyperplanes (in this case lines as there are
only two variables) for case study L1, based on different values of
wand b. It can be seen that any line can be defined this way, some
of which perfectly separate the data and some do not.

If the two classes are separable we can define a ‘margin’
between the two classes, such that

wx' +b=1, c¢=+1
wx +b= —1, c=-1

since no samples will be precisely on the boundary. The value +1
can be obtained by scaling w and b appropriately, for example,
a hyperplane (or line) in two dimensions with w = [1 3] and
b = —1 is identical to one with w = [2 6] and b = —2, so it is
always possible to scale the margins so they are of a distance
of +1 from the central line. The boundary (or hyperplane) should
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Fig. 8 Illustration of the line given by wx’ + b for case study L1: (a) b =
0, changing w, and (b) » = —1 and +1, changing w. Lines that separate the
two classes perfectly are indicated in black.

0 6

be equidistant from the two extreme samples in each class. The
boundary separates the classes with no error if every sample x; is
projected in the region of the dataspace with sign equal to
the respective class membership ¢; or at least on the boundary, i.e.
the hyperplane must satisfy the condition

cilwx/ +b) =1

for all the samples providing that they are perfectly linearly
separable. However, there are an infinite number of possible
hyperplanes (w, b) satisfying this so there needs to be a further
rule to determine which of these hyperplanes is best.

The optimal separating hyperplane, as chosen using SVM,
defined by the parameters w and b is one for which the margin
between the most similar samples in each group is largest. [t can be
shown that this hyperplane is the one that minimises “2(ww’),
subject to the constraint c(wx; + b) = 1 for all samples. This
optimal separating line (or boundary) for case study L1 is illus-
trated in Fig. 9. The samples on the margins are called support
vectors (SVs) asillustrated in the figure. Note that for such a linear
boundary the number of SVs is limited and will be between 2 and
4. In addition to the boundary we can visualise the margins. Note
that this boundary now depends only on the SVs, and other
samples have no influence over the boundary. In Fig. 10 we
represent four possible boundaries, each of which are formed
from 2 samples from one class and 1 from another class (in fact,

5 L -
Optimal boundary
a0 .
¢
3 O o 4
(o]
2t 4
Op ®
1 L 4
of (o} 2
ClassB
“'T' margin o 1
- ) , , Class A margin
-2 0 2 4 6

Fig. 9 Optimal boundary that maximises the margins for separating
classes A and B in case study L1. SV = support vectors, with w =
[1.184 —0.027] and b = —0.768.

these are the only solutions for case study L1 that can be obtained
using 3 samples), and it can be seen that the solution of Fig. 9 has
the widest margin and so is chosen as the optimal solution. Note
that there will only be a finite number of boundaries that can be
defined by using samples on both margins, and most of the
possible boundaries cannot be defined this way.

For readers interested in the algebra, this optimisation task
can be expressed by the structure error function:

o(w,b,a) = %(ww’) - Z a;(cilwx'; + 6] — 1)

iesv

where Ny, is the number of samples for which both ¢ (wx/ + b) =
1 and in addition «; > 0, which are a subset of the original
samples called the Support Vectors (SVs). The samples that have
«; > 0 are those that are closest to the boundary. Hence the SV
solution depends only on samples close to the boundary between
two (or more) classes. In this way, SVM models differ from most
other common approaches to classification within analytical
chemistry which use all the samples in the dataset to determine
the boundaries between classes.

The parameter « is called a Lagrange multiplier and is
common in calculus and is used to optimise a function subject to
one or more constraints. A simple example involves finding the
minimum or maximum of f{x,y) = x + y subject to the constraint
g(x,y) = x> + y* = 1 (in fact a unit circle). The Lagrange multi-
pliers are defined by the value of « that is obtained from the
following equation, subject to the constraint

Vf=aVg

where V is the partial derivative over each of the variables. Since
there are two variables, we have three equations we need to solve,
the latter representing the constraint:

1 =2ax
1 =2ay
X2+y2:1

We can solve these equations to give (x,y) = (£1/y/2, £1/y/2) and
hence a = £1//2 also. The two solutions give values of f{x,y) =
X + y = £+/2 or for a maximum (—) or minimum (—1) solution.
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Fig. 10 Four possible boundaries for case study L1, consisting of 3 samples on the margins. The solution with the widest boundary is chosen as

illustrated in Fig. 9.

In the context of SVMs, the value of ¢ has to be minimised
with respect to w and » and maximised with respect to the
Lagrange multipliers «;. The minimum of ¢ with respect to w and
b is given by

a—(p:0=2a-c-:0 and a—(p=0=w72a46-x-=0
ab iesv o aw iesv o
where the samples i are formally support vectors (sv).

Hence,

I
o(a) = %Z Zaici(xixll) oy — Z Q;

iesv lesv iesv

The optimisation task is that of minimising ¢(«) with respect to
«, a vector consisting of Lagrange multipliers, satisfying the
constraints

o; =0 and Zaici =0

iesv

Finally, the optimal & = (a;, as,..., ) allows determination of
the weight vector w of the optimal separating hyperplane

w= E OCi X

iesv

while the offset b can be calculated from any pair of samples of
opposite classes satisfying the conditions that their values of
« are greater than 0. In technical terns, the optimisation of ¢ is

a quadratic programming problem, which can be generally
written in the form:

1
min {E aHo + za’}

where H has elements 4;; = ¢(x/x;)¢; (for samples i and /) and
z is a row vector of —1s. This a well known type of optimi-
sation problem that is straightforward to solve because it has
only one global minimum, thus making the learning procedure
reproducible. We will not discuss the details of this optimi-
sation method in this paper which can be found in many
general references on numerical programming. The expression
for ¢ contains a scalar product of vectors and explains why
the approach is particularly fast and suitable when dealing
with samples having many variables. Last but not least,
this opens the way to treat some of the more complicated
non-linearly separable cases using kernels as discussed in
Section 3.2.

The classifier can be directly expressed as a decision function in
terms of the support vectors s; (those samples whose value of « >
0) as follows

g(x;) = sgn ( Z o;icisix i + b)

iesv

where if positive the samples are assigned to class A, otherwise to
class B. Returning to Fig. 9, there are 3 SVs namely
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(1) x=[2.2883.064] a=05169 (ClassA)
(2) x=[1.756 1.503] a=02063 (ClassA)
(3) x=[0.3132.905] a=0.7232 (Class B)

and the value of b = 0.7684. (Note that Z aici = 0 gince =

lesv

¢, = +1 and ¢3 = —1 for the three SVs listed above.) In more
familiar matrix terms we could define g(x;) = sgn(x;S'¢ + b) for
each sample where §' is a J X Ny, (or in our case 2 x 3) matrix
containing the support vectors, and ¢ is an N, x 1 vector whose
elements equal the product of « and ¢ for each support vector,
which can be extended to a matrix form when all samples in
a dataset are included. This calculation is illustrated in Fig. 11 for
case study L1. It can be seen that all samples are correctly clas-
sified, in this particular case.

SVs are often visualised as being on the margins of each class,
with the hyperplane representing the decision boundary. Which
side of the hyperplane a sample lies on relates to its class
membership, whilst the SVs and margins are the extremes of
each class. In an ideal situation there will be an empty space
between the margins, providing that classes are completely
separable.

3.2 Kernels

Determining a class boundary in the form of a separating
hyperplane is adequate for simpler cases where the classes are
nearly or completely linearly separable. However, this is a situa-
tion where arguably many other methods would return satis-
factory results and SVMs would not appeal very much due to
their relatively complex formulation, and so are most useful
where classes are not linearly separable.

SVMs handle this by adding an extra step to the procedure
described above. Instead of forming a boundary in the original
variable space, where the two classes are not separable, a new
higher dimensional (feature) space, where the samples are pro-
jected by means of a feature function @(x), is defined. The back-
projection of the optimal separating boundary (in the form of
a hyperplane) from this new feature space to the original variable
space will then result in a non-linear boundary of given
complexity that better suits the distribution in the original vari-
able space, providing that the feature space is correctly defined,
as illustrated in Fig. 12. The new dataspace is often of high
dimensionality with one dimension per SV. Their mappings by
means of @(x) allows the determination of a hyperplane that
separates them. A feature function is found that makes

X S’ c b g
2.0288 3.0638 2.0288 1.7556 0.3131 0.5169 o 0.7684 i 1.7681 Ll 1
4.4683 26141 3.0638 1.5029 2.9050 0.2063 0.7684 4.7509 1
2.5991 1.7811 -0.7232 0.7684 2.7095 1
6.7879 0.2940 0.7684 7.9791 i
4.1558 3.0263 0.7684 4.2953 1
4.0881 1.6009 0.7684 45105 1
5.4461 14741 0.7684 6.1452 1
41672 0.6803 0.7684 4.7949 1
3.7055 1.7745 0.7684 4.0213 1
4.9587 -0.9058 0.7684 6.0612 1
3.5997 0.6005 0.7684 4.1393 1
49156 0.7310 0.7684 5.6709 1
3.3595 0.0331 0.7684 3.9724 1
1.7471 11091 0.7684 1.8396 i
29416 2.2179 0.7684 3.0246 1
4.3688 1.0086 0.7684 4.9657 1
1.7556 1.5029 0.7684 1.7681 i
5.5941 1.4286 0.7684 6.33 1
4.5642 0.7495 0.7684 5.2508 1
5.5783 1.5836 0.7684 6.2792 d

-0.1440 5.1319 0.7684 -1.2341 -1
-0.7045 3.2315 0.7684 -1.5042 -1
-1.3968 4.2193 0.7684 -2.5289 -1
-0.0913 1.7000 0.7684 -0.4604 -1
-0.8705 3.6771 0.7684 -1.7931 -1
-0.1117 1.8154 0.7684 -0.5085 -1
-0.0774 2.6602 0.7684 -0.643 -1
-0.9272 3.5978 0.7684 -1.8439 -1
-0.7950 2.5709 0.7684 -1.4744 -1
-1.0669 2.8365 0.7684 -1.8515 -1
0.3131 2.9050 0.7684 -0.2312 -1
-1.0063 4.3585 0.7684 -2.0951 -1
-0.1776 3.1934 0.7684 -0.8721 -1
-2.2576 3.3581 0.7684 -3.37 -1
-02912 2.1674 0.7684 -0.7941 -1
0.0320 1.5239 0.7684 -0.2779 -1
-0.5047 1.9401 0.7684 -0.9998 -1
-0.2403 3.6304 0.7684 -1.037 -1
-0.9090 3.7499 0.7684 -1.8538 -1
-0.3057 2.2739 0.7684 -0.8333 -1

Fig. 11 Tllustration of SVM calculation for the data of case study L1 and Fig. 9.

