
ISSN 1742-206X

www.molecularbiosystems.org Volume 6 | Number 1 | January 2010 | Pages 1–276

PAPER
Dong-Yup Lee et al.
Genome-scale modeling and in silico analysis of mouse cell metabolic network

Pu
bl

is
he

d 
on

 0
2 

Se
pt

em
be

r 
20

09
. D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 7
/2

3/
20

25
 8

:5
3:

37
 A

M
. 

View Article Online / Journal Homepage / Table of Contents for this issue

https://doi.org/10.1039/b912865d
https://pubs.rsc.org/en/journals/journal/MB
https://pubs.rsc.org/en/journals/journal/MB?issueid=MB006001


Genome-scale modeling and in silico analysis of mouse cell metabolic

networkw

Suresh Selvarasu,ab Iftekhar A. Karimi,a Ghi-Hoon Ghimc and Dong-Yup Lee*ab

Received 1st July 2009, Accepted 10th August 2009

First published as an Advance Article on the web 2nd September 2009

DOI: 10.1039/b912865d

Genome-scale metabolic modeling has been successfully applied to a multitude of microbial

systems, thus improving our understanding of their cellular metabolisms. Nevertheless, only a

handful of works have been done for describing mammalian cells, particularly mouse, which is

one of the important model organisms, providing various opportunities for both biomedical

research and biotechnological applications. Presented herein is a genome-scale mouse metabolic

model that was systematically reconstructed by improving and expanding the previous generic

model based on integrated biochemical and genomic data of Mus musculus. The key features of

the updated model include additional information on gene–protein-reaction association, and

improved network connectivity through lipid, amino acid, carbohydrate and nucleotide

biosynthetic pathways. After examining the model predictability both quantitatively and

qualitatively using constraints-based flux analysis, the structural and functional characteristics of

the mouse metabolism were investigated by evaluating network statistics/centrality,

gene/metabolite essentiality and their correlation. The results revealed that overall mouse

metabolic network is topologically dominated by highly connected and bridging metabolites, and

functionally by lipid metabolism that most of essential genes and metabolites are from. The

current in silico mouse model can be exploited for understanding and characterizing the cellular

physiology, identifying potential cell engineering targets for the enhanced production of

recombinant proteins and developing diseased state models for drug targeting.

Introduction

Recently, genome-driven in silico modeling and analysis have

been recognized as the promising approach for characterizing

complex cellular systems and for deriving novel strategies in

biomedical and biotechnological applications in the context of

systems biology and biotechnology.1–5 Such a genome-scale

modeling approach and concomitant analysis are initiated by

reconstructing the metabolic network of a given organism,

describing its genotype–phenotype relationship on the basis of

a primary set of biological information, i.e., genome annotation,

biochemical and cell physiological data.6,7 The reconstructed

model is then mathematically expressed by incorporating

metabolite balance and reaction reversibility constraints

within the model formulation.8 As such, the phenotypic

behavior and metabolic states of the organism can be assessed

and predicted by resorting to various optimization techniques

such as linear programming,9 quadratic programming,10 and

mixed integer linear programming.11

Among a multitude of model organisms demonstrating the

predictive power of the in silico models, Escherichia coli is one

of the well established bacterial systems: significant improvements

and updates in the genome-scale metabolic model of E. coli

have been consistently made for the past two decades.12

Moreover, this model has been effectively exploited for

characterizing the internal metabolism,4,13–15 examining

the cellular behavior under various genetic manipulations

and environmental conditions,16 and enabling hypothesis

generation.17,18 Saccharomyces cerevisiae is another well-

developed model organism; its genome-scale model can be

potentially employed to characterize yeast metabolism, under-

stand complex human diseases and to identify targets for

strain improvement.19–22 Currently, such genome-scale models

are being reconstructed and made available for more than

30 microbes as reviewed elsewhere.23,24 Nevertheless, only a

handful of works have been done for reconstructing genome-scale

metabolic models of mammalian cells. This is mainly attributable

to the complexity involved in describing their metabolisms as

well as lack of sufficient information.25 Sheikh et al.26 first

developed a generic model of mouse, based on the annotated

genome data of Mus musculus and described the industrially

important hybridoma cells producing monoclonal antibody

and recombinant proteins. Selvarasu et al.27 further improved

the mouse model and applied it to characterize the metabolism

in mouse hybridoma cells during fed-batch culture. Recently a
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genome-scale human model was also reconstructed using

