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For almost 10 years, topological analysis of different large-scale biological networks (metabolic

reactions, protein interactions, transcriptional regulation) has been highlighting some recurrent

properties: power law distribution of degree, scale-freeness, small world, which have been

proposed to confer functional advantages such as robustness to environmental changes and

tolerance to random mutations. Stochastic generative models inspired different scenarios to

explain the growth of interaction networks during evolution. The power law and the associated

properties appeared so ubiquitous in complex networks that they were qualified as ‘‘universal

laws’’. However, these properties are no longer observed when the data are subjected to statistical

tests: in most cases, the data do not fit the expected theoretical models, and the cases of good

fitting merely result from sampling artefacts or improper data representation. The field of

network biology seems to be founded on a series of myths, i.e. widely believed but false ideas.

The weaknesses of these foundations should however not be considered as a failure for the entire

domain. Network analysis provides a powerful frame for understanding the function and

evolution of biological processes, provided it is brought to an appropriate level of description,

by focussing on smaller functional modules and establishing the link between their topological

properties and their dynamical behaviour.

Introduction

During the last 10 years, topological analyses have been

applied to a variety of ‘‘real-world’’ networks such as

World-Wide Web connections, scientist co-authoring, actor

collaborations,1,2 metabolic reactions,3–6 protein interactions,7
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regulatory networks,8–11 leading to seminal publications

in the most reputed scientific journals. Typically, some

statistical properties (node degree, inter-node distances,

cliquishness, etc.) are computed on a given network and

compared with their expected values according to a few

theoretical models considered as the only possible alternatives.

Interestingly, these networks were all found to bear a set of

properties that distinguish them from random networks:

power law degree distribution,2 scale-freeness, and small

world1 (see Box 1 for definitions). These properties

were reported for a wide variety of biological networks

(metabolism, protein interactions, gene regulation), leading

to the idea that ‘‘cellular networks are governed by universal

laws’’.12

Box 1. Network topology semantics

Node degree: number of edges linked to a node. The count

can be restricted to incoming edges (in-degree), outgoing

edges (out-degree) or include both (total degree).

Hub: highly connected node.

Distance: the distance between two nodes is the number of

edges in the shortest path between them.

Node eccentricity: length of the longest of all shortest

paths between a given node and any other node.67

Characteristic path length: number of edges of the shortest

paths between two nodes averaged over all pairs of nodes.1

Network diameter: length of the longest among all

shortest paths between node pairs. This is equal to the

maximal eccentricity over all nodes of the network. Note

that the term ‘‘diameter’’ has mistakenly been used to denote

the average length of the shortest paths between all the pairs

of nodes,5i.e. the characteristic path length.

Network radius: minimum value of eccentricity over all

nodes.67

Power law: a polynomial relationship between two

quantities:

y = axk

where a and k are constants. The constant k is often referred

to as the ‘‘power law exponent’’ or ‘‘scaling index’’.17

Poisson distribution: discrete distribution defined by a

single parameter l (lambda), indicating its mean value.

PðX ¼ xÞ ¼ e�llx

x!

Erdös–Renyi (ER): stochastic model generating graphs

where each pair of nodes has the same probability of being

linked by an edge. The degree distribution of ER graphs

typically follows a Poisson distribution, as exemplified in

Fig. 1C–F.

Scale-freeness: a probability function p(x) of a variable x is

scale-free if, for any value of b, it satisfies the condition:

p(bx) = g(b)p(x)

where g(b) is a multiplicative constant depending on b. In

words, the scaled and the original functions have the same

shape. The only distribution satisfying that condition is the

power-law (reviewed by ref. 68).

Clustering coefficient: the clustering coefficient of a node is

the fraction of connections among all possible connections

between its neighbours. In a non-directed graph without

self-loops, a node has N neighbours, the number of possible

connections between them is N(N � 1)/2.

Small world network: the term, coined by Watts and

Strogatz, refers to networks that are highly clustered (high

average clustering coefficient), like regular lattices, yet with

small average shortest path length, like random networks.1

The shortest distance between two vertices increases

logarithmically with the number of nodes n (as for random

graphs).69

Humphries defines a parameter S to measure the small-

worldness of a network.70

S = Cg/Cr � Lr/Lg

Where C denotes the clustering coefficient and L the average

path length of a graph, g is the graph of interest, and r is an

ER-random graph of the same size as g. The graph g is

qualified of ‘‘small-world network’’ if S 4 1.

Interaction density and interaction density gradient: These

measures were introduced recently19 to compare different

proposed models of PPI network growth. Depending on the

model attachment rule, a different pattern of connections will

be observed between groups of nodes of different ages. For

example, under the preferential attachment model, new

nodes connect more likely to older nodes, since the latter

have higher connectivity.