This journal is © The Royal Society of Chemistry 2010

Analyst, 2010, 135, 230-267 | 239


https://doi.org/10.1039/b918972f

Published on 23 December 2009. Downloaded on 11/21/2025 12:08:54 PM.

View Article Online

(a) (b)

Fig. 12 Creation of the boundary for a non-separable case. (a) Two linearly inseparable classes in two dimensions. (b) Projection onto a higher
dimensional space where it is possible to separate the classes using a plane, with three support vectors indicated. (c) Projection back into two dimensions.

separation easier in higher dimensions. Finally the back-projec-
tion of this plane into the original dataspace generates a non-
linear boundary which can theoretically be of any complexity.
For the separable case study L1 we can also obtain a kernel space
(which will no longer result in linear boundaries) and visualise
this transformation, for a Radial Basis Function (RBF) model
(see below) defined by 3 SVs, as each SV defines an axis in this
space (Fig. 13). However, if the number of SVs increases beyond
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Fig. 13 Illustration of kernel space for an RBF model for case study L1.
The three axes, K(1) to K(3), correspond to each of the three SVs, marked
with a cross, the green surface being the projection of the samples onto
this kernel space.

3, as happens in most situations, it is not possible to visualise this
space directly. As an example of a more complex problem we will
illustrate below how to produce a boundary between the two
classes represented in case study L4 (Fig. 2), which are not
linearly separable.

In many situations if the two boundaries between the two
classes are very complex, the set of functions @(x) that is used to
map the data is of very high dimensionality, which means that
many more dimensions are generally required to find a sepa-
rating hyperplane, but it is consequently possible to find
boundaries to suit a variety of complex distributions. Mathe-
matically, this is done by reformulating the optimisation task by
replacing the scalar product of input vectors (x;x/) with the
scalar product of the respective feature functions defined by
(D(x,),P(x))) as follows:

!

p(@) =137 3w (@(x), D) s~ Y

iesv lesv iesv

. 1 ’
replacing ¢(a) = EZ Z aici(x; x'p) oy — Z Qi

iesv lesv iesv

so it is mainly necessary to find these functions to develop an
SVM model using kernels.

An important concept in SVMs is that there exist kernel
functions K in the original variable space that corresponds to the
dot product of functions in the new feature space:

K(x,-,x/) = <¢(xi)a ¢(X])>

The optimisation task can therefore be re-written:

!
o(a) = %Z YK (xix) coy =Y

iesv lesv iesv

The optimisation task still involves a quadratic convex
programming problem, hence being particularly easy to handle,
but most importantly, by means of K(x;x;) rather than &(x), it is
possible to proceed with the transformation, omitting the inter-
mediate step of creating the feature space and working only in the
original dataspace where K(x;x;) is defined (which can be added
as an extra dimension). This powerful attribute is known as the
‘kernel trick’ and it is what makes SVMs effective in addressing
complex tasks. The classification decision function can be re-
written as

240 | Analyst, 2010, 135, 230-267

This journal is © The Royal Society of Chemistry 2010


https://doi.org/10.1039/b918972f

Published on 23 December 2009. Downloaded on 11/21/2025 12:08:54 PM.

View Article Online

g(x) =sgn ( Z a;ciK (s, x) + b)
iesv
and is still explicitly expressed in a dependence on the SVs.
Only certain kernels can be employed (as they also must satisfy
some additional conditions). Some of the most common are as
follows.
(1) Radial basis function (RBF), defined as K(x;x;) = exp(—7||x;

2
—llxi = x|

— xj||*) or K(x;,x;) = exp where v = 1/20°

(2) Polynomial function (PF), K(x;x;) = (ax;"x; + b)*

(3) Sigmoidal function (SF), K(x;x;) = tanh(ax;"x; + b)

These kernel functions can be visualised as creating an extra
dimension, involving a sum of functions centred on each sample
that is assigned as an SV. The creation of this kernel function
(in this example a RBF) is exemplified in Fig. 14, in which a third
dimension, representing the decision function which is given by
the kernel function multiplied by the class membership label of
each sample and its Lagrange multiplier (Z%‘GK (s,»,x)), is

lesvV

added: note that this function is only used to obtain a surface
defined by samples that are SVs — for all other samples this
function is used to project them onto this new surface or mesh.
The mesh relates to the value of the distance of each sample
from the centre in the RBF higher dimensional space that cannot
be visualised (the additional vertical axis should not be confused
with the additional higher dimensional feature space which
has as many axes as there are SVs, and is called the decision
function).

The procedure of forming boundaries and back-propagation
are represented Fig. 15 for case study L4. The value of b repre-
sents a decision place that separates the surface into two parts,
those above the plane (assigned to class A) and those below (class
B). We can see that when projected back into two dimensions
samples from class A are enclosed within an irregular shaped
boundary. In Fig. 16, we illustrate how the model depends on
SVs. Each of the samples that are identified as SVs are the centre
of a Gaussian RBF, the sign being positive for members of class

Fig. 14 Creating a decision function for separating two classes of case
study L4. The vertical axis relates to the kernel function multiplied by the
class label and used employed with ¢ = 0.2sd of the overall dataset.

-4
2 0 2 4 B 8

Fig. 15 Developing an SVM model for case study L4, using the
parameters of Fig. 14. The vertical axis represents a decision function.
The decision plane represents the value of b that divides the classes.

A (¢; = 1) and negative for members of class B (¢c; = —1). For the
RBF chosen the vast majority of samples are in fact SVs
although this is not always the case. Non-SVs are projected onto
the surface, but are not used to form this surface. We can rotate
the surface onto the original data plane to see the distribution of
the SVs, or at right angles to this to see where these are distrib-
uted and so the empty margin between the SVs for each class.
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Fig. 16 Support Vectors — marked with a cross.

Each kernel is characterised by a set of parameters that must
be optimised for a particular problem. The RBF is particularly
popular because it requires only one parameter to be optimised
(the value of vy or ¢). This has many advantages in optimisation
as SVMs are computationally intensive procedures, so optimis-
ing several parameters using procedures such as cross-validation
(Section 3.4) can be time-consuming, if there are several
parameters to optimise, and if incorrectly performed can lead to

risks such as overfitting which involves forming boundaries that
are very complex but not justified by the data. In this paper we
will restrict the illustration to RBFs, which should cover the vast
majority of situations encountered. The interested reader may
want to look at source literature if it is felt that this type of
function is inadequate. There is usually a limit to the level of
complexity that can reasonably be modelled, especially when
datasets are limited in size and contain experimental error, and
RBFs result in some quite complex boundaries so are probably at
the upper limit of what an analytical chemist might encounter;
biologists mining large databases (e.g. in genetics) may have
problems that justify going farther. We will discuss the influence
of different RBF parameters on SVM boundaries in Section 3.4.

3.3 Controlling complexity and soft margin SVMs

Intuitively, because the kernel trick allows SVMs to define complex
boundaries, the risk of overfitting is particularly high; that is, it is
possible to define almost any boundary around training set samples
even if there is no particular significance to these complex
boundaries, so as complexity increases there is also a risk that the
overcomplicated boundaries have no real predictive power. If we
increase boundaries no end we can end up with perfect classifica-
tion of samples from a training set (or a series of samples whose
origins we know about) but when test set or unknown samples are
included the classification results are very poor. In traditional
analytical chemistry where most models are linear, often samples
could be cleanly classified using linear models, but with the inter-
face of analytical chemistry to other disciplines such as biology and
medicine and cultural studies, for example, we do not expect nice
linear behaviour and anticipate that the boundaries may become
quite complex — a question is how complicated is it justified?

To this end a concept called Structural Risk Minimisation has
been developed. SVMs are equipped with an additional param-
eter that allows a control on complexity. To introduce this
parameter it is easiest to recall the example of the simplest case
where the optimal separating boundary is determined in the
original dataspace, without projecting the samples into a higher

— Margin
Class B

‘ Separator
,?::,:0 ’

. &=0 /
S VIR
/.

