Sensitizer-rich core–shell–shell upconversion nanoparticles for enhancing luminescence by spatial separation†
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) play an important role in sensing. However, the application of UCNPs is hampered due to their generally low luminescence intensity. In this paper, the NaYbF4@NaYF4:2%Er,20%Gd@NaYF4:20%Gd (CSS) was designed to enhance the luminescence intensity, and the luminescence intensity was about 2.5 times that of traditional NaYF4:20%Yb,2%Er,20%Gd@NaYF4:20%Gd (CS). The enhancement of luminescence intensity was mainly attributed to three factors: (1) a larger absorption cross-section provided by a sensitizer-rich core (100% Yb3+ doped), which was conducive to harvesting more near infrared light; (2) the spatial separation of the sensitizer and activator reduced harmful cross relaxation (CR); (3) the compact inert shell inhibited surface quenching. To further demonstrate the reasons for enhanced luminescence, the impact of different structures, the doping concentration of Yb3+ and Er3+, and the thickness of the inert shell on optical properties were studied. Besides, the CSS can still maintain strong UCL after being treated with NOBF4 and dispersed in DMF. Based on this, a CSS-doped fibrous membrane (CDFM) with a promising hydrophobicity was fabricated and applied to detect single drop rhodamine B (RhB) taking advantage of the inner filter effect (IFE) with a low limit of 0.382 μM.