genomic and bibiliomic data28 and combined with the tissue

specific gene expression data to elucidate the metabolic states

of different human tissues.29 Wahl et al.30 derived a lumped

metabolic model for vaccine-producing mammalian cell line,

Madin-Darby Canine Kidney (MDCK) cells from annotated

sequences of Canis familiaris and explained the characteristic

behavior during different growth phases. Hence, these initial

and recent developments clearly indicate that there has been

an increasing interest and demand towards genome-scale

modeling of mammalian cells.

Of fully sequenced mammalian organisms at present, mouse

cells have been well studied for understanding mammalian

genetic functions. They possess high degree of homology with

human genome,31 playing key roles in both biomedical

research and therapeutical applications.32–34 However, currently

available genome-scale mouse model26 is incomplete in

describing the cellular metabolism: some of the key metabolic

interactions are still missing, which may lead to inaccurate

predictions. Thus, in this work, we updated the previous

model by revising and improving the network connectivity,

thus enhancing its predictive capability. Structural and

functional features of the model were also examined using

various computational techniques, which allows for better

understanding of model characteristics.

Results and discussion

Genome-scale reconstruction of mouse metabolic network

The genome-scale metabolic network of mouse was system-

atically reconstructed based on the previous model and

relevant information from various resources (Fig. 1 and

Table 1; see Methods for details). Compared to the previous

model, 490 reactions are newly added, providing updated

information on gene–protein-reaction (GPR) association and

detailed description on lipid, amino acids, carbohydrate and

nucleotide metabolisms (Fig. 2). The model is comprised

of 724 genes, 715 enzymes, 1162 internal metabolites, and

1494 reactions (Table 2); 1246 reactions are biochemical

conversions within cytosol (1085) and mitochondria (161),

and 248 are exchange reactions describing the metabolite

transport between intra- and extra-cellular membrane (171)

and cytosol and mitochondria (77). We also compared the

current mouse model with other model organisms such as

E. coli and S. cerevisiae (supplementary 1w). In addition to

biochemical reactions, we derived one balance equation for

expressing the cell biomass from the drain of biosynthetic

precursors such as proteins, lipids, carbohydrates, DNA,

RNA, and other cellular components at their experimental

composition and relevant energy cofactors for their

conversion and assembly (supplementary 2w). The full list of

reactions, metabolites and their abbreviations are given in

supplementary 3.w
During the reconstruction process, manual curation of the

resulting network was iteratively performed by checking the

consistency, accuracy, and completeness of the model until

simulated results were consistent with experimental observation

both quantitatively and qualitatively. It allows us to find

knowledge gaps for refinining the model. For example, to fill

identified metabolic gap in tryptophan metabolism, we

included an enzymatic reaction ACMSC (EC:4.1.1.45) which

could be obtained through literature mining.31,35 Similarly we

added a transport reaction of spermine which was reported as

an important precursor for spermidine synthesis,36,37 thus

resulting in the enhanced network connectivity.

In silico model validation

The predictive capability of the current mouse model was

tested using constraints-based flux analysis, based on batch

cultural data of mouse hybridoma cells producing anti-F

monoclonal antibody, grown in a DMEM media supplemented

with proline, asparagine and aspartate.38 The biomass production

was maximized to simulate the cell growth condition,

constraining the measured specific consumption/production

rates of nutrients/products during the culture (Fig. 3). The

resultant growth rate (0.048 h�1) was higher than the average

specific growth rate (0.0362 h�1) in the entire batch culture.