/

Fig. 17 Illustration of slack variables. The support vectors for two
classes are illustrated with filled symbols. Samples with £ = 0 are on the
margins; with £ > 0 between the margins and with £ > 1 are misclassified.
The five SVs are indicated with borders around the symbols.
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Fig. 18 Finding boundaries using slack variables for the non-linearly separable case studies L2 and L3. SVs are marked with crosses.

dimensional feature space. If these cannot be perfectly separated
by a hyperplane, one may also allow deviations defined by &; >
0 for individual samples x;. Those samples for which &; = 0 are on
the margin of its correct class, those with £; = 1 on the separating
plane, and those with &, > 1 the wrong side of the dividing line, or
misclassified samples. This is illustrated in Fig. 17, for which
there are five SVs: three are exactly on the margins, and two
between the margins in what would be empty space if the classes
were perfectly separable. Of the two between the margins, one is
misclassified and so has &; > 1. This now allows a number of
samples to be misclassified, and also for samples to be between
the margins. This allows simpler boundaries to be obtained but
which have the disadvantage that there are now some mis-
classified samples. In Fig. 18 we illustrate this principle for case
studies L2 and L3, neither of which are linearly separable, but
using a linear model rather than an RBF. We note that all mis-
classified samples are between the margins and are SVs which
have an influence on the model. We also note that the margins
have to be wider for the less linearly separable data and therefore
include more samples the wrong side of the boundary and more
Support Vectors. Note that this approach is complementary to
changing ¢ although we will see in Section 3.4 that considering
both approaches together is the usual approach for optimising
and using SVMs.

Mathematically, the optimisation task of Section 3.1 requires
simultaneously maximising the margin "2(ww’) and minimising
the empirical error, given by the sum of the allowed deviations

/
Z £;, hence becoming

i=1

1
o(w,b,§) = E(ww’) + CZ g’

iesv

subject to the constraint c{wx;/ + b) = 1 — £. C is called the
penalty error; the higher it is the more significant misclassifica-
tions are but the more complex the boundary (see below). It
should be noted that the margin errors &; become training errors
only when &; > 1. The SVs are now no longer all exactly on the
margins but are somewhere between the two extreme margins.
Every sample on or between the margins is an SV. When p = 1
the SVM is called a Level 1 Support Vector Machine, and when

p = 2 a Level 2 Support Vector Machine. In this paper we
illustrate SVMs using Level 1 methods, for simplicity, but when
using packages or comparing results be sure to check whether the
method is Level 1 or Level 2.

SVMs can be divided into two categories, hard- and soft-margin
SVMs. Hard margin SVMs require finding a space or using
a kernel for which two classes are perfectly separable, and aim to
find the optimal boundary that exactly separates the classes, with
the maximum possible margin between the two classes, and in
practice involve setting an infinite value of C: this was employed for
the example of Fig. 14, meaning that misclassifications are never
tolerated. However, it is always possible to find a feature space in
which the two classes are perfectly separable when using a kernel
function such as an RBF, and forcing the algorithm to search for
this feature space may lead to overfitting. To avoid this, most
people use soft margin SVMs which tolerate a degree of misclas-
sification, and are designed to balance the classification error
against the complexity of the model; in this paper we will illustrate
our examples using soft margin SVMs which are the most common
available.

The parameter C is set to determine the level of tolerance the
model has, with larger C values reflected in lower tolerance of
misclassification and more complex boundaries. Mathematically,
Cis included as an upper bound on the Lagrange multipliers, so
that:

OS(X,‘SC

This additional parameter determines which one of the two
criteria is emphasised most during the optimisation (either
Ya(ww') or Zle £;). Lower penalty error values emphasise the
first term, allowing higher deviations from the margin &;, hence
the emphasis will be on margin maximisation rather than mini-
mising the distance of misclassified samples from the boundary.
In contrast, higher penalty error values will emphasise the second
term, hence allowing smaller deviations across the boundary &;
and minimising the training error. C offers the opportunity to
pursue a trade-off between complexity of the boundary and the
importance attached to misclassified samples or samples near the
boundary. Note that a very high value of C tends towards a hard
margin SVM, as this occurs when there is a very large penalty
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error for misclassification, i.e. one tries to construct boundaries
that perfectly model the training set.

As an example we examine linear models for case study L2. We
can see that the two classes are not linearly separable and
a member of class A (blue) happens to fall within the region of
class B (red). We see the effect of changing C for a linear model in
Fig. 19. When C is reduced, more samples become SVs and the
margins are broader, as more samples are allowed to influence
the model. One important and often neglected issue is that most
SVM software allows the user to enter any value of C. This
means that it is possible to obtain solutions that have no
meaning. As an example see Fig. 20 for case study L3. This
dataset is not linearly separable and so an infinite value of C
(hard model) will be impossible to obtain if we use a linear
boundary; therefore there will be an upper limit to the value of C

that provides an analytically correct answer. When exceeding
this, it is usual for most software still to try to produce an answer:
this is because of computational issues, for example when opti-
mising the maximum allowed number of iterations is obtained
without final convergence or because in practice computers
cannot handle infinite numbers so the maximum (or minimum)
number within computational precision is obtained. When
exceeded, often nonsensical or unpredictable results are
obtained, for example in Fig. 20 we see that using the value of C
of 1 no longer encloses the SVs within the boundaries and results
in some misclassification. This is because the algorithm tries to
find an impossibly narrow boundary, as it is impossible to obtain
a perfect (hard boundary) model using a linear function for two
classes that are not linearly separable. When close to the upper
limit of C that is acceptable for any specific dataset and SVM
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Fig. 19 Effect of changing C for linear models and case study L2. SVs are marked with crosses.
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Fig.20 Apparent effect of changing C for linear models and case study L3. Note that C = 1 is algebraically an impossible solution. SVs are marked with

Crosses.

model, the results can be a little unpredictable and depend a bit
on the algorithm used, but it is usually unwise to work in this
region.

In such situations we need to include a kernel function, and the
results for case study L3 and an RBF are presented in Fig. 21 for
varying values of C. Note that all samples within the boundaries
and all misclassified samples are also Support Vectors. As the
value of C increases the boundaries are tighter, there are less
Support Vectors and the boundaries are more complex. Note
that although the number of misclassified samples tends to
decrease with C this is only an approximate rule; what certainly
happens is that the number of SVs decrease but some are due to
samples being within the margins and some as SVs. The
appearance of the boundaries at the two highest values of C are
identical, this is because the SVs are the same in both cases,
having reached a very tight solution; for an identical value of ¢
for an RBF, the appearance of the boundaries depends only on
which samples are chosen as SVs. Note also that for this RBF
(0 = standard deviation of the data), there is a solution for high
values of C which can perfectly classify all samples (equivalent to
a hard margin) unlike in the linear case. Whether such a solution
is achievable depends on the value of o.

3.4 Choice and influence of SVM parameters

It is important to understand the influence of C and ¢ (for an
RBF) on the SVM solution. We will illustrate this with case

studies R3a (polymers — two groups) and R1 (environmental).
Samples that are the wrong side of the boundary are mis-
classified. In all cases ¢ will be cited in units of the overall stan-
dard deviation of the dataset.

In Fig. 22 we illustrate both the changing boundaries and the
decision function for case study R3a. For each chosen C value, in
the left-hand column both the boundary (or decision function)
and margins are presented, but in the right-hand column we
illustrate only the decision function rather than the margins for
clarity.

For low ¢ (0.1) the decision function is very spiky as antici-
pated, each point that is an SV represented by a sharp spike.
Because class A (blue) samples tend to be clustered in compact
groups the spikes add together to produce small regions sur-
rounded by a boundary. Class B (red) samples are more disperse
and so the neighbouring spikes do not add together and as such
there are very narrow margins around most samples; however,
the decision function encloses class A samples, and all the rest of
the dataspace would represent class B, but be within the margins.
This of course is probably an unrealistic model as it would class
most unknowns that are in fact part of none of the known
clusters as being members of class B and so is probably over-
fitted. As o increases the small regions merge, for example when o
= 0.5 and C = 1 there is one contiguous and large region rep-
resenting class A. This is because the RBF is broader and so the
neighbouring Gaussians overlap more to give a flatter surface.
This principle is illustrated diagrammatically in Fig. 23: foro =5
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Fig. 21 Effect of changing C for RBF models and case study L3, using ¢ = 1 x the standard deviation of the data. SVs are marked with crosses.

and C = 1, the boundary is nearly linear, but with a wide margin.
This is because the Gaussians are very broad and so give
a surface that is nearly flat. Quite a lot of samples between the
margins are tolerated.

The main conceptual difference between the model for C = 1
and C = 100, is that in the latter the margins are narrower and
the number of SVs are less. The consequence of this is that the
shape of the surface can be more complex. In Fig. 24 we show the
effect of including only three out of the five Gaussians in Fig. 23
to construct the surface and we can see that it appears much less
smooth for similar widths. Using ¢ = 5 we see that the surface
represents more a quadratic than a linear model using C = 100
and that there are often more regions since the shape of the
surface is less smooth, due to there being less support vectors,
compare for example ¢ = 0.5.

