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The increasing interest in Support Vector Machines (SVMs) over the past 15 years is described.

Methods are illustrated using simulated case studies, and 4 experimental case studies, namely mass

spectrometry for studying pollution, near infrared analysis of food, thermal analysis of polymers and

UV/visible spectroscopy of polyaromatic hydrocarbons. The basis of SVMs as two-class classifiers is

shown with extensive visualisation, including learning machines, kernels and penalty functions. The

influence of the penalty error and radial basis function radius on the model is illustrated. Multiclass

implementations including one vs. all, one vs. one, fuzzy rules and Directed Acyclic Graph (DAG)

trees are described. One-class Support Vector Domain Description (SVDD) is described and

contrasted to conventional two- or multi-class classifiers. The use of Support Vector Regression

(SVR) is illustrated including its application to multivariate calibration, and why it is useful

when there are outliers and non-linearities.
1 Introduction

SVMs (Support Vector Machines) were originally proposed by

Cortes and Vapnik1 and have become increasingly popular after

their introduction in the late 1990s, particularly within the

Machine Learning community.2–6 After their introduction, SVM

applications have been successfully developed in several areas,

including bioinformatics,7 which is probably the most rapidly

growing discipline in terms of new methodologies due to the

recent explosion of data volumes, econometrics8 and biometrics.9

More recently, SVMs have been proposed for the analysis of

chemical data10 and have attracted the attention of the chemo-

metrics community, both as a classification technique, and also
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Matlab code for the book Chemometrics for Pattern Recognition. Hi
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because their use has been successfully extended to solve cali-

bration problems. There is an increasing number of articles

focussing on the comparison of SVMs with more traditional

chemometrics approaches.11–18 Most applications of SVMs are

applied to datasets with relatively small numbers of variables to

those typically obtained in analytical chemistry; however, there is

no inherent reason why they cannot be extended to highly

multivariable datasets, often, however, requiring a prior variable

reduction step such as PCA (Principal Component Analysis) first.

The tremendous expansion of interest in SVM methods can be

shown by citations to Cortes and Vapnik1 and Cristianini and

Shawe-Taylor4 totalling around 2000 and 3000 citations as

recorded by ISI since first cited in 1995 and 2000 respectively.

This compares with a total of around 7000 articles citing papers

from J. Chemom. since 1990 when first entered in the ISI data-

base and 15 000 from Chemom. Intell. Lab. Syst. since 1986, the
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Fig. 1 Citations of refs 1 and 4 since first cited compared to the two

chemometrics journals.
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two main chemometrics journals at time of writing. This rapid

acceptance of Support Vector methods is illustrated in Fig. 1,

where the citations of both articles and journals are plotted

against year after they received their first recorded citation over

a 12 year period (or 9 for Cristianini and Shawe-Taylor) at time

of writing (15 July 2009). This shows a remarkable interest in

such approaches. Whether this momentum will be maintained
Fig. 2 Simulated case

This journal is ª The Royal Society of Chemistry 2010
remains to be seen, but certainly at the moment SVMs and

related kernel methods are very widespread.

Within applications to analytical chemistry, the growth of

SVM approaches has been much slower. One of the issues is the

lack of graphically user-oriented packaged software that is suit-

able for laboratory based chemists, unlike older and more

established methods such as PLS (Partial Least Squares),19–21 so

whereas there is big potential in SVMs many hands-on labora-

tory chemists are reluctant to use the method. In areas such as

biology or economics there is a much better established tradition

of separate data analysis sections with dedicated staff who

would be comfortable using scripts, e.g. in Matlab. Hence SV

approaches, whilst of significant interest and the subject of

numerous papers, have been slow to take off in mainstream

analytical chemistry. Yet one issue is that many problems

encountered by the modern analytical chemist are non-linear,

and approaches such as PLS find it hard to cope. Take an

example in metabolomic profiling where we use compound

concentrations to determine whether a patient has a disease or

not. A model might be formed between disease state and

compound concentration: we do not expect this model to be

linearly related to concentrations of compounds and so tradi-

tional linear methods are not necessary appropriate. This

contrasts to traditional applications in analytical chemistry,
studies L1 to L4.

Analyst, 2010, 135, 230–267 | 231
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Fig. 4 Simulated case study C2 for calibration.
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e.g. calibration in atomic spectroscopy or ultraviolet/visible

spectroscopy in order to determine accurately the concentration

of analytes in a mixture: providing that the experiment has been

done well and spectra are within the Beer–Lambert limits we

expect a linear relationship between concentration and signal

and, as such, methods such as PLS that are founded on linearity

perform very well.

We will illustrate the methods described in this paper using

a variety of case studies as discussed below.

2 Case studies

2.1 Simulations L1 to L4: classification using two variables

The simulations are used to illustrate methods for classification.

They consist of two classes or groups of samples characterised by

two variables. Each class, A and B, consists of 20 samples, so the

datasets can be arranged in a 40 � 2 matrix and are illustrated in

Fig. 2.

� Case study L1 represents two linearly separable classes.

� Case studies L2 and L3 represent two classes that are not

linearly separable, based on case study L1, but moving class

B closer to class A.

� Case study L4 represents the situation where class B

surrounds class A, so although it is visually obvious which class is

which, a curved boundary is necessary that encloses class A.

2.2 Simulations C1 and C2: calibration

Simulation C1 involves 21 points that are approximately linearly

related and characterised by 2 variables, x and c, as illustrated in

Fig. 3.

Usually in calibration we try to predict c from x, e.g.

a concentration from a spectroscopic or chromatographic

measurement. In this paper we use the x/c notation22 rather than

the tradition x/y notation because x and y tend to get swapped

around: for univariate calibration x is usually the property (e.g.

concentration – represented by the horizontal axis) and y the

measured variable (e.g. a chromatographic peak-height), but in

multivariate chemometrics these are changed with X representing

a spectral matrix and y a concentration vector, for example.
Fig. 3 Simulated case study C1 for calibration.

232 | Analyst, 2010, 135, 230–267
Simulation C2 involves 63 points characterised by one

measured variable (x) and an underlying property we wish to

predict (c). In dataset C2, there is a curvilinear relationship

between x and c, the aim being to predict ĉ ¼ f(x) where the ^

means predicted. There is one point that is a clear outlier that

may have an influence on the model under certain circumstances.

This dataset is illustrated in Fig. 4.
2.3 Experimental case studies R1 to R3 for classification

For the experimental case studies although we have several

variables we project onto the first 2 or 3 Principal Components

(PCs)22–25 prior to performing classification, which is done in the

space of the scores of the most significant PCs. Of course, clas-

sification could be performed in the space of the original vari-

ables, but the aim of this article is to illustrate the methods

visually. We do not necessarily advocate that PCA has to be

performed prior to classification. Only brief essential details of

preprocessing are discussed below. More details are in the

references cited below and in a recent text on Pattern Recogni-

tion.26 PC plots of the scores of the first 2 and 3 PCs are presented

in Fig. 5.

2.3.1 Case study R1: environmental pollution studied by

headspace mass spectrometry. This dataset consisted of 213

samples of soil and sand analysed by headspace mass spec-

trometry (HS-MS), with an aim to determine whether the

samples are polluted or not. More details are presented else-

where.17 Of these, 179 were spiked with oil in the laboratory at

different levels, representing polluted samples, and 34 were clean,

representing unpolluted samples. For the purpose of this paper

we are primarily concerned with determining whether a sample

comes from the polluted group (class A) or the unpolluted group

(class B), rather than the extent of pollution. We are trying to ask

whether it is possible to distinguish polluted from unpolluted

samples using MS and pattern recognition and then to determine

how well we can classify samples into one of these two groups.

Mass spectra are recorded from m/z 49 to 160. Data pre-

processing has to take this into account and the following steps

are performed The MS intensities are first square rooted. Each

square rooted MS is then row scaled to a total of 1. Finally the
This journal is ª The Royal Society of Chemistry 2010
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Fig. 5 Scores of the first 2 and 3 PCs for case studies R1 to R3.
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columns (each variable) are standardized to allow each m/z value

to have equal influence on the resultant pattern recognition.

For this particular dataset quite a variety of preprocessing

options could be employed, most giving comparable answers (in

other cases a correct choice of preprocessing is essential), but for

this paper we stick to one protocol as the aim is primarily to

illustrate how Support Vector methods work in classification

studies.

From the PC scores plots (Fig. 5) we can see that the two

groups are mainly separable although not linearly in the space of

PCs 1 and 2; however, there is a small subgroup of samples from

class A buried within class B.

2.3.2 Case study R2: near infrared analysis of food. This study

involves trying to assign samples of vegetable oils into one of four

classes, using NIR (Near Infrared) spectroscopy, a traditional

technique for the application of chemometrics. The dataset has

been kindly supplied by Camo AS and is described further in

their training manual.27

The data consist of 72 spectra from:

(1) 18 samples of Corn Oils (class A),

(2) 30 samples of Olive Oils (class B),

(3) 16 samples of Safflower Oils (class C),

(4) 8 samples of Corn Margarines (class D).

Note that the number of Corn Margarine samples is quite low

and there can be problems in modelling groups with few samples.

In this dataset the following steps are used to prepare the data.

The NIR data are baseline corrected using an approach called

MSC (Multiplicative Scatter Correction). A region of the spec-

trum between 600 and 1500 nm wavelength is used for pattern

recognition. The data are mean-centred because some regions are

more intense than others, but the variability at each wavelength

is very similar.

The MSC corrected spectra are illustrated in Fig. 6. It can be

seen that there are some small differences between spectra of the

groups, for example, at around 700 nm the safflower oils appear
Fig. 6 MSC corrected NIR spec

234 | Analyst, 2010, 135, 230–267
to exhibit more intense absorbance followed by the corn oil;

however, these differences are quite small and there is a little bit

of spread within each group (as expected), so it would be quite

hard to identify an unknown oil, by eye, using a single NIR

spectrum, and pattern recognition techniques can be employed to

determine whether the groups can be distinguished, which spec-

tral features are best for discrimination and how well an

unknown can be assigned to a specific group.

This particular application is very much one of classical che-

mometrics and is a classification problem, but unlike that of case

study R1, there are 4 rather than 2 classes, in addition these are

particular issues about dealing with data when there are more

than two groups in the data. Furthermore, in addition to having

a multiclass structure, there also is a problem in that the number

of corn margarines is very small. However, all groups are very

well separated as can be seen in the scores plot (Fig. 5), but this is

an example of a multiclass problem.

2.3.3 Case studies R3a and R3b: thermal analysis of polymers.

Most commercial plastics are polymers. The aim of this study is

to be able to determine the group a plastic belongs to using its

thermal properties. Commercial plastics have different proper-

ties, as their structure changes when heated, and each type of

plastic has a different use so will have different characteristics.

The changes involve going from a solid to a glass to a liquid state.

By applying an oscillating force and measuring the resulting

displacement, the stiffness of the sample can be determined,

which will change as the polymer is heated, using the technique of

Dynamic Mechanical Analysis (DMA). Several parameters can

be measured, but in this study we use the Loss Modulus (E00),

which is related to the proportion of the energy dissipated or

non-recoverable per cycle, as a force is applied.

The temperature range studied is from �51 �C until the

minimum stiffness is reached, after which no further meaningful

data can be collected. Measurements are made approximately

every 1.5 �C. Each raw trace curve consists of between 99 and
tra of the four groups of oils.

This journal is ª The Royal Society of Chemistry 2010
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215 data points dependent on the highest recordable data point

of the polymer. After the highest recordable temperature, in

order to ensure a similar temperature range for each sample,

values (which were not recorded) are replaced by the value of E00

obtained at the highest measurable temperature. Because the

measurements for different samples are not performed at the

same equally spaced temperatures the data are linearly interpo-

lated to 215 equally spaced data points corresponding to an

interpolated E00 value for each of the temperatures between

�51 �C and 270 �C in increments of 1.5 �C.