We believe that the growth prediction can be improved when

relevant measurements for in silico simulation are used to

reflect more realistic operational condition during exponential

growth phase.

For qualitative model prediction, we conducted in silico

analysis on minimal media requirements for the cell growth

and finally identified required medium components. They

include essential amino acids, folate and phosphate which

are almost consistent with experimentally observed essential

components39 and the nutrition requirements for laboratory

animals40 (see supplementary 4w). However, in silico analysis

could not identify some minimal medium components such as

growth factors, cofactors, and minerals (biotin, thiamine,

vitamins, calcium and magnesium ions, etc.). Not surprisingly,

the predicted growth of the mouse cell was not directly affected

only by glucose uptake. Instead, it was determined by the

uptake of essential amino acids, thus confirming previous

observation that under glucose-deprived or limited conditions,

unlike microbial cells mammalian system can survive by

utilizing other nutrients like essential amino acids.41

Gene essentiality analysis also allowed us to validate and

improve the current mouse model in an iterative way. All

predicted essential genes using current and previous models

were compared with experimentally reported essential genes

from KOMP (KnockOut Mouse Project) database. As

summarized in Table 3, most in silico essential genes are

experimentally confirmed while we also found some false

positive predictions for genes dnmT1, ada, afmId, alaS2, gyk

and acsL4. This implies the presence of knowledge gaps (dead

end metabolites) around those genes within the current

network, suggesting further investigation for model improvement.

For example, the model incorrectly identified the gene acsL4

as essential. In mouse, acsL4 codes for acyl-coA synthetase

long-chain family member 4 (EC:6.2.1.3), which is involved in

fatty acid metabolism. Cho et al.42 also reported that acsL4

was non-essential in mouse as the deficiency of acsL4 was

compensated by another gene, acsL3 (acyl-coA synthetase

long-chain family member 3), thus leading to a normal

phenotype. Such information can be newly included in the

This journal is �c The Royal Society of Chemistry 2010 Mol. BioSyst., 2010, 6, 152–161 | 153
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model to improve its predictions. Note that a list of dead end

metabolites are given in supplementary 3.w

Structural and functional characterization of mouse metabolism

The characteristic features of the reconstructed model were

explored from its structural and functional points of view

(Fig. 1). First, the statistical network analysis identified a large

cluster of weakly connected reactions (89% of total reactions)

and 119 small clusters with 1 to 17 connecting reactions

(Fig. 4). We then calculated the network diameter while

the cofactor metabolites (e.g., ATP, H2O, CO2, etc.) were

excluded to prevent biologically meaningless results of identi-

fying them as major hubs in the network.43,44 The resulting

network diameter for the large cluster was measured to be 40.

The average path length (APL) was also calculated as 8.51,

revealing that most of the metabolites in the network can

be converted between each other by approximately 3B4

reactions. Similar analysis was conducted for three major

sub-networks, which were significantly improved from the

previous model (Fig. 2), carbohydrate, amino acids and lipid

metabolisms, resulting in different network diameters and

APLs as illustrated in Fig. 4.

Fig. 1 Schematic representation of the iterative approach employed in the reconstruction and analysis of genome-scale mouse model. The existing

model was used as a template and the network was expanded by compiling the information (genome, biochemical and mouse physiological data).

Missing links and redundant reactions were then identified to refine the model with such available resources. The resultant expanded model

underwent the validation process using constraints-based flux analysis with cell culture and in vivo gene essentiality data for verifying the

prediction. The presence of knowledge gaps was explored and again the model could be improved interactively. Subsequently, the model was

analyzed both structurally and functionally to characterize mouse metabolism and identify key pathways, reactions and metabolites.