For case study R3a, the main difference when changing
parameters involves the smoothness or complexity of boundaries
and in most cases samples are correctly classified, although the
number within the margins changes. However, for case study R1
(environment) there is a particular challenge in that there are
three samples in an outlying group of class B (clean or unpol-
luted), that appear within the samples of class A (polluted)
(Fig. 25). We can see that for o = 0.1 these are clearly identified as
a small region for both values of C, and there is no real difference
in the models as almost all samples are selected as SVs. However,
for C =1, once o reaches 0.5, this small group is classified as part
of class A, but within the margin, but as ¢ = 1 this small group is
outside the margin. A different behaviour is observed for C =100
with the samples being correctly classified (within their own
region of PC space) up to o = 1. Of course it is probably up to the

246 | Analyst, 2010, 135, 230-267

This journal is © The Royal Society of Chemistry 2010


https://doi.org/10.1039/b918972f

Published on 23 December 2009. Downloaded on 11/21/2025 12:08:54 PM.

View Article Online

c=1 @ Class A : Amorphous @ Class B : Semi crystalline

Decision Function
& e
& o @

=025 . @

Decision Function

o=0.5

Decision Function
“, 08 o -
oo b oD

c=0.75

Decision Function

G B e o= oW

C=100

o=0.1

0=0.25

o=0.5

Dacision Function

& & bW ooow s

Dacision Function
& b oo ow s

Decrsean Function

&

Decision Function

Pt

Fig. 22 Illustration of the influence of C and ¢ on the boundaries for case study R3a (polymers).
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Fig. 23 Summation of five Gaussians of increasing width, representing, in two dimensions, an RBF function of increasing width.
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Fig.24 Similar to Fig. 23 but only three of the Gaussians are used for the summation, Gaussians represented by black dashed lines not being part of the

summation.

chemist to decide which model is appropriate; is there a reason
why this small group is really part of class B or is it that these
samples could have been mislabelled or even mis-sampled
(sometimes a sample that is thought to be unpolluted actually
does contain pollutants)? If we wanted to hedge our bets and say
that samples between the margins are ambiguous, using C = 1
and ¢ = 0.75 finds relatively few samples between the margins but
puts this small group of ambiguous samples within this region.
Using a higher value of C forces them to be correctly classified in
most cases, but is this overinterpreting the evidence?

Unlike methods such as PLS, or PCA, there has been less
emphasis on formal optimisation of SVM parameters, and this is
not the main aim of this paper, the area of which is still one for
active research. However, general principles are to divide data
into training sets (for which the model is developed) and separate
test sets. The test set is a portion of data that is left out to be
predicted by the mathematical model.*** There are many ways
of forming a test set. These include Leave One Out Cross Vali-
dation,*® where a single sample is left out each time as a test set
until each sample has been removed once; the bootstrap, where
the training set involves sampling the overall dataset with repe-
tition and the test set is those samples never chosen;*' and
repeated dividing into test and training sets.*® Whereas there is
no universal guidance, a simple strategy may be to test a range of
values of C and for an RBF ¢, for example using 5 levels for each
parameter (so there will be 25 combinations of parameters). A
method such as the bootstrap or cross-validation is then used to
determine how well the test set samples are predicted — usually an
indicator of success is required such as %CC (percentage
correctly classified) or %PA (average percent predictive
ability);'®2¢ these relate to how well the samples are classified by
a given model. The higher this is (for the test set samples), the
better. Usually the training set is predicted well, but this
approach protects against overfitting — whereby the SVM model
too closely fits the training set but then cannot model well the test
set, as the boundaries are too complicated. There are, however,

several problems here unique in the case of SVMs. First, not all
samples will influence the boundary. Therefore approaches such
as cross-validation may not always be good methods of choice, as
leaving out one sample that is not on the boundary will not
influence the model: in traditional approaches such as PCA all
samples contribute to the model. Methods that involve leaving
out groups of samples are preferable. The second is that some
indicators such as %CC can result in very flat solutions, for
example if there are 50 samples to be assessed, there may be
several solutions that give an identical %CC, e.g. 47 out of 50
samples correctly classified, and so it is not possible to choose —in
which case alternatives such as %PA which provides a fine
structure to %CC may be preferable but this is computationally
very much more intensive. The third is that these methods are
very intensive and can take several hours or even days even on
parallel processors, e.g. quadcores. The fourth is that models
may be identical over a range of values of C: this is because the
effect of this parameter is to change the number and nature of the
SVs but there is not a smooth transition so, for example, a model
with C = | may be identical to that with C = 5 under certain
circumstances. Finally it is necessary to establish a range of
tunable parameters in advance that is sensible for the problem in
hand.

There is no universal panacea for overcoming these problems,
and unlike PLS or PCA models we often cannot pinpoint an
exact optimum that everyone would agree to. The main issue
though is to avoid overfitting and to ensure that the optimisation
and validation are done correctly. Because optima are likely to be
relatively flat, it is often impossible to define the precise value of
the tunable parameters that are ‘best’, but so long as the model is
safe, that is it does not overfit the data, the model is probably
adequate. Often it is up to the person that sets up the SVM model
to make decisions about what he or she thinks is sensible, for
example how important it is to reject outliers (and which samples
are outliers) or whether the underlying differentiation between
groups of samples is likely to be linear. Sometimes it is impossible
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Fig. 25 Illustration of the influence of C and ¢ on the boundaries for
case study R1 (environment).

to generalise and this depends on knowledge of the underlying
problem. Most traditional statistical tests are based on under-
lying assumptions of normality and so the majority of tests for
outliers, for example, depend on this type of assumption. In
many cases, e.g. metabolomics and proteomics, we do not
necessarily expect samples to be normally distributed, so can take
advantage of the flexibility of Support Vector based models.

4 Multiclass support vector machine models

Multiclass models involve deciding which group a sample
belongs to when there are more than two classes in a dataset.®
Support Vector Machines were not originally formulated as
a multiclass method, but there are extensions that are available
when there are more than two groups in the data, e.g. case study
R2 (NIR of food) where there are four classes and case study R3b
(polymers where there are nine classes). In this and later sections
we will define the group that is being modelled as the ‘in group’
and all other samples (which may arise from several classes) as
the ‘out group’.

4.1 One vs. all

One vs. all*? is the earliest method reported for extending two-
class SVMs to solve the multiclass problem and involves deter-
mining how well a sample is modelled by each class individually
and choosing the class it is modelled by best. Given G classes
under consideration, G binary SVM models can be constructed,
samples either being considered as part of the class or outside it, so
that each model consists of two groups, the first being class g and
the second all other classes. The gth (g = 1,...,G) SVM model is
trained with all of the samples in the gth class being labelled by +1
and all other samples being labelled by —1 (note that the alter-
native approach of one-class SVDD is discussed in Section 5).
Hence G SVM decision functions can be obtained, for each model.
Instead of using a sign function to determine the class member-
ship, the numerical outputs of the decision functions for each
SVM model are compared, as described below. The membership
g(x) of an unknown sample x is determined by finding the class for
which the corresponding decision function is a maximum

g(x) = ;n%( Z a;c; K (sig, x) + bg>

i€sVg
where

Z OéjC,'K(Sig, x) =+ bg

iesvg

is the decision function for class model g.

A way of illustrating this method is to present the decision
function for each class. For R2 (NIR of food), all four decision
functions can be superimposed. In Fig. 26 we illustrate this
principle, for four values of ¢ and C = 1 using a 2 PC projection
of the data. For ¢ = 0.05 we find that all the samples are correctly
classified, but that the four decision functions are primarily of the
form of planes with sharp spikes where the samples are. The
planes are at different levels. For very small values of o, all
samples become SVs, and all are on the margin and of equal
height, because the Gaussians are in effect in the form of a series
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Fig. 26 Illustration of one vs. all SVMs, using the first 2 PCs of case study R2 (NIR of food) and a value of C = 1 and different values of ¢ relative to the
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of sharp spikes centred on each sample and do not overlap. Since
> a;e; = 0, if all samples are SVs, we have

iesv
E Qin — E Qout = Lintin — IouiQou = 0

iein ieout

where I, is the number of samples in the ‘in group’ (being
modelled) and 7, the number in the ‘out group’ (the remainder
of samples in the training set), but because the decision margins
are scaled to width 2 (so that there is a maximum distance of 1 for
each sample to the decision boundary — see Section 3.1), then «;,
+ aou = 2 so that a, = 21, /T and agy = 21;,/1. If there are equal
numbers of samples in each group the values of « become 1; the

more unequal the number of samples, the more these differ from
1. The bias term which is simply half the difference between the
values of « is therefore given by (e, — aout)/2 = (Iout — Lin)/2; if
there are equal numbers of samples in each group, this becomes
0. The principle of how the bias term is influenced by the number
of samples is illustrated in Fig. 27. In our case for class A the bias
term is 0.5, class B is 0.1667, class C is 0.5556 and class D 0.7778,
which relates directly to the number of samples in each class.
Class B has by far the largest number of samples (= 30), and so
the lowest bias term and therefore is the highest plane, meaning
that samples outside the four closely defined clusters are assigned
to class B (olive oils), suggesting that the model overfits samples
in the region between the clusters. Note that the positive spikes
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Fig. 27 Illustration of bias term and Lagrange multipliers for the case
where all samples are infinitely sharp support vectors, but there are
unequal numbers in each class. In this case the blue group (‘in group’)
contains more samples than the red group (‘out group’).

are support vectors from ‘in groups’ and negative spikes are
samples from the out classes; because the number of samples in
the ‘out group’ is always more than the ‘in group’ the height of
the negative spikes appears less than that of the positive spikes.