The interaction density Dm,n between two (age) groups m

and n is the ratio of observed interconnecting edges between

the groups (lm,n) out of all possible edges between them

(Em,n), normalized according to the total number of edges

(L) and nodes (N) in the network:

Dm;n ¼ log2
Im;n=Em;n

2L=ðNðN � 1ÞÞ

Em;n ¼ NmNn ðmanÞ

Em;m ¼ NmðNm � 1Þ=2
The average interaction density gradient (DD) of the network

is calculated as the average of the differences in the number

of connections of a group n to the consecutive groups m and

m + 1, where 1 r m o n r G (G is the newest group and

1 the oldest):

DD ¼

PG

n¼2

P

mon

ðDmþ1;n �Dm;nÞ

GðG� 1Þ=2

Network modules: ‘‘Patterns of interconnections that

recur in many different parts of a network at frequencies

much higher than those found in randomized networks’’41
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Surprisingly, most initial claims about topological properties

were proposed on the simple basis of graphical representations,

but were contradicted as soon as the models were challenged

by actual statistical tests.13,14 Would the ‘‘universal laws’’

merely be myths according to the sensu lato definition, i.e.

‘‘widely held but false beliefs’’?15

Furthermore, several hypotheses about the functional and

evolutionary implications of those network properties are

based on analyses led at a high abstraction level, but their

relevance rapidly fades out as soon as the nodes (genes,

proteins, metabolites) and their interactions are inspected with

more details. Despite their elegance, the evolutionary scenarios

derived by transposing theoretical generative models onto

biological networks are reminiscent of the sensu stricto definition

of myth, i.e. ‘‘a traditional story, esp. one concerning the

early history of people or explaining some natural or social

phenomenon’’.15

Despite the lack of consistency between theoretical models

and data, new papers are steadily published, suffering from the

same flaws, in apparent ignorance of the serious concerns

raised by several authors.13,16–19 To justify the observed

discrepancies between theoretical models and biological

networks, some authors invoke the incompleteness of network

annotations. When the ‘‘universal laws’’ are contradicted by

the facts, the first reflex is to question the quality of the data

rather than the validity of the models. We are thus in the

typical situation of a dogma: ‘‘a principle or a set of principles

laid down by an authority as incontrovertibly true’’.15

In this article, we review the main concepts having emerged

from topological analysis of biological networks, and discuss

the controversial issues about their statistical validity, as well

as their functional and evolutionary interpretation.

Myth 1: the degree distribution of biological

networks follows a power law

In the literature on biological network topology, the power

law is usually opposed to Poisson distribution, which would be

expected from random graphs generated following the Erdös–

Renyi (ER) model (Box 1). Surprisingly, the classical publications

reporting the alleged power laws were only based on a visual

inspection of degree distribution plots, without any attempt to

actually fit a straight line over the observed data, and to test

the goodness of the fit. It was only in 2006 that such a test was

finally applied to 10 networks previously reported to follow a

power law:13 this analysis revealed that none of them fits the

theoretical distribution.

The illusion of the power law partly came from several

representation issues. Firstly, in seminal articles,5,12 the power

law is illustrated by plotting the degrees (k) and their

probabilities P(k) on logarithmic scales (inset of Fig. 1B),

whereas the Poisson is illustrated with linear scale (inset of

Fig. 1C). This way to oppose two models is obviously

misleading: alternative distributions should be displayed

consistently with the same scale, either linear (Fig. 1A versus

C or E) or logarithmic (Fig. 1B versus D or F).

Secondly, the illustration of the ER model is usually based

on a Poisson distribution with a high expected mean

(l parameter), irrespective of the mean degree of the networks

to be analyzed. However, this parameter has an important

effect on the shape of the distribution: symmetrical bell shape

for high l values (Fig. 1C and D), but strongly asymmetrical

for lower values (Fig. 1E and F). When contrasting the two

a priori models, the l parameter of the Poisson should thus be

adapted to the mean degree of the observed network.

Another representation issue is that the degree values are

sometimes regrouped by class intervals,5 thereby enforcing the

apparent linearity on the log–log plot (inset of Fig. 2A),

whereas displaying the raw distribution highlights the wide

dispersion of the right tails (Fig. 2A), denoting the fact that the

hubs are statistical outliers of the alleged power law. Indeed,

when a straight line is fitted on the non-binned distribution

(Fig. 2A, dotted line), the fit appears very poor, because its

slope is strongly affected by the hubs. Strikingly, a better fit is

obtained when we discard the 30 most connected nodes from

the network (Fig. 2A, dashed line). The same trend is observed

when the power law is fitted onto the inverse cumulative

distribution rather than on the density function (Fig. 2B).