154 | Mol. BioSyst., 2010, 6, 152–161 This journal is �c The Royal Society of Chemistry 2010
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We also explored the network topology by calculating

degree and betweenness centrality of metabolites, thus identifying

highly connected and critical (bridge-acting) components within

the network. The detailed results are given in supplementary 3.w
We further investigated the topological properties of the

network by comparing the essential metabolites with their

centrality scores (Fig. 5). The essential metabolites for the cell

growth were obtained using flux sum approach as described in

Methods. It was observed that the average centrality scores of

essential metabolites (degree: 6.37 and betweenness centrality:

0.00198) were much higher than the non-essential ones (degree

2.55 and betweenness centrality: 0.00039). Interestingly,

L-glutamate (GLU) was identified as one of highly linked as

well as key bridging essential metabolites with the highest

degree and betweenness centrality scores (Fig. 5A). It was

reported that this metabolite plays versatile roles in trans-

amination, deamination, and neurotransmission in the cellular

metabolism.45,46 Similarly, acetyl-coA (ACCOA) participates

in many reactions, connecting glycolysis, lipid metabolism,

and TCA cycle as visualized in Fig. 6. Topologically,

the excess carbohydrates and fatty acid may lead to the

production of ACCOA toward fatty acid synthesis and citrate

acid cycle for respiration, respectively, to maintain energy

requirements within the cell. Thus, it is suggested to consider

those bridging and highly connected metabolites as cell

engineering targets for enhancing the cell viability.

Unexpectedly, metabolite centrality was not clearly correlated

with metabolite essentiality (Fig. 5). For example, our metabolite

essentiality analysis identified AKG as non-essential inspite of

its high degree and betweenness centrality values. In order to

explore the phenotypic effect of AKG deletion in mouse

metabolism, we conducted in silico analysis by removing the

AKGmetabolite from the network and compared both resulting

flux distributions and metabolite flux sum with the reference

Fig. 2 Functional classification of metabolic reactions in mouse genome-scale model, (A) current updated model and (B) old model. Number of

reactions in each subsystem is shown in the tables. Metabolic subsystems with number of gene and non-gene associated reactions are detailed

in the table.

Table 1 Online resources for reconstructing genome-scale mouse metabolic network

Online resources URL

Mouse genome informatics http://www.informatics.jax.org
NCBI mouse genome resource http://www.ncbi.nih.gov/genome/guide/mouse
PANTHER http://www.pantherdb.org
KEGG database http://www.genome.jp/kegg/pathway.html
ExPaSy http://au.expasy.org
Brenda http://www.brenda.uni-koeln.de
RIKEN http://fantom2.gsc.riken.go.jp/metabolome/
KOMP (Knock Out Mouse Project) database http://www.komp.org

This journal is �c The Royal Society of Chemistry 2010 Mol. BioSyst., 2010, 6, 152–161 | 155
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that was determined under the normal growth condition

(Fig. 7A and B). Surprisingly, the effect of AKG deletion on

the cell growth was negligible: it was observed that required

biomass precursors were synthesized via other alternate

pathways such as pentose phosphate pathway and nucleotide

metabolism, thus leading to unchanged phenotypic state.

Similarly, PYR, one of the highly connected metabolites in

the central metabolic pathway was also rendered non-essential

even though it has high degree and betweenness centrality

scores. It should be noted that in mouse metabolic network,

PYR is available in both cytosol andmitochondria compartments.

Thus, no phenotypic change was observed upon its removal in

the cytosol due to the compensational role by its counterpart

from the other compartment.

We identified a set of essential genes for the cell growth in a

defined medium. Initially, single-gene reaction association was

assumed to perform gene deletion analysis under rich medium

(RM) as well as minimal medium (MM) conditions. Of 109

essential reactions under RM condition, 93 were gene-associated,

6 non-gene-associated, and 10 for the transport of amino

acids. Interestingly, the highest percentage (59%) of essential

reactions is from lipid metabolism (fatty acid biosynthesis and

fatty acid metabolism), indicating that it may be one of the

most vulnerable sub-systems to environmental disturbances.