As o increases to 0.25, the region assigned to each group
increases, as the RBF is broader. Class C (safflower oil) whereas
consisting of fewer samples than class B (olive oil) is more
dispersed, and because the Gaussians are broader they do not
reach 0 between samples of each ‘in group’ and as such the class
with the greater dispersion wins out, so the background appears

® ClassA:PS

@ Class G: PAG

o=0.25

@ ClassB:ABS
@ ClassD:LDPE @ ClassE: PP
@ ClassH:PBT

to be from class C. However, still this value of ¢ suggests that the
data are overfitted. A value of ¢ = 0.5 begins to sort out these
problems, with each group having its own defined region of
dataspace. Since there are no samples in the bottom left-hand
corner of the PC plot, the predictions of origins of samples that
fall into this unknown area are not certain. However, multiclass
SVMs are a supervised method for pattern recognition and as
such they try to force samples into one of several predefined
groups, so every region of the PC plot has to be assigned to
a specific group, even if there are no training set samples, in order
to obtain an unambiguous answer. Once ¢ = 1 well defined
regions of the PC scores plot are found. If the property that all
regions of dataspace are uniquely assigned to one class is unde-
sirable, it is necessary to use other approaches such as one-class
classifiers (Section 5).

4.2 One vs. one

Given G classes, the one vs. one approach constructs G(G — 1)/2
two-class SVM classifiers, each classifier only separating two of
the G classes. For example, we can form a model between classes
A and B and ask which class each sample is assigned to, even if
the origin of the samples is from outside these groups. If there are
four classes we can test A vs. B, Avs. C, Avs. D,Bvs. C,Bvs. D
and C vs. D. We then combine the results of these tests. The
simplest approach involves using ‘majority vote’, that is assign-
ing a sample (or a region in dataspace) to the class it is most
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Fig. 28 Result of one vs. one decision making for case study R3b (polymers) using various values of a.
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frequently classified into. Where there is a tie, the sample (or
region in space) is considered ambiguous.

For case study R3b (polymers) we illustrate the result of one
vs. one decision making using C = 1 and four values of ¢ in
Fig. 28. Note that there are a small number of areas (shaded in
white) for which there is no unambiguous answer, where the one
vs. one method is tied. Note that as ¢ is increased the regions
occupied by each group become more similar in size.

One anticipated problem is that there are several areas in
Fig. 28 where the answer is ambiguous, that is there is a tie as
samples are equally assigned to one class or the other. There is no
universal agreement as to how to cope under such situations but
one common approach involves fuzzy rules,® as follows:

e For each point in dataspace, perform all comparisons 1 vs.
2,1 vs. 3to 1 vs. G and predict ¢ for each model.

e If the predicted value of ¢ is greater than 1 for any
comparison, set it to 1.

e Keep the minimum value of ¢ for this set of comparisons,
call it m.

e Perform the full set of comparisons for all classes G, giving
my for each class g.

e Assign the sample or region of dataspace to the class for
which m, is a maximum.

The result of using fuzzy rules is presented in Fig. 29. It can be
seen that the classes are now quite well represented apart from
classes D and I which overlap with other groups and cannot be

@ ClassA:PS @® ClassB:
@ ClassD:LDPE @ ClassE:
® ClassG:PA6 @ ClassH:

o=0.25

easily modelled using two PCs. An advantage of fuzzy rules is
that there is always an answer as to which class is most appro-
priate, but the disadvantage is that this could be prone to over-
fitting, and having an answer that is ambiguous sometimes
provides an alert that the new sample is an outlier. In much
classical machine learning there is almost always an underlying
answer that is certain (for example, if we are testing whether
a person is male or female there will be an answer and every
sample must fall into one of the known groups), but in areas of
chemometrics we may have an outlier or a sample that is not
a member of any modelled groups (e.g. a type of polymer that has
yet to be analysed).

4.3 DAG trees

When there are large number of classes, using one vs. one
methods of Section 4.2, the number of comparisons can be quite
substantial (in the case of R3b there are 36 possible one vs. one
comparisons), especially if there are also test and training set
comparisons, so computationally more efficient methods are
often desirable. A DAG (Directed Acyclic Graph) tree is an
alternative and more computationally efficient approach,
although it starts on the same basis of forming all possible one
against one models on the training set. But when predicting
the origins of a sample, it uses a rooted binary DAG tree with
G(G — 1)/2 internal nodes (or decisions) and G leaves (or

ABS @ ClassC:PCarb
PP @ ClassF: HDPE
PBT @ Class|:PET
c=0.5
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Fig. 29 As Fig. 28 but using fuzzy rules.
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Fig. 30 Examples of possible DAG trees for 3- and 4-class problems.

outcomes or classification results). Each node involves a binary
one against one model. A test sample starts from the root node,
and the binary decision function is evaluated depending on the
output value of the decision function. Examples of DAG trees
for 3- and 4-class problems are shown in Fig. 30. The compu-
tational time for a DAG tree is shorter than one vs. one because it
is not necessary to go through every binary classifier to test an
unknown sample; only G comparisons are necessary, so this
could shorten the time considerably for predictive models, for
example, if there are 9 classes, instead of forming 36 models and
taking the majority vote, only 9 comparisons are required. There
is no universal guidance as to which two classes are tested in each
node, but for most problems the result only changes slightly
according to the arrangement of the nodes. A possible strategy,
for example, would be to choose the two most different classes
for the first decision in the tree and so on. The improvement in
computational efficiency will be significant when predicting
unknowns, especially if algorithms are quite slow. As an illus-
tration of the use of DAG we present the results of three possible
solutions in Fig. 31. There are slight differences according to
which decision tree is employed. However, when there are a large
number of classes, this can speed up the model building
substantially, and although there is some variability between
solutions, this is unlikely to be no more than that introduced by
other factors such as sampling error, instrumental noise, data
preprocessing or choice of decision function.

5 One-class support vector domain description
5.1 One-class classifiers

In Sections 3 and 4 we introduce classifiers that aim to divide
dataspace into two or more regions, each of which corresponds

to one class of samples. The classification of a sample is given by
which region of the dataspace it falls into. These classifiers are
often sometimes called hard models, in that they divide space up
into sections using one, or a series of, boundaries, the principle of
which is the basis of the most widespread classification methods.
However, when there are several classes it is sometimes hard to
re-express these classifiers in a multiclass form, and the bound-
aries become quite complicated as discussed in Section 4, and
indeed SVM methods cannot naturally be formulated as multi-
class approaches, unlike methods such as QDA (Quadratic
Discriminant Analysis) or LDA where the decision rules are easy
to extend. Furthermore, hard models find it difficult to deal with
outliers, that is samples that belong to none of the predefined
groups — the inherent assumption of such classifiers is that all
samples must belong to one group — and cannot deal well with
samples that are genuinely ambiguous. A final weakness of hard
models is that they have to be reformed if new groups are
introduced, unless these groups are subsets of the existing
groups.

In order to overcome these limitations a set of modelling
techniques which are called one-class classifiers*® have been
developed. The approaches are often sometimes called soft
models, and in the area of chemometrics, Soft Independent
Modelling by Class Analogy (SIMCA) is the best known,
although by no means unique. A one-class classifier models each
group independently. There is no limit to the number of groups
that can be modelled, and a decision is made whether a sample is
a member of a predefined group or not. The difference between
one-class and two-class classifiers is illustrated in Fig. 32. For the
two-class classifiers a line (or more complex boundary) is drawn
between the two classes and a sample is assigned according to
which side of the boundary it falls. For the data illustrated, there
are two possible one-class classifiers, and these can be repre-
sented by boundaries that in the case of the data illustrated are
ellipsoidal. Samples outside these boundaries would be assigned
as outliers belonging to neither known class. Fig. 33 extends this
theme. In this case there are three groups; although class A and B
are separate, class C overlaps with both of them; in addition there
is an outlier that belongs to none of the three classes. A one-class
classifier establishes a model for each class separately and is able
to conclude that samples belong to no class, or to more than one
class, simultaneously.

5.2 Support vector domain description

Although SVMs are usually introduced as a form of binary clas-
sifiers, one-class modifications are available. Rather than being
used to separate two or more classes, one-class SVMs are built on
a single class. There are two main one-class SVM algorithms: one is
called ‘Support Vector Domain Description’ (SVDD)* and
another is called ‘v-Support Vector Classifier’ (v-SVC).** We will
restrict discussion to the SVDD method in this paper, whilst
reminding readers that there are, as always, several alternatives
available. We will assume that we are using an RBF kernel.
Whereas SVMs find lines or hyperplanes either in the original
dataspace or more usually in kernel space to separate classes,
SVDD tries to find a circle (or hypersphere in kernel space) that
encloses a class. One problem is that we can always find such
a hypersphere if the radius is large enough to enclose a class, so
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Fig. 31 Results of DAG tree for dataset R3b (polymers) using a one vs. one SVM, fuzzy rules, C=1 and ¢ = 1.

there usually need to be other rules. Fig. 34 illustrates some of the
key principles of SVDD. Only one class is modelled and each
sample is characterised by two variables. Instead of a line
dividing different regions of dataspace a circle is found that
encloses the data. This circle has radius R. Samples on the
boundary or circumference of the circle are defined as
unbounded support vectors. Samples outside the boundary or
misclassified are defined as bounded support vectors. Of the
unbounded SVs these can be divided into essential (required to
define the boundary) or non-essential (not required to define the
boundary). The latter are very rare and we will neglect, and
would only occur if samples happen (by accident) to be exactly
on an existing boundary. Note that for one-class SVDD, there is
only one boundary and no margins.