293 samples are used to give a data matrix X of dimensions

293� 215, which is first centred. An interest in this dataset is that

there are two ways in which the polymers can be classified, either

into type by their main physical properties (amorphous or semi-

crystalline) to two main classes, or into nine groups according to
Table 1 Samples for case study R3

Type Group

Amorphous A 92 Polystyrene (PS) A 35
Acrylonitrile- Butadiene-Styrene

(ABS)
B 47

Polycarbonate (PCarb) C 10
Semi-crystalline B 201 Low Density Polyethylene (LDPE) D 56

Polypropylene (PP) E 45
High Density Polyethylene

(HDPE)
F 30

Polyamide6 (PA6) G 20
Polybutylene Terephthalate (PBT) H 10
Polyethylene Terephthalate (PET) I 40

Table 2 Concentrations of polyarenes in dataset A for case study S1

Spectrum

PAHa concentration/mg L�1

Py Ace Anth Acy Chry

1 0.456 0.120 0.168 0.120 0.33
2 0.456 0.040 0.280 0.200 0.44
3 0.152 0.200 0.280 0.160 0.56
4 0.760 0.200 0.224 0.200 0.33
5 0.760 0.160 0.280 0.120 0.22
6 0.608 0.200 0.168 0.080 0.44
7 0.760 0.120 0.112 0.160 0.44
8 0.456 0.080 0.224 0.160 0.11
9 0.304 0.160 0.224 0.040 0.44

10 0.608 0.160 0.056 0.160 0.33
11 0.608 0.040 0.224 0.120 0.56
12 0.152 0.160 0.168 0.200 0.11
13 0.608 0.120 0.280 0.040 0.11
14 0.456 0.200 0.056 0.040 0.22
15 0.760 0.040 0.056 0.080 0.11
16 0.152 0.040 0.112 0.040 0.33
17 0.152 0.080 0.056 0.120 0.44
18 0.304 0.040 0.168 0.160 0.22
19 0.152 0.120 0.224 0.080 0.22
20 0.456 0.160 0.112 0.080 0.56
21 0.608 0.080 0.112 0.200 0.22
22 0.304 0.080 0.280 0.080 0.33
23 0.304 0.200 0.112 0.120 0.11
24 0.760 0.080 0.168 0.040 0.56
25 0.304 0.120 0.056 0.200 0.56

a Py ¼ Pyrene; Ace ¼Acenaphthene; Anth ¼Anthracene; Acy¼ Acenaphthy
Fluore ¼ Fluorene; Nap ¼ Naphthalene; Phen ¼ Phenanthracene.

This journal is ª The Royal Society of Chemistry 2010
polymeric material as listed in Table 1. Note in the class lettering

system we will use, that class A (polymer type) is different from

class A (polymer group). The classification is hierarchical in

nature, as a particular polymeric group is all of one type. This

dataset can be viewed either as a two-class problem (as in case

study R1) which we will denote as R3a or a multiclass problem

(as in case study R2) which we will denote as R3b. The aim is to

determine the origins of a polymer using DMA. There are many

potential reasons for this: one possible area is waste recycling of

industrial plastics, where plastics have to be treated in different

ways for environmentally safe disposal. More details are avail-

able in several papers.28–32

From the scores plots (Fig. 5) we can see that the two main

types are almost separable in the space of the first 2 PCs, with just

a little overlap, but there is quite a lot of overlap between the

groups. Some of the nine groups are separated into subclasses as

they consist of several grades. This dataset is an example of both

a two-class and a nine-class problem.
2.4 Experimental case study S1 for calibration: UV/vis spectra

of polyaromatic hydrocarbons

The experimental case study for this application is of the UV/vis

(ultraviolet visible) spectra of a series of mixtures of 10 poly-

aromatic hydrocarbons (PAHs) which has been described

previously.20,22 Table 2 is of the concentrations of these PAHs in

25 spectra; for the purpose of this paper we take the spectral

intensities over wavelengths between 220 and 350 nm at 5 nm

intervals, forming a matrix that has 25 rows (individual spectra)

and 27 columns (individual wavelengths). The aim is to
Benz Fluora Fluore Nap Phen

6 1.620 0.120 0.600 0.120 0.564
8 2.700 0.120 0.400 0.160 0.752
0 1.620 0.080 0.800 0.160 0.118
6 1.080 0.160 0.800 0.040 0.752
4 2.160 0.160 0.200 0.160 0.564
8 2.160 0.040 0.800 0.120 0.940
8 0.540 0.160 0.600 0.200 0.118
2 2.160 0.120 1.000 0.040 0.118
8 1.620 0.200 0.200 0.040 0.376
6 2.700 0.040 0.200 0.080 0.118
0 0.540 0.040 0.400 0.040 0.564
2 0.540 0.080 0.200 0.120 0.752
2 1.080 0.040 0.600 0.160 0.376
4 0.540 0.120 0.800 0.080 0.376
2 1.620 0.160 0.400 0.080 0.940
6 2.160 0.080 0.400 0.200 0.376
8 1.080 0.080 1.000 0.080 0.564
4 1.080 0.200 0.400 0.120 0.118
4 2.700 0.080 0.600 0.040 0.940
0 1.080 0.120 0.200 0.200 0.940
4 1.620 0.040 1.000 0.200 0.752
6 0.540 0.200 1.000 0.160 0.940
2 2.700 0.200 0.800 0.200 0.564
0 2.700 0.160 1.000 0.120 0.376
0 2.160 0.200 0.600 0.080 0.752

lene; Chry¼ Chrysene; Benz¼ Benzanthracene; Fluora¼ Fluoranthene;

Analyst, 2010, 135, 230–267 | 235
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Fig. 7 Illustration of two-class classifiers, applied to two separable

groups: (top) a linear classifier, and (bottom) a curvilinear classifier.
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determine the concentration of individual PAHs in the mixture

spectra. Because there are 27 variables it is not possible to

represent the spectra in the 27 dimensional dataspace formed by

these variables graphically.

We will illustrate the method for SVR primarily for the

determination of the benzanthracene concentration. The use of

PLS as an alternative has been discussed in previous publications

as referenced above.
3 Support vector machines as two-class classifiers

We will assume that we are trying to find a model in a series of

samples that form a training set. Note that much of the termi-

nology of Support Vector Machines was developed by the

machine learning community, where autopredictive models, that

is models formed on an entire dataset, are usual, whereas in the

chemometrics and analytical chemistry literature it is more

common to divide data into a training set, on which the model is

formed, and a separate test set which is used to determine how

well the model performs.26 The descriptions in this section will be

based on training set or autopredictive models.

SVMs are usually introduced as a solution to a two-class

problem – how can we differentiate between samples that are

members of two groups? The description of the SVM algorithm

below is in three parts. First, the basic definitions for linearly

separable classes; second, the extension to the non-linearly

separable case with the use of kernel functions; and third, the

generalised solution with the incorporation of the trade-off

pernalty parameter to control complexity. Two-class classifiers

attempt to form a boundary between two groups. This boundary

may be of varying types, and two possible classifiers are illus-

trated in Fig. 7. Note that almost all classifiers can be expressed

in the form of boundaries, and although SVMs are normally

defined in terms of boundary problems and some other
236 | Analyst, 2010, 135, 230–267
approaches not, in fact most two-class classifiers (sometimes

called hard models) can be visualised in terms of boundaries
3.1 Linear learning machines

The simplest type of classifier is a linear classifier. However,

SVMs treat linear classification problems somewhat differently

to the other common methods such as Linear Discriminant

Analysis (LDA)33–35 and Partial Least Squares Discriminant

Analysis (PLS-DA).36–38 Whereas for two linearly separable

classes the method is probably overkill, if first understood this is

an initial conceptual building block for understanding SVMs and

the extension to more complex problems.

Consider a binary classification problem where samples, each

of whose experimentally measured variables are represented by

a row vector x, have been obtained that have membership of

two classes g (¼ A or B) with labels c ¼ +1 for class A and �1

for class B and are perfectly linearly separable. These samples

can be used to determine a decision function to separate two

classes, which in its simplest form can be expressed by a linear

boundary

gðxiÞ ¼ sgn
�
wx

0

i þ b
�
¼ sgn

 
bþ

XJ

j¼1

wjxij

!

where w and b are often called weight and bias parameters that

are determined from the training set. In this paper we will denote

x for an individual sample to be a row vector rather than

a column vector, but otherwise adopt notation that is common in

the SVM literature. It is important to understand the relationship

between different common approaches, and that the SVM when

expressed in its simplest linear form has analogies to PLS-DA

which also is related to LDA, but advocates of SVM would argue

that SVM is a more generalised and universal approach,

although one which carries risks of overfitting and unnecessary

complexity if one is not careful, and which forms a boundary

using a different criterion to LDA or PLS-DA. However, this

simple classification function corresponds to representing the

border between two classes as a hyperplane, or a line if x is

characterised by two variables. The sign of g determines which

class a sample is assigned to: if positive class A and if negative

class B. Any generic hyperplane (w, b) can be defined by coor-

dinates x satisfying the condition wx0 + b ¼ 0 which divides the

dataspace into two regions opposite in sign. In Fig. 8 we illustrate

a variety of different hyperplanes (in this case lines as there are

only two variables) for case study L1, based on different values of

w and b. It can be seen that any line can be defined this way, some

of which perfectly separate the data and some do not.

If the two classes are separable we can define a ‘margin’

between the two classes, such that

wx0 þ b $ 1; c ¼ þ1

wx
0 þ b # � 1; c ¼ �1

since no samples will be precisely on the boundary. The value �1

can be obtained by scaling w and b appropriately, for example,

a hyperplane (or line) in two dimensions with w ¼ [1 3] and

b ¼ �1 is identical to one with w ¼ [2 6] and b ¼ �2, so it is

always possible to scale the margins so they are of a distance

of�1 from the central line. The boundary (or hyperplane) should
This journal is ª The Royal Society of Chemistry 2010
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Fig. 8 Illustration of the line given by wx0 + b for case study L1: (a) b ¼
0, changing w, and (b) b¼�1 and +1, changing w. Lines that separate the

two classes perfectly are indicated in black.

Fig. 9 Optimal boundary that maximises the margins for separating

classes A and B in case study L1. SV ¼ support vectors, with w ¼
[1.184 �0.027] and b ¼ �0.768.
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be equidistant from the two extreme samples in each class. The

boundary separates the classes with no error if every sample xi is

projected in the region of the dataspace with sign equal to

the respective class membership ci or at least on the boundary, i.e.

the hyperplane must satisfy the condition

ci(wxi
0 + b) $ 1

for all the samples providing that they are perfectly linearly

separable. However, there are an infinite number of possible

hyperplanes (w, b) satisfying this so there needs to be a further

rule to determine which of these hyperplanes is best.

The optimal separating hyperplane, as chosen using SVM,

defined by the parameters w and b is one for which the margin

between the most similar samples in each group is largest. It can be

shown that this hyperplane is the one that minimises ½(ww0),

subject to the constraint ci(wxi
0 + b) $ 1 for all samples. This

optimal separating line (or boundary) for case study L1 is illus-

trated in Fig. 9. The samples on the margins are called support

vectors (SVs) as illustrated in the figure. Note that for such a linear

boundary the number of SVs is limited and will be between 2 and

4. In addition to the boundary we can visualise the margins. Note

that this boundary now depends only on the SVs, and other

samples have no influence over the boundary. In Fig. 10 we

represent four possible boundaries, each of which are formed

from 2 samples from one class and 1 from another class (in fact,
This journal is ª The Royal Society of Chemistry 2010
these are the only solutions for case study L1 that can be obtained

using 3 samples), and it can be seen that the solution of Fig. 9 has

the widest margin and so is chosen as the optimal solution. Note

that there will only be a finite number of boundaries that can be

defined by using samples on both margins, and most of the

possible boundaries cannot be defined this way.