The additional 6 reactions under MM condition are from

amino acids (5) and carbohydrate (1) metabolism (details in

supplementary 3w). When GPR associations were considered,

only 72 essential genes were identified as there were many

isozymes and multifunctional proteins in the current genome-scale

model. For example, fatty acids synthase (fasN), one of the

multifunctional proteins, alone catalyzed 37 reactions in lipid

metabolism, while other genes or proteins are associated with

at least two or more reactions in the metabolic network.

The presence of low percentage (o10%) of essential

reactions implies that mouse metabolism is highly flexible

and robust upon internal changes to attain the same pheno-

type through alternate pathways. For instance, a necessary

precursor for nucleotides synthesis, 5-phospho-a-D-ribose-1-
diphosphate (PRPP), can be produced by two reactions

PBEF1 (EC:2.4.2.12) and RPPK (EC:2.7.6.1). When one of

the reactions was deleted in silico, the other produced

PRPP, thus rendering two reactions/genes non-essential and

making the network flexible. In the view of exploring such

combinatorial genes/reactions, we conducted double-knockout

analysis. From more than 9.5� 106 pairs of 1385 non-essential

reactions, we could identify only 139 lethal pairs involving

114 unique reactions. Most essential pairs belong to two

categories: (i) two reactions producing the same metabolite

(e.g. both reactions, PBEF1 and RPPK, producing same

metabolite PRPP), and (ii) subsequent two reactions producing

and consuming same metabolite (e.g. reaction PC1 produces

metabolite PE, which is then consumed by PSS1). Similar

analysis has been successfully applied and the functional

features have been elucidated for H. pyroli, as such

demonstrating the cellular robustness and suggesting multiple

deletion analysis for identifying drug targets.47

Table 2 Characteristics of the mouse genome-scale metabolic net-
work and its comparison with the previous generic model

Current model Previous model26

Genome size (base pairs, bp) 2.5 � 109

Genes 724 473
Enzymes 715 —
Metabolites 1285 915

Cytosol 930 619
Mitochondrial 232 173
Extracellular 123 123

Reactions 1494 1004
Cytosol 1085 618
Mitochondrial 161 122
Transport 248 260

Membranea 171 185
Mitochondrialb 77 75

Reactions with ORF assignment 1203 680
Inferred reactions 291 324
Knowledge gapsc 367 335

a Transport reactions between extracellular and cytosol. b Transport

between cytosol and mitochondria. c Knowledge gap refers to the

dead-end metabolites in the network.

Fig. 3 Comparison of in silico growth rate with experimentally observed growth rate during batch culture. Specific growth rate is in hr�1; mAb

production rate in mg gDCW�1 h�1. The bars with black and white colours represent specific consumption and production rates, respectively.
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Table 3 Comparison of mouse in silico essential genes with the previous model and in vivo reported genes

Genes Enzymes EC No

Comparison with
experimenta

ReferencebCurrent model
Previous
model

acaCb Acetyl CoA carboxylase 6.4.1.2 + + Harada et al. 2007
arg1 Arginase 1, Liver 3.5.3.1 + � Iyer et al. 2002
cds2 Phosphatidate cytidylyltransferase 1 2.7.7.41 + + Lexicon Genetics, 2005
fasN Fatty acid synthase 2.3.1.85/2.3.1.38/2.3.1.39 2.3.1.41/

1.1.1.100/4.2.1.61/1.3.1.10/3.1.2.14
+ � Chirala et al. 2003;

Chakravarthy et al.
2005

gys1 Glycogen synthase 1, muscle 2.4.1.11 + � Pederson et al. 2004
hk2 Atp: D-Fructose 6-phosphotransferase 2.7.1.1 + � Heikkinen et al. 1999
hmgCr 3-Hydroxy-3-methylglutaryl-coenzyme