Whereas a circle of large radius can always be found that
encloses any dataset exactly, this may result in overfitting the
data, especially if one or two samples are outliers. Hence a value
analogous to Cis used to determine what proportion of samples

of the ‘in group’ are to be enclosed by the circle. In this paper we
define a parameter D. A value of D = 0 means that all samples are
within the boundary, and D = 1 that no samples are within the
boundary. As D increases the region enclosed by the boundary
decreases. The principle is illustrated with reference to case study
L4 in Fig. 35. The value of D relates approximately to the
proportion of samples that are outside the boundary. Hence if D
=0.75 we would expect around 5 out of 20 samples in each class to
be outside the boundary (bound SVs). This is an approximation
(for example, it is not possible to have exactly 25% of 10 samples),
but usually holds up well when there is no kernel. The samples
would by definition be misclassified but this is analogous to
a confidence limit; if we have D = 0.25, we are finding the 75%
confidence limit, i.e. the bound in which approximately 75% of
the training set are enclosed. The samples on the boundaries
normally equal 2 or 3, and are correctly classified but called the
unbounded SVs. For D = 0 in most cases the unbounded SVs are
the samples farthest apart in the dataset, but if drawing a circle
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Fig. 32 Difference between (a) a single two-class classifier or (b) 2 one-
class classifiers.
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Fig. 33 Example of three classes with some overlap and an outlier.

. Non Support Vector
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Bounded Support Vector

Fig. 34 Some definitions for SVDD.

X Centre of circle
R Radius of circle

£ slack variable

containing these samples on the circumference does not enclose
the training set then a third sample is necessary to redefine the
circle. The circle is the smallest possible one that encloses all
samples. Two different scenarios are illustrated in Fig. 36. Note
that very occasionally the boundary appears to be defined just by
one SV: in fact there is more than one sample very close to the
boundary and this is a result of numerical approximation and
slow convergence of algorithms since it is not always possible to
converge to a precise analytical solution; however, in Fig. 35 this
only happens for the case of D =0.75 and class A when in practice
the border is so narrow that one would not use this in practice as
amodel. Note that although the SVDD boundary is in the form of
a circle in the dataspace if there is no kernel, as D changes we do
not get concentric circles, as illustrated in Fig. 37, and as such
SVDD differs from methods such as QDA (using the Mahala-
nobis distance) where circles (or ellipsoids) are all centred on the
mean of the dataset as the confidence level changes. The value of
the radius of the circle, however, is related to D as illustrated in
Fig. 38 for class A of case studies L1 to L4.

Mathematically, in analogy to SVM, it is possible to define
a structure error function for a SVDD model as

P(RuE) =R +CY &

iesv

with p being the centre of the data enclosed within the model space,
R the radius, &;is the slack variable modelling the training error and
the tolerance of the training error is controlled by the term C which
controls the size of £ and therefore controls the fraction of samples
lying outside the boundary. SVs are either on the boundary (¢; = 0)
or outside the boundary (&; > 0) as discussed above. The more rigid
the boundary the greater the value of R. The mathematics is rather
complicated but the RBF in kernel space is the same as for two-
class SVMs except that the SVs all come from one class, and
therefore the decision function is always positive, so that the
position of the separating hyperplane (or decision boundary) must
be changed, and is given by 0.5(h — R?) where b is defined slightly
differently (and is negative in value) to b for two-class SVMs. Using
this formalisation, one-class SV models can be obtained in a similar
manner to two-class SVM models, using Lagrange multipliers to
find the Support Vectors, but we will not go through the mathe-
matics in detail which is described elsewhere.*>*

It is important to realise that R changes the appearance of the
boundary but is controlled by C. The more rigid the boundary the
larger the value of R. Although Cis often called the penalty error it is
not strictly analogous to that used in two-class SVMs; however, the
higher it is the more the samples that are included within the model
space. Because there is only one class to be modelled, the boundary
can either be set to include all samples or to misclassify a certain
proportion of samples. The larger the number samples misclassified,
the smaller the region in dataspace. However, unlike two-class
SVMs, one-class models do not use information about the ‘out
group’ and as such are not trying to avoid samples of different
classes. C can be related to D which has been defined above by

p_ |
T IC

where I, is the number of samples in the training set, to
emphasise that C no longer has a similar meaning to that in
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Fig.35 Appearance of one-class SVDD boundaries for case study L1 and different values of D. Misclassified samples from each ‘in group’ are indicated
by filled symbols, and can be called bounded SVs. Unbounded SVs are indicated in filled light colour on the boundary.

two-class SVM, and so that D is directly comparable to a confi-
dence limit. Hence a value of D = 0 corresponds to an infinite
penalty error (that is there can be no misclassified samples), and
a D of 0.1 for a class size of 20 corresponds to a value of C of 0.5.
A D of 0.5 would correspond to a C of 0.1 for that class size.

5.3 Kernels

Just as for SVMs, kernels can be introduced to the model. It is
now no longer necessary that the boundaries are circular. If we
use an RBF, as usual the sharper the radius, the more complex
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Fig. 37 [Illustration of SVDD boundaries for D = 0 (largest circle) to D
= 0.9 (smallest circle) by steps of 0.1 for class A of case study L2.

[+ 4

D

Fig. 38 Illustration of how the radius R for the SVDD solution for class
A of case studies L1 to L4 changes with D.

the boundary. However, because, unlike SVMs, we are only
modelling one class, the boundaries tend to be smoother. In this
section we will calculate ¢ in terms of the standard deviation for
each class separately, rather the entire dataset as a whole.

In Fig. 39 we illustrate the change in boundary with change in
o for case study L2 and D = 0.2. In this case we have to visualise
separate decision functions for each class, although the bound-
aries can be superimposed in flat projection. Note that now there

can be samples that are within more than one region. We see that
for small values each sample has an RBF so sharp that it is in
practice an SV in its own rights, but once ¢ increases the
boundaries become smoother, first encompassing small groups of
samples, and ultimately nearly resembling the boundary when
there is no kernel (Fig. 35), for an infinite value of o, the decision
function will be completely flat and so exactly resemble the
models of Section 5.2. As the value of ¢ increases, the boundaries
get smoother and resemble circles more. For D = 0.2 we expect
around 8 out of 40 samples to be misclassified, and but the actual
number is slightly less than expected. However, there are, in fact,
4 SVs for class A and 5 for class B, so if we count the number of
SVs this is close the number anticipated from D. The approxi-
mation only holds well when o is large.

The mathematics is rather complicated but the RBF in kernel
space is the same as for two-class SVMs except that SVs come
from only one class, so the kernel function is always positive.

5.4 Influence of SVDD parameters

We can now visualise the effect of adjusting both D and ¢
together. For case study L2, we show the influence of D when g =
0.5 in Fig. 40. As D decreases, the boundaries become wider and
more complicated, as they have to incorporate all the samples.
Note interestingly that for this value of ¢ there is no difference
between the boundaries for D = 0 and 0.25. In fact the value of D
approximates the proportion of samples misclassified best when
o is large — resembling a model without a kernel. When ¢ is very
small the RBF decision function is very sharp and almost all
samples become SVs. This is illustrated in Fig. 41 for class A of
case studies L1 to L4. The number of bounded SVs equals the
number of misclassified samples — that is, samples outside the
boundary. For D = 0 no samples are misclassified and as such
there are no bounded SVs; however, the number of unbounded
SVs reduces with ¢ until it reaches a number that equals the
number of SVs needed to define a boundary in the model without
a kernel (Fig. 35) which is equal to 2 in this case (or 0.1 of the
samples) since only 2 samples are required to define a circle; for
low values of o the high proportion of samples that are SVs
reflects the fact that most samples are SVs so the boundaries
become very complex. A similar trend can be noticed for the case
where D = 0.25, except that the number of unbounded SVs
approximates to 0.2 rather than 0.25 (4 samples), since the
relationship between D and the number of misclassified samples

This journal is © The Royal Society of Chemistry 2010

Analyst, 2010, 135, 230-267 | 257


https://doi.org/10.1039/b918972f

Published on 23 December 2009. Downloaded on 11/21/2025 12:08:54 PM.

View Article Online

Decision functions Boundaries
Class A Class B
. j 3
x4
5
E R
il = .: :’ )
§ 3] Al ..
> 2 ®
! : L] L] .A &
8 o
[ L] "
1 L]

& +
<
5
+
S
SEC A
22 Q a > 4
I o= .
1 &
& +
e
i’ & o
L % S
) :
il D .

0=0.5 i
§ 015 i
01 ~

: g ji i
%m s ; § 4 '::‘.“i‘v i 2

: ai - i,
nf:'s"" ) L

0’!‘0‘5‘“\

Fig. 39 SVDD boundaries and decision functions for both cases and case study L2, using D = 0.2 and various values of ¢ in units of multiples of the
standard deviation of each class SVs indicated by symbols with crosses.

258 | Analyst, 2010, 135, 230-267 This journal is © The Royal Society of Chemistry 2010


https://doi.org/10.1039/b918972f

Published on 23 December 2009. Downloaded on 11/21/2025 12:08:54 PM.