For readers interested in the algebra, this optimisation task

can be expressed by the structure error function:

4ðw; b;aÞ ¼ 1

2
ðww0Þ �

X
i˛sv

ai

�
ci½wx0i þ b� � 1

�

where Nsv is the number of samples for which both ci(wxi
0 + b) $

1 and in addition ai > 0, which are a subset of the original

samples called the Support Vectors (SVs). The samples that have

ai > 0 are those that are closest to the boundary. Hence the SV

solution depends only on samples close to the boundary between

two (or more) classes. In this way, SVM models differ from most

other common approaches to classification within analytical

chemistry which use all the samples in the dataset to determine

the boundaries between classes.

The parameter a is called a Lagrange multiplier and is

common in calculus and is used to optimise a function subject to

one or more constraints. A simple example involves finding the

minimum or maximum of f(x,y) ¼ x + y subject to the constraint

g(x,y) ¼ x2 + y2 ¼ 1 (in fact a unit circle). The Lagrange multi-

pliers are defined by the value of a that is obtained from the

following equation, subject to the constraint

Vf ¼ aVg

where V is the partial derivative over each of the variables. Since

there are two variables, we have three equations we need to solve,

the latter representing the constraint:

1 ¼ 2ax

1 ¼ 2ay

x2 þ y2 ¼ 1

We can solve these equations to give (x,y) ¼ (�1/O2, �1/O2) and

hence a ¼ �1/O2 also. The two solutions give values of f(x,y) ¼
x + y ¼ �O2 or for a maximum (�) or minimum (�1) solution.
Analyst, 2010, 135, 230–267 | 237
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Fig. 10 Four possible boundaries for case study L1, consisting of 3 samples on the margins. The solution with the widest boundary is chosen as

illustrated in Fig. 9.
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In the context of SVMs, the value of 4 has to be minimised

with respect to w and b and maximised with respect to the

Lagrange multipliers ai. The minimum of 4 with respect to w and

b is given by

v4

vb
¼ 0 0

X
i˛sv

aici ¼ 0 and
v4

vw
¼ 0 0w�

X
i˛sv

aicixi ¼ 0

where the samples i are formally support vectors (sv).

Hence,

4ðaÞ ¼ 1

2

X
i˛sv

X
l˛sv

aiciðxix
0
lÞ clal �

Xl

i˛sv

ai

The optimisation task is that of minimising 4(a) with respect to

a, a vector consisting of Lagrange multipliers, satisfying the

constraints

ai $ 0 and
X
i˛sv

aici ¼ 0

Finally, the optimal a ¼ (a1, a2,., aNsv
) allows determination of

the weight vector w of the optimal separating hyperplane

w ¼
X
i˛sv

aicixi

while the offset b can be calculated from any pair of samples of

opposite classes satisfying the conditions that their values of

a are greater than 0. In technical terns, the optimisation of 4 is
238 | Analyst, 2010, 135, 230–267
a quadratic programming problem, which can be generally

written in the form:

min
a

�
1

2
aHa0 þ za0

�

where H has elements hi,l ¼ ci(xi
0xl)cl (for samples i and l) and

z is a row vector of �1s. This a well known type of optimi-

sation problem that is straightforward to solve because it has

only one global minimum, thus making the learning procedure

reproducible. We will not discuss the details of this optimi-

sation method in this paper which can be found in many

general references on numerical programming. The expression

for 4 contains a scalar product of vectors and explains why

the approach is particularly fast and suitable when dealing

with samples having many variables. Last but not least,

this opens the way to treat some of the more complicated

non-linearly separable cases using kernels as discussed in

Section 3.2.

The classifier can be directly expressed as a decision function in

terms of the support vectors si (those samples whose value of a >

0) as follows

gðxlÞ ¼ sgn

 X
i˛sv

aicisix
0
i þ b

!

where if positive the samples are assigned to class A, otherwise to

class B. Returning to Fig. 9, there are 3 SVs namely
This journal is ª The Royal Society of Chemistry 2010
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ð1Þ x ¼ ½2:288 3:064� a ¼ 0:5169 ðClass AÞ
ð2Þ x ¼ ½1:756 1:503� a ¼ 0:2063 ðClass AÞ
ð3Þ x ¼ ½0:313 2:905� a ¼ 0:7232 ðClass BÞ

and the value of b ¼ 0.7684. (Note that

X
i˛sv

aici ¼ 0 since c1 ¼

c2 ¼ +1 and c3 ¼ �1 for the three SVs listed above.) In more

familiar matrix terms we could define g(xl) ¼ sgn(xiS
0c + b) for

each sample where S0 is a J � Nsv (or in our case 2 � 3) matrix

containing the support vectors, and c is an Nsv � 1 vector whose

elements equal the product of a and c for each support vector,

which can be extended to a matrix form when all samples in

a dataset are included. This calculation is illustrated in Fig. 11 for

case study L1. It can be seen that all samples are correctly clas-

sified, in this particular case.

SVs are often visualised as being on the margins of each class,

with the hyperplane representing the decision boundary. Which

side of the hyperplane a sample lies on relates to its class

membership, whilst the SVs and margins are the extremes of

each class. In an ideal situation there will be an empty space

between the margins, providing that classes are completely

separable.
Fig. 11 Illustration of SVM calculation fo

This journal is ª The Royal Society of Chemistry 2010
3.2 Kernels

Determining a class boundary in the form of a separating

hyperplane is adequate for simpler cases where the classes are

nearly or completely linearly separable. However, this is a situa-

tion where arguably many other methods would return satis-

factory results and SVMs would not appeal very much due to

their relatively complex formulation, and so are most useful

where classes are not linearly separable.

SVMs handle this by adding an extra step to the procedure

described above. Instead of forming a boundary in the original

variable space, where the two classes are not separable, a new

higher dimensional (feature) space, where the samples are pro-

jected by means of a feature function F(x), is defined. The back-

projection of the optimal separating boundary (in the form of

a hyperplane) from this new feature space to the original variable

space will then result in a non-linear boundary of given

complexity that better suits the distribution in the original vari-

able space, providing that the feature space is correctly defined,

as illustrated in Fig. 12. The new dataspace is often of high

dimensionality with one dimension per SV. Their mappings by

means of F(x) allows the determination of a hyperplane that

separates them. A feature function is found that makes
r the data of case study L1 and Fig. 9.

Analyst, 2010, 135, 230–267 | 239
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Fig. 12 Creation of the boundary for a non-separable case. (a) Two linearly inseparable classes in two dimensions. (b) Projection onto a higher

dimensional space where it is possible to separate the classes using a plane, with three support vectors indicated. (c) Projection back into two dimensions.
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separation easier in higher dimensions. Finally the back-projec-

tion of this plane into the original dataspace generates a non-

linear boundary which can theoretically be of any complexity.

For the separable case study L1 we can also obtain a kernel space

(which will no longer result in linear boundaries) and visualise

this transformation, for a Radial Basis Function (RBF) model

(see below) defined by 3 SVs, as each SV defines an axis in this

space (Fig. 13). However, if the number of SVs increases beyond
Fig. 13 Illustration of kernel space for an RBF model for case study L1.

The three axes, K(1) to K(3), correspond to each of the three SVs, marked

with a cross, the green surface being the projection of the samples onto

this kernel space.

240 | Analyst, 2010, 135, 230–267
3, as happens in most situations, it is not possible to visualise this

space directly. As an example of a more complex problem we will

illustrate below how to produce a boundary between the two

classes represented in case study L4 (Fig. 2), which are not

linearly separable.

In many situations if the two boundaries between the two

classes are very complex, the set of functions F(x) that is used to

map the data is of very high dimensionality, which means that

many more dimensions are generally required to find a sepa-

rating hyperplane, but it is consequently possible to find

boundaries to suit a variety of complex distributions. Mathe-

matically, this is done by reformulating the optimisation task by

replacing the scalar product of input vectors (xixl
0) with the

scalar product of the respective feature functions defined by

hF(xi),F(xl)i as follows:

4ðaÞ ¼ 1

2

X
i˛sv

X
l˛sv

aici

�
FðxiÞ;FðxlÞ

�
clal �

Xl

i˛sv

ai

replacing 4ðaÞ ¼ 1

2

X
i˛sv

X
l˛sv

aiciðxi x0lÞ clal �
Xl

i˛sv

ai

so it is mainly necessary to find these functions to develop an

SVM model using kernels.

An important concept in SVMs is that there exist kernel

functions K in the original variable space that corresponds to the

dot product of functions in the new feature space:

K(xi,xl) ¼ hF(xi),F(xl)i

The optimisation task can therefore be re-written:

4ðaÞ ¼ 1

2

X
i ˛sv

X
l ˛sv

aiciKðxi; xlÞ clal �
Xl

i ˛sv

ai

The optimisation task still involves a quadratic convex

programming problem, hence being particularly easy to handle,

but most importantly, by means of K(xi,xl) rather than F(x), it is

possible to proceed with the transformation, omitting the inter-

mediate step of creating the feature space and working only in the

original dataspace where K(xi,xl) is defined (which can be added

as an extra dimension). This powerful attribute is known as the

‘kernel trick’ and it is what makes SVMs effective in addressing

complex tasks. The classification decision function can be re-

written as
This journal is ª The Royal Society of Chemistry 2010
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gðxÞ ¼ sgn

 X
i˛sv

aiciKðsi; xÞ þ b

!

and is still explicitly expressed in a dependence on the SVs.

Only certain kernels can be employed (as they also must satisfy

some additional conditions). Some of the most common are as

follows.

(1) Radial basis function (RBF), defined as K(xi,xj)¼ exp(�gkxi

� xjk2) or Kðxi; xjÞ ¼ exp
�kxi � xjk2

2s2
where g ¼ 1=2s2

(2) Polynomial function (PF), K(xi,xj) ¼ (axi
Txj + b)c

(3) Sigmoidal function (SF), K(xi,xj) ¼ tanh(axi
Txj + b)

These kernel functions can be visualised as creating an extra

dimension, involving a sum of functions centred on each sample

that is assigned as an SV. The creation of this kernel function

(in this example a RBF) is exemplified in Fig. 14, in which a third

dimension, representing the decision function which is given by

the kernel function multiplied by the class membership label of

each sample and its Lagrange multiplier
�X

i˛sv

aiciKðsi; xÞ
	

, is

added: note that this function is only used to obtain a surface

defined by samples that are SVs – for all other samples this

function is used to project them onto this new surface or mesh.

The mesh relates to the value of the distance of each sample

from the centre in the RBF higher dimensional space that cannot

be visualised (the additional vertical axis should not be confused

with the additional higher dimensional feature space which

has as many axes as there are SVs, and is called the decision

function).

The procedure of forming boundaries and back-propagation

are represented Fig. 15 for case study L4. The value of b repre-

sents a decision place that separates the surface into two parts,

those above the plane (assigned to class A) and those below (class

B). We can see that when projected back into two dimensions

samples from class A are enclosed within an irregular shaped

boundary. In Fig. 16, we illustrate how the model depends on

SVs. Each of the samples that are identified as SVs are the centre

of a Gaussian RBF, the sign being positive for members of class
Fig. 14 Creating a decision function for separating two classes of case

study L4. The vertical axis relates to the kernel function multiplied by the

class label and used employed with s ¼ 0.2sd of the overall dataset.