A reductase
1.1.1.34 + + Ohashi et al. 2003

mthFr 5,10-Methylenetetrahydrofolate
reductase

1.5.1.20 + � Chen et al. 2001

odc1 Ornithine decarboxylase, structural 4.1.1.17 + � Pendeville et al. 2001
pcyT1a Phosphate cytidylyltransferase 1,

choline, alpha isoform
2.7.7.15 + + Wang et al. 2005

pemT Phosphatidylethanolamine
N-methyltransferase

2.1.1.17 + � Walkey et al. 1997

pgm2 Phosphoglucomutase 5.4.2.2 + + Greig et al. 2007
pisD Phsophatidyl-L-serine carboxy-lyase 4.1.1.65 + + Steenbergen et al. 2005
srm /sSms Spermidine synthase 2.5.1.16/2.5.1.22 + � Strom et al. 1997
acsL4 Acyl-coA synthetase long chain family

member 4
6.2.1.3 � NA Cho et al. 2001

ada Adenosine deaminase 3.5.4.4 � + Wakamiya et al. 1995
afmId Kynurenine formamidase 3.5.1.9 � � Dobrovolsky et al.

2005
alas2 Glycine C-succinyl-transferase-

(decarboxylating)
2.3.1.27 � NA Nakajima et al. 1999

dnmT1 S-Adenosyl-L-methionine DNA
(CYTS-5-)-methyltransferase

2.1.1.37 � NA Li et al. 1993

gyk Glycerol kinase 2.7.1.30 � � Huq et al. 1997

a ‘+’and ‘�’ stand for ‘consistent’ and ‘not consistent’ with experiments, respectively. b Details of references are available in supplementary

3.w NA: Not available.

Fig. 4 The connectivity of metabolites in different reactions in the metabolic network. The reactions involved in significantly improved metabolic

subsystems such as carbohydrates, lipids and amino acids metabolisms are indicated by their edge colours: green, blue and red, respectively.

Metabolites colours: blue-cytosol, red-mitochondria, green-extracellular and yellow-cofactors. Metabolites and reactions from amino acids, lipids

and carbohydrates metabolism were extracted to draw individual edge generated graphs. Essential reactions and metabolites in the subnetworks

are highlighted using cross and star-shaped nodes. Network diameter and average path lengths (APL) for the main network and the three

sub-networks are also shown.

This journal is �c The Royal Society of Chemistry 2010 Mol. BioSyst., 2010, 6, 152–161 | 157

Pu
bl

is
he

d 
on

 0
2 

Se
pt

em
be

r 
20

09
. D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 7
/2

3/
20

25
 8

:5
3:

37
 A

M
. 

View Article Online

https://doi.org/10.1039/b912865d


Important role of lipid pathway in mouse metabolism

The structural and functional analysis of the genome-scale

mouse model revealed that lipid metabolic pathways play a

key role in supporting the cell growth. It was evident from the

results of essentiality analysis: more than 50% of the essential

reactions/genes were from the lipid metabolism (Fig. 8A);