View Article Online

Decision functions
Class A

SVM decision function
SVM decision function

SWM decision function
SVM decision function

D=0.25

SVM decision function
SVM decision function

SVM decision function
SVM decision function

8
0 0 g, 5 1
& o Q'gg 5
] 6
P, et _—
275 i i 2 ] ) 4
ox\v—-n/ T2 e\‘“\/xn/‘(?

Variable 2 Variable 2

Variable 1

g
S 2

Variable 1

Boundaries
Class B
s 4
5 ..
+
‘ Loy,
% 3 .‘0 . !0
> 2 .
- 5
| :
0 ® ol
1 ®
1 0 1 2 3 4 5 ] 7
8 *

Variable 2

0

Variable 2

Variable 2

Variable 1

Variable 1

Fig. 40 Appearance of boundaries and decision functions for case study L2, o = 0.5 the standard deviation of the each class and different values of

D. SVs are indicated by symbols with crosses.

is approximate. Some of the sudden ‘dips’ or discontinuities
occur because when ¢ is changed there are sudden changes in
which samples are defined as SVs, the solution being stable for
a range of values and it changes as different samples define the
boundary. As we can see in Fig. 37, this may involve quite
different samples, and sometimes different numbers of samples.
An expansion of the graph for D = 0.25, for ¢ between 0 and 2, is
illustrated in Fig. 42. It can be seen that for ¢ = 0.5 there are no
bounded SVs; that is, all SVs fall on the margins. Four bounded
SVs (corresponding to unclassified samples) are obtained once o
exceeds 1.2.

We illustrate the changing boundaries for case study R1
(pollution) as both D and ¢ are varied, in Fig. 43. For very small
values of o, SVDD attempts to form boundaries around all or
most samples, individually. An interesting feature of this dataset
is that there are 3 outlying samples from class B (clean) that

appear to be present within class A (polluted). For low values of
o these are characterised by their own small clusters, but as o
increases, the appearance is of large overlapping clusters. When
D = 0 these outlying samples have a large influence on the class B
model as the boundary is required to include them, and when o is
very high this results in two highly overlapping circular regions.
When D = 0.25, the model can afford to ignore these samples, as
approximately 25% of the samples will be outside the boundary
and so misclassified from each class. Note that these samples are
very far from the boundaries, whereas the other misclassified
samples are quite close, suggesting that the distance from the
boundary could also be used to determine how badly a sample is
misclassified.

It can be seen that when D and o are low there is a risk of
overfitting. For case study R1 this could have a considerable
influence on the model. In other situations, the values of these
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parameters may have little influence on the model. We return to
case study R2 (the four types of oil). Fig. 44 illustrates the
boundaries when D = 0 and ¢ = 1. These are identical for o = 0.5
and 2, as the same samples are chosen as SVs and the classes are
very well defined. Note a very significant advantage of one-class
SVs for this case study: compared to Fig. 26, since the groups are
very well defined, it is only necessary to select the region of
dataspace occupied by the samples for the model, and samples
that are outside the predefined classes are no longer forced into
a specific group.

One major dilemma is how to optimise the SVDD parameters.
In SVMs if there are two classes and as such it is possible to
determine classification errors, since if a sample from class A is
assigned to class B, this contributes to the training set error. In
SVDD there is only one group and, of course, the model that
performs best encompasses all samples. A circle (or hypersphere
in kernel space) that is large enough can always be found that
encloses all training set samples from the ‘in group’ but this is not

necessarily a suitable solution. If we were to include an ‘out
group’ in the assessment, then of course, as the size of the circle
increases, ‘out group’ samples will be enclosed in the circle,
resulting in classification errors, so there will be a limit to the
optimum radius of the circle. However, for one-class SVDD we
should not take into account information about any other group.
Therefore, traditional approaches for optimisation are not likely
to be successful.

We will discuss one possible approach to the optimisation of o.
To overcome the problem associated with the lack of ‘out group’
samples, a possible approach for optimisation of ¢ is proposed
using the bootstrap*! involving the repeated formation of bootstrap
training and test sets, the data being split into two, one the boot-
strap training set that is used to develop the SVDD model and the
other bootstrap test set that is used to show how well it performs.
This involves finding a compromise solution that attempts to
minimise the proportion of bootstrap test set samples rejected as
belonging to the ‘in group’ (defined by f,;) whilst also minimising
the radius Rj, that surrounds the bootstrap training set in kernel
space, since the lower R, the tighter the fit to the ‘in group’ samples.
In order that the radius R;, is comparable in magnitude to f..j, the
boundary radius can be scaled from 0 to 1 by:

Rh - dmin

k - dmax - dmin

where dp,;, is the minimum pairwise distance between samples in
a bootstrap training set and dy.x is the maximum pairwise
distance between these samples. Therefore, we can define the
optimum ¢ by the value that results in the minimum of k + fj,
since f.; is calculated using a bootstrap test set, and this will be
dependent in part on which samples are selected in the bootstrap
test set. Hence this procedure is repeated a number of times
(typically 100-200) with different samples being selected each
time for the bootstrap test and training sets. The average value of
k over all iterations can be calculated for a range of ¢ between the
values of dy,;, and dp., for all the ‘in group’ samples (which is
usually wider than for the bootstrap training set) and the
minimum chosen as the optimum. During this procedure, the
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sample rejection rate D is fixed ideally at 0 to include all samples
in the bootstrap training set model. After optimising o it is
possible to then change D if required for any specific confidence
limit.

6 Support vector regression
6.1 Principles

SVR (Support Vector Regression)*® is an extension of SVM to
cope with regression, which is a common application especially in
analytical chemistry. For simple linear calibration, where there is
only one variable measured, we aim to form a model between x
(horizontal axis) and ¢ (vertical axis) of the form ¢ = b + wx,
where ¢ is predicted (e.g. a concentration) from x (e.g. a spectral
intensity). Note that the notation in this paper is consistent with
various previous articles**?® and is used because in multivariate
calibration, usually the property to be measured is denoted by ‘y’
and the spectral or chromatographic intensity by ‘x’, whereas in
traditional analytical chemistry this terminology is reversed.
Hence we do not use ‘y’ which can be confusing as there is
a direct incompatibility between the two conventions, and
employ ‘c’ which can be used to denote calibrant or concentra-
tion, and, in two dimensions, is represented by the vertical axis.
This is often called inverse calibration. The discussion below
could be extended to other types of calibration, but we restrict to
one way of expressing the equations for brevity.

In order to illustrate the principle, we will consider case study
C1 and try to develop a linear model between x and c¢. For
illustration we refer to Fig. 45. To understand the method, we
need to introduce a new parameter, ¢. The linear model between
the two variables is analogous to the boundary between two
groups in SVM. However, ¢ defines the width of the margin, and
an aim of calibration is to enclose all samples within the margin.
We can see that as the line becomes flatter, the width of the
margin increases. In order to enclose all samples between
the margins there will be a maximum value of ¢ (which equals the
largest difference in value of ¢ between the samples and is

This journal is © The Royal Society of Chemistry 2010

Analyst, 2010, 135, 230-267 | 261


https://doi.org/10.1039/b918972f

Published on 23 December 2009. Downloaded on 11/21/2025 12:08:54 PM.

View Article Online

L}

=1

o

s

=

o
e=0.134
£=0.134

45
—""
~2 0
-~ o
4}

= -

£ c=3390 387

o "

o -
£=0.250 Tl
35} - E
00 -
o L
£=0250 e
b ""

X variable

45 -

o
Ca
-
#
7’

L c=3166403x

¢ variable
\

35}

e=0406

¢ variable

351

x variable

Fig. 45 Case study Cl. Illustration of different best fit straight lines, together with the SVs (indicated by filled symbols) and corresponding values of .

45

= - o
= o
g o
o
S 0" ©c=3131+032%x
35t 1
e=0.152
Cd
£=0.152 o i ; : ; ; i
0 05 1 15 2 25 3 35 4

x variable

Fig. 46 An alternative straight line for ¢ = 0.152 and case study Cl1.

a completely flat line), and a corresponding minimum value,
which depends on the distribution of the samples around a linear
model. For a range of values of ¢ we can draw lines of the form ¢
= b + wx, defined by the SVs or samples exactly on the margins.

Usually it is necessary to specify ¢, which is the error tolerance,
in advance of training a model. If there are outliers, for example,
the choice is not necessarily straightforward, but this value could
be regarded as the maximum sensible error expected in the data.
However, for a given value of ¢ there will usually be several
different possible straight lines. If we restrict these lines to those
for which at least two samples are on the margins, the number of
possible lines is limited. However, unlike SVM, samples do not
have to be on both of the margins, and an alternative solution to

that of Fig. 45 for ¢ = 0.152 is illustrated in Fig. 46, in which case
two samples are on the upper margin.

A key feature of SVs as linear learning machines is that they try
to minimise Y2(ww’). In the case of the SVR model of case study
Cl, x is one-dimensional, so we are trying to minimise “2w? or
find the flattest line for a given value of ¢. Since w = 0.326 for the
case illustrated in Fig. 46 and 0.3 for the case illustrated in Fig. 45
(when ¢ = 0.152) we choose the solution of Fig. 45 as our
preferred out of the two solutions (there are a few other possible
solutions also but they can easily be ranked according to the
value of w). This is the preferred SVR solution (using a hard
model) for the chosen value of ¢ of 0.152.

6.2 Penalty errors and kernels

In the example above we try to form models that include all
samples between two margins, of a given width. Providing that ¢
is chosen correctly a linear model can always be formed with
these properties and there is always a way of deciding which
model is the most appropriate.