Fig. 15 Developing an SVM model for case study L4, using the

parameters of Fig. 14. The vertical axis represents a decision function.

The decision plane represents the value of b that divides the classes.

This journal is ª The Royal Society of Chemistry 2010
A (ci ¼ 1) and negative for members of class B (ci ¼ �1). For the

RBF chosen the vast majority of samples are in fact SVs

although this is not always the case. Non-SVs are projected onto

the surface, but are not used to form this surface. We can rotate

the surface onto the original data plane to see the distribution of

the SVs, or at right angles to this to see where these are distrib-

uted and so the empty margin between the SVs for each class.
Analyst, 2010, 135, 230–267 | 241
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Fig. 16 Support Vectors – marked with a cross.

Fig. 17 Illustration of slack variables. The support vectors for two

classes are illustrated with filled symbols. Samples with x ¼ 0 are on the

margins; with x > 0 between the margins and with x > 1 are misclassified.

The five SVs are indicated with borders around the symbols.
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Each kernel is characterised by a set of parameters that must

be optimised for a particular problem. The RBF is particularly

popular because it requires only one parameter to be optimised

(the value of g or s). This has many advantages in optimisation

as SVMs are computationally intensive procedures, so optimis-

ing several parameters using procedures such as cross-validation

(Section 3.4) can be time-consuming, if there are several

parameters to optimise, and if incorrectly performed can lead to
242 | Analyst, 2010, 135, 230–267
risks such as overfitting which involves forming boundaries that

are very complex but not justified by the data. In this paper we

will restrict the illustration to RBFs, which should cover the vast

majority of situations encountered. The interested reader may

want to look at source literature if it is felt that this type of

function is inadequate. There is usually a limit to the level of

complexity that can reasonably be modelled, especially when

datasets are limited in size and contain experimental error, and

RBFs result in some quite complex boundaries so are probably at

the upper limit of what an analytical chemist might encounter;

biologists mining large databases (e.g. in genetics) may have

problems that justify going farther. We will discuss the influence

of different RBF parameters on SVM boundaries in Section 3.4.
3.3 Controlling complexity and soft margin SVMs

Intuitively, because the kernel trick allows SVMs to define complex

boundaries, the risk of overfitting is particularly high; that is, it is

possible to define almost any boundary around training set samples

even if there is no particular significance to these complex

boundaries, so as complexity increases there is also a risk that the

overcomplicated boundaries have no real predictive power. If we

increase boundaries no end we can end up with perfect classifica-

tion of samples from a training set (or a series of samples whose

origins we know about) but when test set or unknown samples are

included the classification results are very poor. In traditional

analytical chemistry where most models are linear, often samples

could be cleanly classified using linear models, but with the inter-

face of analytical chemistry to other disciplines such as biology and

medicine and cultural studies, for example, we do not expect nice

linear behaviour and anticipate that the boundaries may become

quite complex – a question is how complicated is it justified?

To this end a concept called Structural Risk Minimisation has

been developed. SVMs are equipped with an additional param-

eter that allows a control on complexity. To introduce this

parameter it is easiest to recall the example of the simplest case

where the optimal separating boundary is determined in the

original dataspace, without projecting the samples into a higher
This journal is ª The Royal Society of Chemistry 2010
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Fig. 18 Finding boundaries using slack variables for the non-linearly separable case studies L2 and L3. SVs are marked with crosses.
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dimensional feature space. If these cannot be perfectly separated

by a hyperplane, one may also allow deviations defined by xi >

0 for individual samples xi. Those samples for which xi¼ 0 are on

the margin of its correct class, those with xi¼ 1 on the separating

plane, and those with xi > 1 the wrong side of the dividing line, or

misclassified samples. This is illustrated in Fig. 17, for which

there are five SVs: three are exactly on the margins, and two

between the margins in what would be empty space if the classes

were perfectly separable. Of the two between the margins, one is

misclassified and so has xi > 1. This now allows a number of

samples to be misclassified, and also for samples to be between

the margins. This allows simpler boundaries to be obtained but

which have the disadvantage that there are now some mis-

classified samples. In Fig. 18 we illustrate this principle for case

studies L2 and L3, neither of which are linearly separable, but

using a linear model rather than an RBF. We note that all mis-

classified samples are between the margins and are SVs which

have an influence on the model. We also note that the margins

have to be wider for the less linearly separable data and therefore

include more samples the wrong side of the boundary and more

Support Vectors. Note that this approach is complementary to

changing s although we will see in Section 3.4 that considering

both approaches together is the usual approach for optimising

and using SVMs.

Mathematically, the optimisation task of Section 3.1 requires

simultaneously maximising the margin ½(ww0) and minimising

the empirical error, given by the sum of the allowed deviationsXl

i¼1

xi, hence becoming

4ðw; b; xÞ ¼ 1

2
ðww0Þ þ C

X
i ˛sv

xi
p

subject to the constraint ci(wxi
0 + b) $ 1 � x. C is called the

penalty error; the higher it is the more significant misclassifica-

tions are but the more complex the boundary (see below). It

should be noted that the margin errors xi become training errors

only when xi > 1. The SVs are now no longer all exactly on the

margins but are somewhere between the two extreme margins.

Every sample on or between the margins is an SV. When p ¼ 1

the SVM is called a Level 1 Support Vector Machine, and when
This journal is ª The Royal Society of Chemistry 2010
p ¼ 2 a Level 2 Support Vector Machine. In this paper we

illustrate SVMs using Level 1 methods, for simplicity, but when

using packages or comparing results be sure to check whether the

method is Level 1 or Level 2.

SVMs can be divided into two categories, hard- and soft-margin

SVMs. Hard margin SVMs require finding a space or using

a kernel for which two classes are perfectly separable, and aim to

find the optimal boundary that exactly separates the classes, with

the maximum possible margin between the two classes, and in

practice involve setting an infinite value of C: this was employed for

the example of Fig. 14, meaning that misclassifications are never

tolerated. However, it is always possible to find a feature space in

which the two classes are perfectly separable when using a kernel

function such as an RBF, and forcing the algorithm to search for

this feature space may lead to overfitting. To avoid this, most

people use soft margin SVMs which tolerate a degree of misclas-

sification, and are designed to balance the classification error

against the complexity of the model; in this paper we will illustrate

our examples using soft margin SVMs which are the most common

available.

The parameter C is set to determine the level of tolerance the

model has, with larger C values reflected in lower tolerance of

misclassification and more complex boundaries. Mathematically,

C is included as an upper bound on the Lagrange multipliers, so

that:

0 # ai # C

This additional parameter determines which one of the two

criteria is emphasised most during the optimisation (either

½(ww0) or
Pl

i¼1 xi). Lower penalty error values emphasise the

first term, allowing higher deviations from the margin xi, hence

the emphasis will be on margin maximisation rather than mini-

mising the distance of misclassified samples from the boundary.

In contrast, higher penalty error values will emphasise the second

term, hence allowing smaller deviations across the boundary xi

and minimising the training error. C offers the opportunity to

pursue a trade-off between complexity of the boundary and the

importance attached to misclassified samples or samples near the

boundary. Note that a very high value of C tends towards a hard

margin SVM, as this occurs when there is a very large penalty
Analyst, 2010, 135, 230–267 | 243
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error for misclassification, i.e. one tries to construct boundaries

that perfectly model the training set.

As an example we examine linear models for case study L2. We

can see that the two classes are not linearly separable and

a member of class A (blue) happens to fall within the region of

class B (red). We see the effect of changing C for a linear model in

Fig. 19. When C is reduced, more samples become SVs and the

margins are broader, as more samples are allowed to influence

the model. One important and often neglected issue is that most

SVM software allows the user to enter any value of C. This

means that it is possible to obtain solutions that have no

meaning. As an example see Fig. 20 for case study L3. This

dataset is not linearly separable and so an infinite value of C

(hard model) will be impossible to obtain if we use a linear

boundary; therefore there will be an upper limit to the value of C
Fig. 19 Effect of changing C for linear models an

244 | Analyst, 2010, 135, 230–267
that provides an analytically correct answer. When exceeding

this, it is usual for most software still to try to produce an answer:

this is because of computational issues, for example when opti-

mising the maximum allowed number of iterations is obtained

without final convergence or because in practice computers

cannot handle infinite numbers so the maximum (or minimum)

number within computational precision is obtained. When

exceeded, often nonsensical or unpredictable results are

obtained, for example in Fig. 20 we see that using the value of C

of 1 no longer encloses the SVs within the boundaries and results

in some misclassification. This is because the algorithm tries to

find an impossibly narrow boundary, as it is impossible to obtain

a perfect (hard boundary) model using a linear function for two

classes that are not linearly separable. When close to the upper

limit of C that is acceptable for any specific dataset and SVM
d case study L2. SVs are marked with crosses.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 20 Apparent effect of changing C for linear models and case study L3. Note that C¼ 1 is algebraically an impossible solution. SVs are marked with

crosses.
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model, the results can be a little unpredictable and depend a bit

on the algorithm used, but it is usually unwise to work in this

region.

In such situations we need to include a kernel function, and the

results for case study L3 and an RBF are presented in Fig. 21 for

varying values of C. Note that all samples within the boundaries

and all misclassified samples are also Support Vectors. As the

value of C increases the boundaries are tighter, there are less

Support Vectors and the boundaries are more complex. Note

that although the number of misclassified samples tends to

decrease with C this is only an approximate rule; what certainly

happens is that the number of SVs decrease but some are due to

samples being within the margins and some as SVs. The

appearance of the boundaries at the two highest values of C are

identical, this is because the SVs are the same in both cases,

having reached a very tight solution; for an identical value of s

for an RBF, the appearance of the boundaries depends only on

which samples are chosen as SVs. Note also that for this RBF

(s ¼ standard deviation of the data), there is a solution for high

values of C which can perfectly classify all samples (equivalent to

a hard margin) unlike in the linear case. Whether such a solution

is achievable depends on the value of s.
3.4 Choice and influence of SVM parameters

It is important to understand the influence of C and s (for an

RBF) on the SVM solution. We will illustrate this with case
This journal is ª The Royal Society of Chemistry 2010
studies R3a (polymers – two groups) and R1 (environmental).

Samples that are the wrong side of the boundary are mis-

classified. In all cases s will be cited in units of the overall stan-

dard deviation of the dataset.

In Fig. 22 we illustrate both the changing boundaries and the

decision function for case study R3a. For each chosen C value, in

the left-hand column both the boundary (or decision function)

and margins are presented, but in the right-hand column we

illustrate only the decision function rather than the margins for

clarity.

For low s (0.1) the decision function is very spiky as antici-

pated, each point that is an SV represented by a sharp spike.

Because class A (blue) samples tend to be clustered in compact

groups the spikes add together to produce small regions sur-

rounded by a boundary. Class B (red) samples are more disperse

and so the neighbouring spikes do not add together and as such

there are very narrow margins around most samples; however,

the decision function encloses class A samples, and all the rest of

the dataspace would represent class B, but be within the margins.

This of course is probably an unrealistic model as it would class

most unknowns that are in fact part of none of the known

clusters as being members of class B and so is probably over-

fitted. As s increases the small regions merge, for example when s

¼ 0.5 and C ¼ 1 there is one contiguous and large region rep-

resenting class A. This is because the RBF is broader and so the

neighbouring Gaussians overlap more to give a flatter surface.

This principle is illustrated diagrammatically in Fig. 23: for s¼ 5
Analyst, 2010, 135, 230–267 | 245
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Fig. 21 Effect of changing C for RBF models and case study L3, using s ¼ 1 � the standard deviation of the data. SVs are marked with crosses.
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and C¼ 1, the boundary is nearly linear, but with a wide margin.