among 177 essential metabolites out of 1162 total, nearly

50% (86 out of 177) were directly linked to lipid metabolism

(Fig. 8B). In addition, centrality measurements from statistical

analysis identified some of key metabolites in lipid metabolism

that structurally form a major hub in metabolic network

(Fig. 5B). Thus, such highly connected lipid metabolites are

functionally important as well. Although their functional

role in cellular activities should be examined and verified

experimentally, the emergence of ‘lipidomics’ allows us to gain

new insight into the lipid metabolism, providing large sets of

data on lipid metabolites and their functional interactions with

other proteins, lipids and metabolites within the cell.48 Hence,

this new information can be potentially integrated with the

metabolic network to develop a prototype model for describing

the regulation of lipid metabolites under different growth

conditions. Such observations can also be informative in

understanding lipid metabolism related human diseases such

as obesity, hypertension, diabetes, etc., and for examining

mutants or disease causing agents.49

Links to glycosylation for model improvement

Glycosylation is the enzymatic process in mammalian systems

to form complex glycans and their eventual attachment to cell

proteins and lipids, thereby activating their interactions with

the cell environment through metabolism, regulation and

signaling.50,51 It involves transport of dietary sugar molecules

such as glucose, mannose, fucose and galactose into the cell,

and their conversion along the metabolic pathways by utilizing

more than 2–3% of genes and many high-energy metabolic

intermediates. Such monosaccharides are generally synthesized

within cytosol and assembled inside endoplasmic reticulum

(ER) and golgi compartments. The complexity pertaining to

the glycosylation mainly comes from the structural diversity of

generated complex glycans and the involvement of more than

250 isozymic and multifunctional enzymes.52 So far, this posed

a major obstacle in investigating the glycosylation process and

is evident from the limited number of works available on the

modeling aspect of glycosylation.53,54 The current genome-scale

mouse model offers a good platform for integrating the

intricate glycosylation process and understanding its link to

the cell metabolism since it describes the synthesis of mono-

saccharide and nucleotide sugars well. However, the formation

of complex glycan structures in ER and golgi compartments

has been overlooked in the model due to lack of relevant data

and information. Moreover, it is highly necessary to determine

the amount of sugars and the associated glycans required for

glycoproteins and glycolipids. In this regard, the emerging

field of ‘glycomics’ can provide more information on sugar

molecules and their concentration inside the cell.55 We can

determine amount of required monosaccharides for the

assembly of glycans and subsequently examine the activity of

the relevant enzymes and, more importantly, their spatial

localization during the carbohydrate synthesis. Therefore,

Fig. 5 Correlation between metabolite degree and betweenness centrality for (A) all metabolites, (B) essential metabolites and (C) non-essential

metabolites. The metabolite can be identified as essential when its removal leads to no growth. Highly-connected, bridging metabolites are

highlighted in (A). ACP: acyl carrier protein, ACCOA: acetyl-coA, ACCOAm: acetyl-coA mitochondiral, AKG: a-ketoglutarate, AKGm:

a-ketoglutarate mitochondrial, AMASA: L-2-aminoadipate-6-semialdehyde, ANA: N-acetylneuraminate, CAR: carnitine, GLAC: D-galactose,

GLC: D-glucose, GLU: L-glutamate, GLY: glycine, MALACP: malonyl-[acyl-carrier-protein], PPIXm: Protoporphyrin mitochnondrial, PYR:

pyruvate, SAH: S-adenosyl-L-homocysteine, SAM: S-adenosyl-L-methionine, SUCC: succinate, SER: L-serine and URI: uridine.
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such data can be combined with the carbohydrate, protein and

lipid compositions in the cell biomass equation, allowing us

to better understand the glycosylation process along with

additional sugars availability constraint in the model.

Concluding remarks

The main objectives of the current work are to reconstruct a

genome-scale mouse metabolic network by updating a

previous generic model and structurally and functionally

characterize the mouse metabolism. The key features of the

updated model include improved network connectivity

through the addition of reactions in lipid, amino acids,

carbohydrates and nucleotides metabolisms and new information

on GPR association. The predictability of the reconstructed

model was validated both quantitatively and qualitatively

using batch culture data of mouse hybridoma cells and

in vivo gene essentiality data. The structural analysis of the

network identified highly connected and bridging metabolites,

revealing the high correlation between metabolite degree

and betweenness centrality. Subsequent functional analysis

enabled us to characterize mouse metabolism and identify

essential metabolites, enzymes and reactions from the lipid

metabolism, which indicated its important role in the cellular

growth. Indeed, there were some disagreements between

model predications and experimental observation, thus suggesting

potential areas for model improvements and expansion in

future. We believe that continuing efforts of genome-scale

mouse modeling and analysis would help us to understand

the mechanism underlying the cellular behavior of mouse and

extract valuable information in conjunction with new omics

data such as glycomics and lipidomics within the context of

mammalian systems biology and biotechnology.