However, in many practical cases it may be inappropriate to
force all samples to be within the margins, and we allow samples
to fall outside these margins. We need to extend the SVR models,
and the main principles are illustrated in Fig. 47. Samples on the
margin are SVs that define the margin, and those outside are
analogous to bounded SVs (see Section 5.2). The slack variable &
defines the distance a sample is from the margin. Samples
between the margins are not SVs. Many of the principles are now
similar to those described above. The task is now to minimise
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where &; is the slack variable for sample i: in this paper we will
assume that this is always positive whether the sample is below or
above the margin. We can see that there is now a penalty error C
that determines how important it is to ensure that all variables
are within the margins. Fig. 48 illustrates a variety of solutions
for case study C1 where ¢ and C are varied. Note that in this case
C makes very little difference as the two variables are related
approximately in a linear fashion, although for very narrow ¢
there is a small difference when C is changed (for the other
variables there is no difference over a wide range). There will, of
course, be some combinations of these two parameters for which
there is no solution, e.g. a very narrow margin with a high
penalty error.

When the relationship is no longer linear, as in case study
C2, it is necessary to introduce a kernel. We will restrict this
paper to an RBF, and similar principles apply as to how to
include an RBF as for other implementations of SVs, so are not
repeated for brevity. This case study is characterised both by
a curvilinear relationship between the variables and by a strong
outlier, which is coloured in red. We illustrate the solutions
using a fixed value of ¢ (= 0.2) but with varying ¢ and C in
Fig. 49. We can see that under such circumstances both
parameters now have a major role in defining the SVR solu-
tion. When ¢ is small, the solution is much less smooth as
expected, but as C increases, the outlier becomes more influ-
ential, and for C = 5, lies on the boundary. For low values of C
the solution is quite flat. Increasing ¢ to 1 x the overall stan-
dard deviation of the data results in a far smoother solution
and one which is less influenced by the outlier. As ¢ increases
the solution will approach a linear model, but some combina-
tions of ¢, C and ¢ are impossible. For example, if we were to
have a narrow value of ¢ and a fairly flat model with a large
value of ¢ it is not possible to increase C to a very high value
for this case study since such a model cannot encompass the
outlier on the margin.

£ C
0.08 0.2

0.16 1

3 35 4 45

X -

Fig. 48 SVR solutions for case study S1 for a variety of values of ¢ and
C: (left) best SVR lines; (right) predicted (vertical) versus observed
(horizontal). SVs on the margins are indicated with circles (all samples
outside the margins are also SVs), and on the right the bars represent 2¢.

6.3 Multivariate calibration

SVR can be employed for multivariate calibration. We will
illustrate this using case study S1, which consists of 25 UV/vis
spectra each consisting of mixtures of 10 PAHs. The experiments
are designed so that the concentrations of each analyte are
orthogonal and are at 5 levels.* In Fig. 50 we illustrate the effect
of differing values of ¢, C and ¢ on the calibration predictions for
benzanthracene. For each chosen ¢ value, in the left-hand column
the model is autopredictive, whilst for the right-hand column we
remove 10 of the samples (1, 2, 4, 6, 7, 9, 10, 12, 16, 18) as a test
set which are indicated in red, and the remainder are used to
determine the model and a training set (see Table 2).

We can immediately see that for low values of ¢ on the whole
the predicted concentrations using autopredictive models are
forced closer to the best fit straight line but this does not neces-
sarily mean that the test set is well predicted, e.g. compare ¢ = 0.5
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Fig. 49 SVR solutions for case study C2 using ¢ = 0.2, and different values of C and ¢ (in units of the standard deviation of the data) for an RBF. SVs
on the margins are indicated with circles (all samples outside the margins are also SVs), and on the right the bars represent 2e.

and C =1 for ¢ = 0.05 and 0.2: there is very little difference in the
test set predictions. Note that low ¢ can cause overfitting.
Compare ¢ =0.05, C =10 and both ¢ = 0.5 and 1: we see that for
the lower value of ¢ that autopredictive models appear slightly
better but the test set models are considerably worse. Note that in
some cases when C is changed, the models are identical because
the SVs are unchanged.

Looking at Fig. 50 it appears that the most suitable models are
for a low value of ¢ and high values of ¢ and C. This is primarily
because the data are related in a linear fashion, so having high ¢
makes the model close to a linear one, whereas low ¢ reduces the
error tolerance, and high C forces the points into or between the
margins. There will be a limit to these combinations of param-
eters outside which there are no solutions; however, the best SV
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solution does reduce the experimental error substantially. For
case study S1 there is only limited advantage of SVR models over
more conventional PLS approaches, but there are advantages (a)
if there are outliers and (b) if there are any non-linearities. If one
wants to force a linear model this can be done without a kernel.
We do not illustrate this for brevity, but because the data are
already quite linear for case study Cl1 there is very little difference
to those illustrated in this paper.

In many cases in analytical chemistry, experiments are
designed to ensure that models are linear and so SVR does not
offer much above traditional methods and is overly complicated,
with several parameters that must be adjusted. However, the
advantage is flexibility; for example, if we suspect that there are
outliers the models can be produced using different values of C to
see how far they differ, or indeed to include different levels of
opinion as to how significant it felt is to include information on
the outliers in the model. It is important to realise that least
squares methods are often unduly influenced by outliers and as
such it is usually necessary to remove such samples prior to
modelling, or else use alternatives such as median methods or
fuzzy calibration, whereas this is unnecessary for SVR which can
be considered much more flexible. In areas such as Quantitative
Structure—Activity Relationship (QSAR) where the relationship
between the response and the experimental factors is unlikely to
be linear, support vector based approaches have a great deal of
potential.

It is possible to optimise SVR parameters using similar
principles to other methods in multivariate calibration,? e.g. via
cross-validation or use of test sets, finding the combination of e,
C and o that gives the lowest prediction error. However,
because several parameters may need optimising, it is usually
a good idea to look at the performance graphically first and
possibly fix one of these according to what seems sensible for
any specific dataset, usually ¢ which represents the error toler-
ance, rather than to try to change all three simultaneously: some
combinations will be impossible and other combinations will
result in identical answers because identical SVs are chosen. If
the model is likely to be linear, fixing a value of ¢ that is quite
low by visual inspection and then setting C and ¢ to be as high
as is sensible to give a solution is probably the best approach.
There are no hard and fast rules unlike in PLS where there is
a strong literature on optimisation (or finding the most appro-
priate number of PLS components) because varying the values
of SVR parameters involves introducing additional assumptions
about non-linearity and outliers that can always result in
a slightly better fit to the data and so depend on what is
expected from the data.

The somewhat limited applicability to calibration problems
contrasts to the wide applicability to pattern recognition appli-
cations as we do not necessarily expect groups of samples to be
linearly separable, e.g. coming from biological, medical or
environmental studies and as such flexible non-linear solutions
are often necessary.

7 Conclusion

Most articles on Support Vector methods are based around the
original description in the machine learning literature, for which
the presentation has been largely unaltered over more than

a decade. This paper has tried to describe these approaches in
a more visual way whilst still retaining the basic algebraic
description and references to the key source papers. As these
approaches become more widespread there is a need to express
the methods in a form that applied scientists can appreciate,
especially to understand the influence of the main parameters on
the model.

The original applications were less concerned with multivar-
iate data, and less concerned with model validation, as the types
of problems often encountered, for example, in engineering have
different features: non-linearity though is probably more
important outside analytical chemistry and as such SVMs are
particularly flexible in dealing with such situations. Many experts
would say that SVMs can encompass almost any model, ranging
from the linear to the highly complex, and therefore could be
regarded as a universal method for classification and calibration.
Whereas this is certainly potentially true, for simple situations
they are probably unnecessarily complex with the risk of over-
fitting and dependence of the model on several adjustable
parameters that most users do not understand well. However,
when mining, for example large databases in genomics, trends
may be highly non-linear with outliers and Support Vector
approaches offer significant opportunities. We hope, however,
that in this paper we offer a graphical insight that allows users of
SVM based methods to understand better the consequences of
adjusting these parameters (C, o, and ¢ where appropriate), so
that the methods can be employed safely. In addition, as the
analytical chemist gets access to large and more sophisticated
datasets, for example from biology, medicine, environmental and
cultural studies, traditional linear approaches such as PLS,
SIMCA and PCA may in some cases be inadequate and not able
to cope with this additional complexity. It is important to
remember though that traditional approaches are adequate if the
structure of the data is quite simple, and are easier to validate and
optimise, so a careful choice must be made. For calibration there
is often less need for Support Vector based methods unless there
are outliers and non-linearities: some analytical chemists would
say that if so the dataset is not a good one, but in some practical
situations this may happen and it can be expensive in time and
money to acquire perfect calibration sets. In areas such as QSAR
there are likely to be non-linearities and outliers in most datasets
so SV based methods have a potentially strong role. Direct
comparisons between Support Vector based methods and others
are often a bit difficult and depend very much on the data
structure.

However, it is always necessary to use these approaches with
caution to avoid overfitting. This is especially key in most
modern chemometrics as there are often far more variables than
samples, a situation not usually encountered in most other areas
of science. Support Vector methods though are likely to become
an important plank of scientific data analysis for many years to
come, and there is an urgent need for understanding of the basis
of such approaches.
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