This is because the Gaussians are very broad and so give

a surface that is nearly flat. Quite a lot of samples between the

margins are tolerated.

The main conceptual difference between the model for C ¼ 1

and C ¼ 100, is that in the latter the margins are narrower and

the number of SVs are less. The consequence of this is that the

shape of the surface can be more complex. In Fig. 24 we show the

effect of including only three out of the five Gaussians in Fig. 23

to construct the surface and we can see that it appears much less

smooth for similar widths. Using s ¼ 5 we see that the surface

represents more a quadratic than a linear model using C ¼ 100

and that there are often more regions since the shape of the

surface is less smooth, due to there being less support vectors,

compare for example s ¼ 0.5.
246 | Analyst, 2010, 135, 230–267
For case study R3a, the main difference when changing

parameters involves the smoothness or complexity of boundaries

and in most cases samples are correctly classified, although the

number within the margins changes. However, for case study R1

(environment) there is a particular challenge in that there are

three samples in an outlying group of class B (clean or unpol-

luted), that appear within the samples of class A (polluted)

(Fig. 25). We can see that for s¼ 0.1 these are clearly identified as

a small region for both values of C, and there is no real difference

in the models as almost all samples are selected as SVs. However,

for C¼ 1, once s reaches 0.5, this small group is classified as part

of class A, but within the margin, but as s ¼ 1 this small group is

outside the margin. A different behaviour is observed for C¼ 100

with the samples being correctly classified (within their own

region of PC space) up to s¼ 1. Of course it is probably up to the
This journal is ª The Royal Society of Chemistry 2010
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Fig. 22 Illustration of the influence of C and s on the boundaries for case study R3a (polymers).
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Fig. 23 Summation of five Gaussians of increasing width, representing, in two dimensions, an RBF function of increasing width.

Fig. 24 Similar to Fig. 23 but only three of the Gaussians are used for the summation, Gaussians represented by black dashed lines not being part of the

summation.
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chemist to decide which model is appropriate; is there a reason

why this small group is really part of class B or is it that these

samples could have been mislabelled or even mis-sampled

(sometimes a sample that is thought to be unpolluted actually

does contain pollutants)? If we wanted to hedge our bets and say

that samples between the margins are ambiguous, using C ¼ 1

and s¼ 0.75 finds relatively few samples between the margins but

puts this small group of ambiguous samples within this region.

Using a higher value of C forces them to be correctly classified in

most cases, but is this overinterpreting the evidence?

Unlike methods such as PLS, or PCA, there has been less

emphasis on formal optimisation of SVM parameters, and this is

not the main aim of this paper, the area of which is still one for

active research. However, general principles are to divide data

into training sets (for which the model is developed) and separate

test sets. The test set is a portion of data that is left out to be

predicted by the mathematical model.26,39 There are many ways

of forming a test set. These include Leave One Out Cross Vali-

dation,40 where a single sample is left out each time as a test set

until each sample has been removed once; the bootstrap, where

the training set involves sampling the overall dataset with repe-

tition and the test set is those samples never chosen;41 and

repeated dividing into test and training sets.36 Whereas there is

no universal guidance, a simple strategy may be to test a range of

values of C and for an RBF s, for example using 5 levels for each

parameter (so there will be 25 combinations of parameters). A

method such as the bootstrap or cross-validation is then used to

determine how well the test set samples are predicted – usually an

indicator of success is required such as %CC (percentage

correctly classified) or %PA (average percent predictive

ability);18,26 these relate to how well the samples are classified by

a given model. The higher this is (for the test set samples), the

better. Usually the training set is predicted well, but this

approach protects against overfitting – whereby the SVM model

too closely fits the training set but then cannot model well the test

set, as the boundaries are too complicated. There are, however,
248 | Analyst, 2010, 135, 230–267
several problems here unique in the case of SVMs. First, not all

samples will influence the boundary. Therefore approaches such

as cross-validation may not always be good methods of choice, as

leaving out one sample that is not on the boundary will not

influence the model: in traditional approaches such as PCA all

samples contribute to the model. Methods that involve leaving

out groups of samples are preferable. The second is that some

indicators such as %CC can result in very flat solutions, for

example if there are 50 samples to be assessed, there may be

several solutions that give an identical %CC, e.g. 47 out of 50

samples correctly classified, and so it is not possible to choose – in

which case alternatives such as %PA which provides a fine

structure to %CC may be preferable but this is computationally

very much more intensive. The third is that these methods are

very intensive and can take several hours or even days even on

parallel processors, e.g. quadcores. The fourth is that models

may be identical over a range of values of C: this is because the

effect of this parameter is to change the number and nature of the

SVs but there is not a smooth transition so, for example, a model

with C ¼ 1 may be identical to that with C ¼ 5 under certain

circumstances. Finally it is necessary to establish a range of

tunable parameters in advance that is sensible for the problem in

hand.

There is no universal panacea for overcoming these problems,

and unlike PLS or PCA models we often cannot pinpoint an

exact optimum that everyone would agree to. The main issue

though is to avoid overfitting and to ensure that the optimisation

and validation are done correctly. Because optima are likely to be

relatively flat, it is often impossible to define the precise value of

the tunable parameters that are ‘best’, but so long as the model is

safe, that is it does not overfit the data, the model is probably

adequate. Often it is up to the person that sets up the SVM model

to make decisions about what he or she thinks is sensible, for

example how important it is to reject outliers (and which samples

are outliers) or whether the underlying differentiation between

groups of samples is likely to be linear. Sometimes it is impossible
This journal is ª The Royal Society of Chemistry 2010
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Fig. 25 Illustration of the influence of C and s on the boundaries for

case study R1 (environment).
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to generalise and this depends on knowledge of the underlying

problem. Most traditional statistical tests are based on under-

lying assumptions of normality and so the majority of tests for

outliers, for example, depend on this type of assumption. In

many cases, e.g. metabolomics and proteomics, we do not

necessarily expect samples to be normally distributed, so can take

advantage of the flexibility of Support Vector based models.
4 Multiclass support vector machine models

Multiclass models involve deciding which group a sample

belongs to when there are more than two classes in a dataset.26

Support Vector Machines were not originally formulated as

a multiclass method, but there are extensions that are available

when there are more than two groups in the data, e.g. case study

R2 (NIR of food) where there are four classes and case study R3b

(polymers where there are nine classes). In this and later sections

we will define the group that is being modelled as the ‘in group’

and all other samples (which may arise from several classes) as

the ‘out group’.
4.1 One vs. all

One vs. all42 is the earliest method reported for extending two-

class SVMs to solve the multiclass problem and involves deter-

mining how well a sample is modelled by each class individually

and choosing the class it is modelled by best. Given G classes

under consideration, G binary SVM models can be constructed,

samples either being considered as part of the class or outside it, so

that each model consists of two groups, the first being class g and

the second all other classes. The gth (g ¼ 1,.,G) SVM model is

trained with all of the samples in the gth class being labelled by +1

and all other samples being labelled by �1 (note that the alter-

native approach of one-class SVDD is discussed in Section 5).

Hence G SVM decision functions can be obtained, for each model.

Instead of using a sign function to determine the class member-

ship, the numerical outputs of the decision functions for each

SVM model are compared, as described below. The membership

g(x) of an unknown sample x is determined by finding the class for

which the corresponding decision function is a maximum

gðxÞ ¼ max
g¼1;G

 X
i˛svg
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�
sig; x

�
þ bg

!
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i ˛svg

aiciK
�
sig; x

�
þ bg

is the decision function for class model g.

A way of illustrating this method is to present the decision

function for each class. For R2 (NIR of food), all four decision

functions can be superimposed. In Fig. 26 we illustrate this

principle, for four values of s and C ¼ 1 using a 2 PC projection

of the data. For s¼ 0.05 we find that all the samples are correctly

classified, but that the four decision functions are primarily of the

form of planes with sharp spikes where the samples are. The

planes are at different levels. For very small values of s, all

samples become SVs, and all are on the margin and of equal

height, because the Gaussians are in effect in the form of a series
Analyst, 2010, 135, 230–267 | 249
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Fig. 26 Illustration of one vs. all SVMs, using the first 2 PCs of case study R2 (NIR of food) and a value of C¼ 1 and different values of s relative to the

overall standard deviation of the data.
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of sharp spikes centred on each sample and do not overlap. SinceP
i˛sv

aici ¼ 0, if all samples are SVs, we have

X
i ˛in

ain �
X
i ˛out

aout ¼ Iinain � Ioutaout ¼ 0

where Iin is the number of samples in the ‘in group’ (being

modelled) and Iout the number in the ‘out group’ (the remainder

of samples in the training set), but because the decision margins

are scaled to width 2 (so that there is a maximum distance of 1 for

each sample to the decision boundary – see Section 3.1), then ain

+ aout¼ 2 so that ain¼ 2Iout/I and aout¼ 2Iin/I. If there are equal

numbers of samples in each group the values of a become 1; the
250 | Analyst, 2010, 135, 230–267
more unequal the number of samples, the more these differ from

1. The bias term which is simply half the difference between the

values of a is therefore given by (ain � aout)/2 ¼ (Iout � Iin)/2; if

there are equal numbers of samples in each group, this becomes

0. The principle of how the bias term is influenced by the number

of samples is illustrated in Fig. 27. In our case for class A the bias

term is 0.5, class B is 0.1667, class C is 0.5556 and class D 0.7778,

which relates directly to the number of samples in each class.

Class B has by far the largest number of samples (¼ 30), and so

the lowest bias term and therefore is the highest plane, meaning

that samples outside the four closely defined clusters are assigned

to class B (olive oils), suggesting that the model overfits samples

in the region between the clusters. Note that the positive spikes
This journal is ª The Royal Society of Chemistry 2010
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Fig. 27 Illustration of bias term and Lagrange multipliers for the case

where all samples are infinitely sharp support vectors, but there are

unequal numbers in each class. In this case the blue group (‘in group’)

contains more samples than the red group (‘out group’).
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are support vectors from ‘in groups’ and negative spikes are

samples from the out classes; because the number of samples in

the ‘out group’ is always more than the ‘in group’ the height of

the negative spikes appears less than that of the positive spikes.

As s increases to 0.25, the region assigned to each group

increases, as the RBF is broader. Class C (safflower oil) whereas

consisting of fewer samples than class B (olive oil) is more

dispersed, and because the Gaussians are broader they do not

reach 0 between samples of each ‘in group’ and as such the class

with the greater dispersion wins out, so the background appears
Fig. 28 Result of one vs. one decision making for cas

This journal is ª The Royal Society of Chemistry 2010
to be from class C. However, still this value of s suggests that the

data are overfitted. A value of s ¼ 0.5 begins to sort out these

problems, with each group having its own defined region of

dataspace. Since there are no samples in the bottom left-hand

corner of the PC plot, the predictions of origins of samples that

fall into this unknown area are not certain. However, multiclass

SVMs are a supervised method for pattern recognition and as

such they try to force samples into one of several predefined

groups, so every region of the PC plot has to be assigned to

a specific group, even if there are no training set samples, in order

to obtain an unambiguous answer. Once s ¼ 1 well defined

regions of the PC scores plot are found. If the property that all

regions of dataspace are uniquely assigned to one class is unde-

sirable, it is necessary to use other approaches such as one-class

classifiers (Section 5).
4.2 One vs. one

Given G classes, the one vs. one approach constructs G(G � 1)/2

two-class SVM classifiers, each classifier only separating two of

the G classes. For example, we can form a model between classes

A and B and ask which class each sample is assigned to, even if

the origin of the samples is from outside these groups. If there are

four classes we can test A vs. B, A vs. C, A vs. D, B vs. C, B vs. D

and C vs. D. We then combine the results of these tests. The

simplest approach involves using ‘majority vote’, that is assign-

ing a sample (or a region in dataspace) to the class it is most
e study R3b (polymers) using various values of s.