Methods

Metabolic network reconstruction

Fig. 1 depicts a schematic overview of the genome-scale

reconstruction process and subsequent analyses for characterizing

the mouse metabolism. The previous generic model of mouse26

was considered as a starting point for our enhancement effort.

Initially the repeated or redundant reactions in the model were

identified and removed. Then, various simulations of the

model were performed to verify its ability to produce each

cellular component defining the biomass from different carbon

sources. It allows us to find missing links or gaps in

the network and subsequently fill them by adding relevant

enzymatic and transport reactions obtained from several

online resources (KEGG, RIKEN, MGI, BRENDA, and

ExPaSy) (Table 1) and relevant literature to M. musculus.

Additionally, information on new open reading frames

(ORFs) and GPR association were also included, thus

significantly expanding the scope of the model.

Statistical network analysis

The visualization and statistical analysis of reconstructed

genome-scale mouse network were all performed using the

network analysis software, BioNetMiner (http://bio.netminer.

com). A large-size mouse network can be efficiently visualized

by BioNetMiner embedding graph layout algorithms, Force-

Directed Kamada-Kawai56 and GEM:57 Kamada-Kawai gen-

erates a balanced metabolic network graph with uniform

distribution and symmetry55 while GEM draws an aesthetically

pleasing layout with the lower number of edge crossings.58 It

also allows us to measure a variety of network properties such

as node-degree, shortest paths and clustering coefficients. In

addition, the network topology can be statistically analyzed by

identifying highly-connected and bridging metabolites using

degree and betweenness centrality, respectively (details are

given in supplementary 5w).

Constraints-based flux analysis

Once reconstructed genome-scale metabolic network is stoichio-

metrically balanced, the predictive capabilities of the model

can be examined in both quantitative and qualitative manners

by resorting to constraints-based flux analysis.59 Initially,

under stationary assumption during cell growing phase, cell

biomass production can be considered as plausible cellular

Fig. 6 Visualization of the ACCOA interaction across lipid

metabolism, TCA cycle and glycolysis. The enlarged section shows

the high connectivity and bridging characteristics of ACCOA. Blue

edges: lipid metabolic reactions, green: TCA cycle and red: glycolysis.

ACCOA: acetyl-coA.
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objective to be maximized for quantifying the cellular growth

phenotype. The resulting growth rate was then compared with

experimentally observed specific growth rate. Subsequently,

the model can be qualitatively assessed by simulating minimal

media requirements and gene deletion analysis. The minimal

nutrient components can be determined by minimizing the

summation of all consumed substrates from the medium;

under the determined minimal medium condition, the cell

growth was maximized, constraining each reaction flux to be

zero. The reaction and corresponding gene were deemed

essential when their removal resulted in zero growth.

Similarly, essential metabolites can be identified by forcing

the flux sum across each metabolite as zero under cell growth

condition as described in Kim et al.60 Finally, the functional

organization of the mouse metabolism can be investigated on

the basis of gene/metabolite essentiality and its correlation

with structural characteristics of the network. All these linear

optimization problems were solved by MetaFluxNet61 and

GAMS/CPLEX 10.0.62

Acknowledgements

The work was supported by the Academic Research Fund

(R-279-000-258-112) from the National University of

Singapore and the Biomedical Research Council of A*STAR

(Agency for Science, Technology and Research), Singapore.

Fig. 7 Comparison of (A) metabolite flux-sum and (B) metabolic flux distribution during cell growth under normal and AKG deletion conditions.

Metabolites flux sum and flux distributions in carbohydrates and nucleotides metabolisms are shown in the enlarged sections. Blue and red colour

bars represent normal and AKG deletion conditions, respectively. AKG: a-ketoglutarate.

Fig. 8 Classification of essential (A) reactions and (B) metabolites according to different metabolic subsystems in the mouse metabolism.
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