Analyst, 2010, 135, 230–267 | 251
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frequently classified into. Where there is a tie, the sample (or

region in space) is considered ambiguous.

For case study R3b (polymers) we illustrate the result of one

vs. one decision making using C ¼ 1 and four values of s in

Fig. 28. Note that there are a small number of areas (shaded in

white) for which there is no unambiguous answer, where the one

vs. one method is tied. Note that as s is increased the regions

occupied by each group become more similar in size.

One anticipated problem is that there are several areas in

Fig. 28 where the answer is ambiguous, that is there is a tie as

samples are equally assigned to one class or the other. There is no

universal agreement as to how to cope under such situations but

one common approach involves fuzzy rules,6 as follows:

� For each point in dataspace, perform all comparisons 1 vs.

2, 1 vs. 3 to 1 vs. G and predict c for each model.

� If the predicted value of c is greater than 1 for any

comparison, set it to 1.

� Keep the minimum value of c for this set of comparisons,

call it m1.

� Perform the full set of comparisons for all classes G, giving

mg for each class g.

� Assign the sample or region of dataspace to the class for

which mg is a maximum.

The result of using fuzzy rules is presented in Fig. 29. It can be

seen that the classes are now quite well represented apart from

classes D and I which overlap with other groups and cannot be
Fig. 29 As Fig. 28 bu

252 | Analyst, 2010, 135, 230–267
easily modelled using two PCs. An advantage of fuzzy rules is

that there is always an answer as to which class is most appro-

priate, but the disadvantage is that this could be prone to over-

fitting, and having an answer that is ambiguous sometimes

provides an alert that the new sample is an outlier. In much

classical machine learning there is almost always an underlying

answer that is certain (for example, if we are testing whether

a person is male or female there will be an answer and every

sample must fall into one of the known groups), but in areas of

chemometrics we may have an outlier or a sample that is not

a member of any modelled groups (e.g. a type of polymer that has

yet to be analysed).
4.3 DAG trees

When there are large number of classes, using one vs. one

methods of Section 4.2, the number of comparisons can be quite

substantial (in the case of R3b there are 36 possible one vs. one

comparisons), especially if there are also test and training set

comparisons, so computationally more efficient methods are

often desirable. A DAG (Directed Acyclic Graph) tree is an

alternative and more computationally efficient approach,

although it starts on the same basis of forming all possible one

against one models on the training set. But when predicting

the origins of a sample, it uses a rooted binary DAG tree with

G(G � 1)/2 internal nodes (or decisions) and G leaves (or
t using fuzzy rules.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 30 Examples of possible DAG trees for 3- and 4-class problems.
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outcomes or classification results). Each node involves a binary

one against one model. A test sample starts from the root node,

and the binary decision function is evaluated depending on the

output value of the decision function. Examples of DAG trees

for 3- and 4-class problems are shown in Fig. 30. The compu-

tational time for a DAG tree is shorter than one vs. one because it

is not necessary to go through every binary classifier to test an

unknown sample; only G comparisons are necessary, so this

could shorten the time considerably for predictive models, for

example, if there are 9 classes, instead of forming 36 models and

taking the majority vote, only 9 comparisons are required. There

is no universal guidance as to which two classes are tested in each

node, but for most problems the result only changes slightly

according to the arrangement of the nodes. A possible strategy,

for example, would be to choose the two most different classes

for the first decision in the tree and so on. The improvement in

computational efficiency will be significant when predicting

unknowns, especially if algorithms are quite slow. As an illus-

tration of the use of DAG we present the results of three possible

solutions in Fig. 31. There are slight differences according to

which decision tree is employed. However, when there are a large

number of classes, this can speed up the model building

substantially, and although there is some variability between

solutions, this is unlikely to be no more than that introduced by

other factors such as sampling error, instrumental noise, data

preprocessing or choice of decision function.
5 One-class support vector domain description

5.1 One-class classifiers

In Sections 3 and 4 we introduce classifiers that aim to divide

dataspace into two or more regions, each of which corresponds
This journal is ª The Royal Society of Chemistry 2010
to one class of samples. The classification of a sample is given by

which region of the dataspace it falls into. These classifiers are

often sometimes called hard models, in that they divide space up

into sections using one, or a series of, boundaries, the principle of

which is the basis of the most widespread classification methods.

However, when there are several classes it is sometimes hard to

re-express these classifiers in a multiclass form, and the bound-

aries become quite complicated as discussed in Section 4, and

indeed SVM methods cannot naturally be formulated as multi-

class approaches, unlike methods such as QDA (Quadratic

Discriminant Analysis) or LDA where the decision rules are easy

to extend. Furthermore, hard models find it difficult to deal with

outliers, that is samples that belong to none of the predefined

groups – the inherent assumption of such classifiers is that all

samples must belong to one group – and cannot deal well with

samples that are genuinely ambiguous. A final weakness of hard

models is that they have to be reformed if new groups are

introduced, unless these groups are subsets of the existing

groups.

In order to overcome these limitations a set of modelling

techniques which are called one-class classifiers43 have been

developed. The approaches are often sometimes called soft

models, and in the area of chemometrics, Soft Independent

Modelling by Class Analogy (SIMCA) is the best known,

although by no means unique. A one-class classifier models each

group independently. There is no limit to the number of groups

that can be modelled, and a decision is made whether a sample is

a member of a predefined group or not. The difference between

one-class and two-class classifiers is illustrated in Fig. 32. For the

two-class classifiers a line (or more complex boundary) is drawn

between the two classes and a sample is assigned according to

which side of the boundary it falls. For the data illustrated, there

are two possible one-class classifiers, and these can be repre-

sented by boundaries that in the case of the data illustrated are

ellipsoidal. Samples outside these boundaries would be assigned

as outliers belonging to neither known class. Fig. 33 extends this

theme. In this case there are three groups; although class A and B

are separate, class C overlaps with both of them; in addition there

is an outlier that belongs to none of the three classes. A one-class

classifier establishes a model for each class separately and is able

to conclude that samples belong to no class, or to more than one

class, simultaneously.
5.2 Support vector domain description

Although SVMs are usually introduced as a form of binary clas-

sifiers, one-class modifications are available. Rather than being

used to separate two or more classes, one-class SVMs are built on

a single class. There are two main one-class SVM algorithms: one is

called ‘Support Vector Domain Description’ (SVDD)44 and

another is called ‘n-Support Vector Classifier’ (n-SVC).45 We will

restrict discussion to the SVDD method in this paper, whilst

reminding readers that there are, as always, several alternatives

available. We will assume that we are using an RBF kernel.

Whereas SVMs find lines or hyperplanes either in the original

dataspace or more usually in kernel space to separate classes,

SVDD tries to find a circle (or hypersphere in kernel space) that

encloses a class. One problem is that we can always find such

a hypersphere if the radius is large enough to enclose a class, so
Analyst, 2010, 135, 230–267 | 253
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Fig. 31 Results of DAG tree for dataset R3b (polymers) using a one vs. one SVM, fuzzy rules, C ¼ 1 and s ¼ 1.
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there usually need to be other rules. Fig. 34 illustrates some of the

key principles of SVDD. Only one class is modelled and each

sample is characterised by two variables. Instead of a line

dividing different regions of dataspace a circle is found that

encloses the data. This circle has radius R. Samples on the

boundary or circumference of the circle are defined as

unbounded support vectors. Samples outside the boundary or

misclassified are defined as bounded support vectors. Of the

unbounded SVs these can be divided into essential (required to

define the boundary) or non-essential (not required to define the

boundary). The latter are very rare and we will neglect, and

would only occur if samples happen (by accident) to be exactly

on an existing boundary. Note that for one-class SVDD, there is

only one boundary and no margins.

Whereas a circle of large radius can always be found that

encloses any dataset exactly, this may result in overfitting the

data, especially if one or two samples are outliers. Hence a value

analogous to C is used to determine what proportion of samples
254 | Analyst, 2010, 135, 230–267
of the ‘in group’ are to be enclosed by the circle. In this paper we

define a parameter D. A value of D¼ 0 means that all samples are

within the boundary, and D ¼ 1 that no samples are within the

boundary. As D increases the region enclosed by the boundary

decreases. The principle is illustrated with reference to case study

L4 in Fig. 35. The value of D relates approximately to the

proportion of samples that are outside the boundary. Hence if D

¼ 0.75 we would expect around 5 out of 20 samples in each class to

be outside the boundary (bound SVs). This is an approximation

(for example, it is not possible to have exactly 25% of 10 samples),

but usually holds up well when there is no kernel. The samples

would by definition be misclassified but this is analogous to

a confidence limit; if we have D ¼ 0.25, we are finding the 75%

confidence limit, i.e. the bound in which approximately 75% of

the training set are enclosed. The samples on the boundaries

normally equal 2 or 3, and are correctly classified but called the

unbounded SVs. For D¼ 0 in most cases the unbounded SVs are

the samples farthest apart in the dataset, but if drawing a circle
This journal is ª The Royal Society of Chemistry 2010
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Fig. 32 Difference between (a) a single two-class classifier or (b) 2 one-

class classifiers.

Fig. 33 Example of three classes with some overlap and an outlier.

Fig. 34 Some definitions for SVDD.

This journal is ª The Royal Society of Chemistry 2010
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containing these samples on the circumference does not enclose

the training set then a third sample is necessary to redefine the

circle. The circle is the smallest possible one that encloses all

samples. Two different scenarios are illustrated in Fig. 36. Note

that very occasionally the boundary appears to be defined just by

one SV: in fact there is more than one sample very close to the

boundary and this is a result of numerical approximation and

slow convergence of algorithms since it is not always possible to

converge to a precise analytical solution; however, in Fig. 35 this

only happens for the case of D¼ 0.75 and class A when in practice

the border is so narrow that one would not use this in practice as

a model. Note that although the SVDD boundary is in the form of

a circle in the dataspace if there is no kernel, as D changes we do

not get concentric circles, as illustrated in Fig. 37, and as such

SVDD differs from methods such as QDA (using the Mahala-

nobis distance) where circles (or ellipsoids) are all centred on the

mean of the dataset as the confidence level changes. The value of

the radius of the circle, however, is related to D as illustrated in

Fig. 38 for class A of case studies L1 to L4.

Mathematically, in analogy to SVM, it is possible to define

a structure error function for a SVDD model as

4ðR;m; xÞ ¼ R2 þ C
X
i˛sv

xi

with m being the centre of the data enclosed within the model space,

R the radius, xi is the slack variable modelling the training error and

the tolerance of the training error is controlled by the term C which

controls the size of x and therefore controls the fraction of samples

lying outside the boundary. SVs are either on the boundary (xi¼ 0)

or outside the boundary (xi > 0) as discussed above. The more rigid

the boundary the greater the value of R. The mathematics is rather

complicated but the RBF in kernel space is the same as for two-

class SVMs except that the SVs all come from one class, and

therefore the decision function is always positive, so that the

position of the separating hyperplane (or decision boundary) must

be changed, and is given by 0.5(b � R2) where b is defined slightly

differently (and is negative in value) to b for two-class SVMs. Using

this formalisation, one-class SV models can be obtained in a similar

manner to two-class SVM models, using Lagrange multipliers to

find the Support Vectors, but we will not go through the mathe-

matics in detail which is described elsewhere.43,44

It is important to realise that R changes the appearance of the

boundary but is controlled by C. The more rigid the boundary the

larger the value of R. Although C is often called the penalty error it is

not strictly analogous to that used in two-class SVMs; however, the

higher it is the more the samples that are included within the model

space. Because there is only one class to be modelled, the boundary

can either be set to include all samples or to misclassify a certain

proportion of samples. The larger the number samples misclassified,

the smaller the region in dataspace. However, unlike two-class

SVMs, one-class models do not use information about the ‘out

group’ and as such are not trying to avoid samples of different

classes. C can be related to D which has been defined above by

D ¼ 1

IgC

where Ig is the number of samples in the training set, to

emphasise that C no longer has a similar meaning to that in
Analyst, 2010, 135, 230–267 | 255
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Fig. 35 Appearance of one-class SVDD boundaries for case study L1 and different values of D. Misclassified samples from each ‘in group’ are indicated

by filled symbols, and can be called bounded SVs. Unbounded SVs are indicated in filled light colour on the boundary.
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two-class SVM, and so that D is directly comparable to a confi-

dence limit. Hence a value of D ¼ 0 corresponds to an infinite

penalty error (that is there can be no misclassified samples), and

a D of 0.1 for a class size of 20 corresponds to a value of C of 0.5.

A D of 0.5 would correspond to a C of 0.1 for that class size.
256 | Analyst, 2010, 135, 230–267
5.3 Kernels

Just as for SVMs, kernels can be introduced to the model. It is

now no longer necessary that the boundaries are circular. If we

use an RBF, as usual the sharper the radius, the more complex
This journal is ª The Royal Society of Chemistry 2010
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Fig. 36 Illustration for the example of Fig. 35 and D ¼ 0 how boundaries can be obtained using either two or three SVs dependent on data structure.

Fig. 37 Illustration of SVDD boundaries for D ¼ 0 (largest circle) to D

¼ 0.9 (smallest circle) by steps of 0.1 for class A of case study L2.

Fig. 38 Illustration of how the radius R for the SVDD solution for class

A of case studies L1 to L4 changes with D.
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the boundary. However, because, unlike SVMs, we are only

modelling one class, the boundaries tend to be smoother. In this

section we will calculate s in terms of the standard deviation for

each class separately, rather the entire dataset as a whole.

In Fig. 39 we illustrate the change in boundary with change in

s for case study L2 and D ¼ 0.2. In this case we have to visualise

separate decision functions for each class, although the bound-

aries can be superimposed in flat projection. Note that now there
This journal is ª The Royal Society of Chemistry 2010
can be samples that are within more than one region. We see that

for small values each sample has an RBF so sharp that it is in

practice an SV in its own rights, but once s increases the

boundaries become smoother, first encompassing small groups of

samples, and ultimately nearly resembling the boundary when

there is no kernel (Fig. 35), for an infinite value of s, the decision

function will be completely flat and so exactly resemble the

models of Section 5.2. As the value of s increases, the boundaries

get smoother and resemble circles more. For D ¼ 0.2 we expect

around 8 out of 40 samples to be misclassified, and but the actual

number is slightly less than expected. However, there are, in fact,

4 SVs for class A and 5 for class B, so if we count the number of

SVs this is close the number anticipated from D. The approxi-

mation only holds well when s is large.

The mathematics is rather complicated but the RBF in kernel

space is the same as for two-class SVMs except that SVs come

from only one class, so the kernel function is always positive.

5.4 Influence of SVDD parameters

We can now visualise the effect of adjusting both D and s

together. For case study L2, we show the influence of D when s¼
0.5 in Fig. 40. As D decreases, the boundaries become wider and

more complicated, as they have to incorporate all the samples.

Note interestingly that for this value of s there is no difference

between the boundaries for D¼ 0 and 0.25. In fact the value of D

approximates the proportion of samples misclassified best when

s is large – resembling a model without a kernel. When s is very

small the RBF decision function is very sharp and almost all

samples become SVs. This is illustrated in Fig. 41 for class A of

case studies L1 to L4. The number of bounded SVs equals the

number of misclassified samples – that is, samples outside the

boundary. For D ¼ 0 no samples are misclassified and as such

there are no bounded SVs; however, the number of unbounded

SVs reduces with s until it reaches a number that equals the

number of SVs needed to define a boundary in the model without

a kernel (Fig. 35) which is equal to 2 in this case (or 0.1 of the

samples) since only 2 samples are required to define a circle; for

low values of s the high proportion of samples that are SVs

reflects the fact that most samples are SVs so the boundaries

become very complex. A similar trend can be noticed for the case

where D ¼ 0.25, except that the number of unbounded SVs

approximates to 0.2 rather than 0.25 (4 samples), since the

relationship between D and the number of misclassified samples
Analyst, 2010, 135, 230–267 | 257
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Fig. 39 SVDD boundaries and decision functions for both cases and case study L2, using D ¼ 0.2 and various values of s in units of multiples of the

standard deviation of each class SVs indicated by symbols with crosses.
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Fig. 40 Appearance of boundaries and decision functions for case study L2, s ¼ 0.5 the standard deviation of the each class and different values of

D. SVs are indicated by symbols with crosses.
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is approximate. Some of the sudden ‘dips’ or discontinuities

occur because when s is changed there are sudden changes in

which samples are defined as SVs, the solution being stable for

a range of values and it changes as different samples define the

boundary. As we can see in Fig. 37, this may involve quite

different samples, and sometimes different numbers of samples.

An expansion of the graph for D¼ 0.25, for s between 0 and 2, is

illustrated in Fig. 42. It can be seen that for s ¼ 0.5 there are no

bounded SVs; that is, all SVs fall on the margins. Four bounded

SVs (corresponding to unclassified samples) are obtained once s

exceeds 1.2.

We illustrate the changing boundaries for case study R1

(pollution) as both D and s are varied, in Fig. 43. For very small

values of s, SVDD attempts to form boundaries around all or

most samples, individually. An interesting feature of this dataset

is that there are 3 outlying samples from class B (clean) that
This journal is ª The Royal Society of Chemistry 2010
appear to be present within class A (polluted). For low values of

s these are characterised by their own small clusters, but as s

increases, the appearance is of large overlapping clusters. When

D¼ 0 these outlying samples have a large influence on the class B

model as the boundary is required to include them, and when s is

very high this results in two highly overlapping circular regions.

When D ¼ 0.25, the model can afford to ignore these samples, as

approximately 25% of the samples will be outside the boundary

and so misclassified from each class. Note that these samples are

very far from the boundaries, whereas the other misclassified

samples are quite close, suggesting that the distance from the

boundary could also be used to determine how badly a sample is

misclassified.

It can be seen that when D and s are low there is a risk of

overfitting. For case study R1 this could have a considerable

influence on the model. In other situations, the values of these
Analyst, 2010, 135, 230–267 | 259
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Fig. 41 Number of bounded and unbounded SVs for class A of case studies L1 to L4 for different values of s.

Fig. 42 Expansion of the graph of Fig. 41 for values of s between 0 and

2 and D ¼ 0.25.
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parameters may have little influence on the model. We return to

case study R2 (the four types of oil). Fig. 44 illustrates the

boundaries when D¼ 0 and s¼ 1. These are identical for s¼ 0.5

and 2, as the same samples are chosen as SVs and the classes are

very well defined. Note a very significant advantage of one-class

SVs for this case study: compared to Fig. 26, since the groups are

very well defined, it is only necessary to select the region of

dataspace occupied by the samples for the model, and samples

that are outside the predefined classes are no longer forced into

a specific group.

One major dilemma is how to optimise the SVDD parameters.

In SVMs if there are two classes and as such it is possible to

determine classification errors, since if a sample from class A is

assigned to class B, this contributes to the training set error. In

SVDD there is only one group and, of course, the model that

performs best encompasses all samples. A circle (or hypersphere

in kernel space) that is large enough can always be found that

encloses all training set samples from the ‘in group’ but this is not
260 | Analyst, 2010, 135, 230–267
necessarily a suitable solution. If we were to include an ‘out

group’ in the assessment, then of course, as the size of the circle

increases, ‘out group’ samples will be enclosed in the circle,

resulting in classification errors, so there will be a limit to the

optimum radius of the circle. However, for one-class SVDD we

should not take into account information about any other group.

Therefore, traditional approaches for optimisation are not likely

to be successful.

We will discuss one possible approach to the optimisation of s.

To overcome the problem associated with the lack of ‘out group’

samples, a possible approach for optimisation of s is proposed

using the bootstrap41 involving the repeated formation of bootstrap

training and test sets, the data being split into two, one the boot-

strap training set that is used to develop the SVDD model and the

other bootstrap test set that is used to show how well it performs.

This involves finding a compromise solution that attempts to

minimise the proportion of bootstrap test set samples rejected as

belonging to the ‘in group’ (defined by frej) whilst also minimising

the radius Rh that surrounds the bootstrap training set in kernel

space, since the lower Rh the tighter the fit to the ‘in group’ samples.

In order that the radius Rh is comparable in magnitude to frej, the

boundary radius can be scaled from 0 to 1 by:

k ¼ Rh � dmin

dmax � dmin

where dmin is the minimum pairwise distance between samples in

a bootstrap training set and dmax is the maximum pairwise

distance between these samples. Therefore, we can define the

optimum s by the value that results in the minimum of k + frej,

since frej is calculated using a bootstrap test set, and this will be

dependent in part on which samples are selected in the bootstrap

test set. Hence this procedure is repeated a number of times

(typically 100–200) with different samples being selected each

time for the bootstrap test and training sets. The average value of

k over all iterations can be calculated for a range of s between the

values of dmin and dmax for all the ‘in group’ samples (which is

usually wider than for the bootstrap training set) and the

minimum chosen as the optimum. During this procedure, the
This journal is ª The Royal Society of Chemistry 2010
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Fig. 43 Illustration of SVDD boundaries for different values of D and s

(relative to the standard deviation of each class) for case study R1

(pollution) using the scores of the first two PCs.

Fig. 44 SVDD boundaries for case study R2 for D ¼ 0 and s ¼ 1 times

the standard deviation of each class using the scores of the first two PCs.

This journal is ª The Royal Society of Chemistry 2010
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sample rejection rate D is fixed ideally at 0 to include all samples

in the bootstrap training set model. After optimising s it is

possible to then change D if required for any specific confidence

limit.
6 Support vector regression

6.1 Principles

SVR (Support Vector Regression)46–48 is an extension of SVM to

cope with regression, which is a common application especially in

analytical chemistry. For simple linear calibration, where there is

only one variable measured, we aim to form a model between x

(horizontal axis) and c (vertical axis) of the form ĉ ¼ b + wx,

where ĉ is predicted (e.g. a concentration) from x (e.g. a spectral

intensity). Note that the notation in this paper is consistent with

various previous articles22,20 and is used because in multivariate

calibration, usually the property to be measured is denoted by ‘y’

and the spectral or chromatographic intensity by ‘x’, whereas in

traditional analytical chemistry this terminology is reversed.

Hence we do not use ‘y’ which can be confusing as there is

a direct incompatibility between the two conventions, and

employ ‘c’ which can be used to denote calibrant or concentra-

tion, and, in two dimensions, is represented by the vertical axis.

This is often called inverse calibration. The discussion below

could be extended to other types of calibration, but we restrict to

one way of expressing the equations for brevity.

In order to illustrate the principle, we will consider case study

C1 and try to develop a linear model between x and c. For

illustration we refer to Fig. 45. To understand the method, we

need to introduce a new parameter, 3. The linear model between

the two variables is analogous to the boundary between two

groups in SVM. However, 3 defines the width of the margin, and

an aim of calibration is to enclose all samples within the margin.

We can see that as the line becomes flatter, the width of the

margin increases. In order to enclose all samples between

the margins there will be a maximum value of 3 (which equals the

largest difference in value of c between the samples and is
Analyst, 2010, 135, 230–267 | 261
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Fig. 45 Case study C1. Illustration of different best fit straight lines, together with the SVs (indicated by filled symbols) and corresponding values of 3.

Fig. 46 An alternative straight line for 3 ¼ 0.152 and case study C1.
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a completely flat line), and a corresponding minimum value,

which depends on the distribution of the samples around a linear

model. For a range of values of 3 we can draw lines of the form ĉ

¼ b + wx, defined by the SVs or samples exactly on the margins.

Usually it is necessary to specify 3, which is the error tolerance,

in advance of training a model. If there are outliers, for example,

the choice is not necessarily straightforward, but this value could

be regarded as the maximum sensible error expected in the data.

However, for a given value of 3 there will usually be several

different possible straight lines. If we restrict these lines to those

for which at least two samples are on the margins, the number of

possible lines is limited. However, unlike SVM, samples do not

have to be on both of the margins, and an alternative solution to
262 | Analyst, 2010, 135, 230–267
that of Fig. 45 for 3¼ 0.152 is illustrated in Fig. 46, in which case

two samples are on the upper margin.

A key feature of SVs as linear learning machines is that they try

to minimise ½(ww0). In the case of the SVR model of case study

C1, x is one-dimensional, so we are trying to minimise ½w2 or

find the flattest line for a given value of 3. Since w ¼ 0.326 for the

case illustrated in Fig. 46 and 0.3 for the case illustrated in Fig. 45

(when 3 ¼ 0.152) we choose the solution of Fig. 45 as our

preferred out of the two solutions (there are a few other possible

solutions also but they can easily be ranked according to the

value of w). This is the preferred SVR solution (using a hard

model) for the chosen value of 3 of 0.152.
6.2 Penalty errors and kernels

In the example above we try to form models that include all

samples between two margins, of a given width. Providing that 3

is chosen correctly a linear model can always be formed with

these properties and there is always a way of deciding which

model is the most appropriate.

However, in many practical cases it may be inappropriate to

force all samples to be within the margins, and we allow samples

to fall outside these margins. We need to extend the SVR models,

and the main principles are illustrated in Fig. 47. Samples on the

margin are SVs that define the margin, and those outside are

analogous to bounded SVs (see Section 5.2). The slack variable x

defines the distance a sample is from the margin. Samples

between the margins are not SVs. Many of the principles are now

similar to those described above. The task is now to minimise
This journal is ª The Royal Society of Chemistry 2010
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Fig. 47 Main definitions of parameters for SVR.

Fig. 48 SVR solutions for case study S1 for a variety of values of 3 and

C: (left) best SVR lines; (right) predicted (vertical) versus observed

(horizontal). SVs on the margins are indicated with circles (all samples

outside the margins are also SVs), and on the right the bars represent 23.
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4ðw; b; xÞ ¼ 1

2
ðww0Þ þ C

X
i˛sv

xi

where xi is the slack variable for sample i: in this paper we will

assume that this is always positive whether the sample is below or

above the margin. We can see that there is now a penalty error C

that determines how important it is to ensure that all variables

are within the margins. Fig. 48 illustrates a variety of solutions

for case study C1 where 3 and C are varied. Note that in this case

C makes very little difference as the two variables are related

approximately in a linear fashion, although for very narrow 3

there is a small difference when C is changed (for the other

variables there is no difference over a wide range). There will, of

course, be some combinations of these two parameters for which

there is no solution, e.g. a very narrow margin with a high

penalty error.

When the relationship is no longer linear, as in case study

C2, it is necessary to introduce a kernel. We will restrict this

paper to an RBF, and similar principles apply as to how to

include an RBF as for other implementations of SVs, so are not

repeated for brevity. This case study is characterised both by

a curvilinear relationship between the variables and by a strong

outlier, which is coloured in red. We illustrate the solutions

using a fixed value of 3 (¼ 0.2) but with varying s and C in

Fig. 49. We can see that under such circumstances both

parameters now have a major role in defining the SVR solu-

tion. When s is small, the solution is much less smooth as

expected, but as C increases, the outlier becomes more influ-

ential, and for C ¼ 5, lies on the boundary. For low values of C

the solution is quite flat. Increasing s to 1 � the overall stan-

dard deviation of the data results in a far smoother solution

and one which is less influenced by the outlier. As s increases

the solution will approach a linear model, but some combina-

tions of 3, C and s are impossible. For example, if we were to

have a narrow value of 3 and a fairly flat model with a large

value of s it is not possible to increase C to a very high value

for this case study since such a model cannot encompass the

outlier on the margin.
This journal is ª The Royal Society of Chemistry 2010
6.3 Multivariate calibration

SVR can be employed for multivariate calibration. We will

illustrate this using case study S1, which consists of 25 UV/vis

spectra each consisting of mixtures of 10 PAHs. The experiments

are designed so that the concentrations of each analyte are

orthogonal and are at 5 levels.49 In Fig. 50 we illustrate the effect

of differing values of 3, C and s on the calibration predictions for

benzanthracene. For each chosen 3 value, in the left-hand column

the model is autopredictive, whilst for the right-hand column we

remove 10 of the samples (1, 2, 4, 6, 7, 9, 10, 12, 16, 18) as a test

set which are indicated in red, and the remainder are used to

determine the model and a training set (see Table 2).

We can immediately see that for low values of 3 on the whole

the predicted concentrations using autopredictive models are

forced closer to the best fit straight line but this does not neces-

sarily mean that the test set is well predicted, e.g. compare s¼ 0.5
Analyst, 2010, 135, 230–267 | 263
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Fig. 49 SVR solutions for case study C2 using 3 ¼ 0.2, and different values of C and s (in units of the standard deviation of the data) for an RBF. SVs

on the margins are indicated with circles (all samples outside the margins are also SVs), and on the right the bars represent 23.
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and C¼ 1 for 3¼ 0.05 and 0.2: there is very little difference in the

test set predictions. Note that low s can cause overfitting.

Compare 3¼ 0.05, C¼ 10 and both s¼ 0.5 and 1: we see that for

the lower value of s that autopredictive models appear slightly

better but the test set models are considerably worse. Note that in

some cases when C is changed, the models are identical because

the SVs are unchanged.
264 | Analyst, 2010, 135, 230–267
Looking at Fig. 50 it appears that the most suitable models are

for a low value of 3 and high values of s and C. This is primarily

because the data are related in a linear fashion, so having high s

makes the model close to a linear one, whereas low 3 reduces the

error tolerance, and high C forces the points into or between the

margins. There will be a limit to these combinations of param-

eters outside which there are no solutions; however, the best SV
This journal is ª The Royal Society of Chemistry 2010
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solution does reduce the experimental error substantially. For

case study S1 there is only limited advantage of SVR models over

more conventional PLS approaches, but there are advantages (a)

if there are outliers and (b) if there are any non-linearities. If one

wants to force a linear model this can be done without a kernel.

We do not illustrate this for brevity, but because the data are

already quite linear for case study C1 there is very little difference

to those illustrated in this paper.

In many cases in analytical chemistry, experiments are

designed to ensure that models are linear and so SVR does not

offer much above traditional methods and is overly complicated,

with several parameters that must be adjusted. However, the

advantage is flexibility; for example, if we suspect that there are

outliers the models can be produced using different values of C to

see how far they differ, or indeed to include different levels of

opinion as to how significant it felt is to include information on

the outliers in the model. It is important to realise that least

squares methods are often unduly influenced by outliers and as

such it is usually necessary to remove such samples prior to

modelling, or else use alternatives such as median methods or

fuzzy calibration, whereas this is unnecessary for SVR which can

be considered much more flexible. In areas such as Quantitative

Structure–Activity Relationship (QSAR) where the relationship

between the response and the experimental factors is unlikely to

be linear, support vector based approaches have a great deal of

potential.

It is possible to optimise SVR parameters using similar

principles to other methods in multivariate calibration,20 e.g. via

cross-validation or use of test sets, finding the combination of 3,

C and s that gives the lowest prediction error. However,

because several parameters may need optimising, it is usually

a good idea to look at the performance graphically first and

possibly fix one of these according to what seems sensible for

any specific dataset, usually 3 which represents the error toler-

ance, rather than to try to change all three simultaneously: some

combinations will be impossible and other combinations will

result in identical answers because identical SVs are chosen. If

the model is likely to be linear, fixing a value of 3 that is quite

low by visual inspection and then setting C and s to be as high

as is sensible to give a solution is probably the best approach.

There are no hard and fast rules unlike in PLS where there is

a strong literature on optimisation (or finding the most appro-

priate number of PLS components) because varying the values

of SVR parameters involves introducing additional assumptions

about non-linearity and outliers that can always result in

a slightly better fit to the data and so depend on what is

expected from the data.

The somewhat limited applicability to calibration problems

contrasts to the wide applicability to pattern recognition appli-

cations as we do not necessarily expect groups of samples to be

linearly separable, e.g. coming from biological, medical or

environmental studies and as such flexible non-linear solutions

are often necessary.
7 Conclusion

Most articles on Support Vector methods are based around the

original description in the machine learning literature, for which

the presentation has been largely unaltered over more than
266 | Analyst, 2010, 135, 230–267
a decade. This paper has tried to describe these approaches in

a more visual way whilst still retaining the basic algebraic

description and references to the key source papers. As these

approaches become more widespread there is a need to express

the methods in a form that applied scientists can appreciate,

especially to understand the influence of the main parameters on

the model.

The original applications were less concerned with multivar-

iate data, and less concerned with model validation, as the types

of problems often encountered, for example, in engineering have

different features: non-linearity though is probably more

important outside analytical chemistry and as such SVMs are

particularly flexible in dealing with such situations. Many experts

would say that SVMs can encompass almost any model, ranging

from the linear to the highly complex, and therefore could be

regarded as a universal method for classification and calibration.

Whereas this is certainly potentially true, for simple situations

they are probably unnecessarily complex with the risk of over-

fitting and dependence of the model on several adjustable

parameters that most users do not understand well. However,

when mining, for example large databases in genomics, trends

may be highly non-linear with outliers and Support Vector

approaches offer significant opportunities. We hope, however,

that in this paper we offer a graphical insight that allows users of

SVM based methods to understand better the consequences of

adjusting these parameters (C, s, and 3 where appropriate), so

that the methods can be employed safely. In addition, as the

analytical chemist gets access to large and more sophisticated

datasets, for example from biology, medicine, environmental and

cultural studies, traditional linear approaches such as PLS,

SIMCA and PCA may in some cases be inadequate and not able

to cope with this additional complexity. It is important to

remember though that traditional approaches are adequate if the

structure of the data is quite simple, and are easier to validate and

optimise, so a careful choice must be made. For calibration there

is often less need for Support Vector based methods unless there

are outliers and non-linearities: some analytical chemists would

say that if so the dataset is not a good one, but in some practical

situations this may happen and it can be expensive in time and

money to acquire perfect calibration sets. In areas such as QSAR

there are likely to be non-linearities and outliers in most datasets

so SV based methods have a potentially strong role. Direct

comparisons between Support Vector based methods and others

are often a bit difficult and depend very much on the data

structure.

However, it is always necessary to use these approaches with

caution to avoid overfitting. This is especially key in most

modern chemometrics as there are often far more variables than

samples, a situation not usually encountered in most other areas

of science. Support Vector methods though are likely to become

an important plank of scientific data analysis for many years to

come, and there is an urgent need for understanding of the basis

of such approaches.
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