Considering that the power law property of the metabolic

networks has always been attributed to the presence of ‘‘hub

compounds’’, it is somewhat paradoxical that the fit looks

valid only if those hubs are removed from the graph.

The fitting of a power law onto other types of networks is

even less convincing. The analysis of the regulatory network

of Escherichia coli reflects the presence of many specific

transcription factors (having between 1 and 15 target genes)

and some global factors involved in the regulation of many

genes (Fig. 2C). The incoming degree distribution (Fig. 2D),

which indicates the number of regulating factors per gene,

shows an asymmetric bell-shaped distribution (square) which

is reminiscent of Poisson law. It however shows a poor fit with

the Poisson distribution (dashes-dots). Protein interaction

networks obtained from high-throughput experiments display

a curved shape (Fig. 2E and F), which can hardly be confused

with the straight line expected from a power law.

In summary, careful analyses fail to confirm the power law

distribution of degrees in biological networks. Even more, the

variability between the degree distributions observed in different

networks (metabolic, regulatory, protein interactions) rules

out the hope to discover any universal law that would describe

them altogether.

Fig. 1 Power law versus Poisson distributions. Random simulations

based on various models (power law, Poisson) fitted with their

respective theoretical distributions. A, B: power law function

y = axg with g = �2.5 and a = 1, displayed with linear (A) and

logarithmic (B) scales, respectively. C, D: Poisson fit on the degree

distribution of a random ER graph with an average of 20 connections

per node with linear (C) and logarithmic (D) scales. E, F: Poisson fit

on a random ER graph with an average of 1 connection per node

displayed with linear (E) and logarithmic (F) scales, respectively. On

each graph, the dotted line represents the number N(k) of nodes

having degree k, and the plain line the inverse cumulative distribution,

i.e. number of nodes (iCumN) with degree greater than or equal to k.

Insets B and C: in the seminal paper on the topology of metabolic

networks,5 the power law was illustrated with logarithmic scales,

whereas the Poisson law was depicted with linear scales, and with a

high mean value.
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Myth 2: Biological networks are scale-free

Since the beginning of the above-mentioned wave of literature,

some confusion has been maintained between the concepts of

‘‘power law’’ and ‘‘scale-freeness’’, so that in many papers

these two expressions are used in an almost interchangeable

way. As pointed out in some reviews,16,17,20 the concepts are

generally not even defined.

A first remark is that scale-freeness does not apply to a

network as a whole, but to some of its properties. In fact, to

speak about ‘‘scale-free networks’’ is completely misleading

since it would imply that a subset of the network would have

an identical structure as the whole network (fractal images are

the typical illustration of this concept).

It is thus important to specify which property of a network is

supposed to be scale-free, and this is frequently not clear in the

papers speaking about scale-freeness. The topological property

that is generally claimed to be scale-free is the power law

character of the degree distribution, and, in some articles, the

scaling exponent (which corresponds to the slope of the regression

line on the log–log graph). The scale-freeness of the power law

has been tested by selecting random sub-networks from artificial

networks whose degree distribution follows a power law. It has

been shown that the degree distribution of such sub-networks

retains the power law shape, but not the scaling exponent.21

Han and co-workers performed an extensive study of the

effect of sampling on artificial networks generated with various

degree distributions: Poisson (Erdös–Renyi model), exponential,

power law, or truncated normal. Interestingly, they showed

that sub-networks tend to exhibit a power law distribution,

irrespective of the topological property of the larger network

they were sampled from. They conclude that the apparent

power law property observed in some biological networks

might result from a sampling artefact, rather than reflecting

some property of the complete network. The distribution of

the complete network can thus not be estimated from the

distribution of sub-networks, preventing to draw general

conclusions about parameters estimated from incomplete

datasets. This confirms that the concepts of ‘‘power law’’

and ‘‘scale-freeness’’ should not be considered as synonymous.

Myth 3: the metabolic network is a small world

Two independent studies5,4 reported that metabolic networks

display the small-world property (Box 1). Despite the large size of

the network (regrouping a few thousands of compounds and

reactions), both studies revealed that the distance between any

pair of compounds averages around 3, with a very narrow range

of variations (typically between 1 and 4 reactions), suggesting

that metabolites could be inter-converted into each other in a

very small number of steps. However, in the first study,5 shortest

paths were searched in the raw metabolic network, where any

compound is allowed to serve as intermediate to link two

reactions. Consequently, most reported paths contain irrelevant

shortcuts where pairs of reactions are linked via pool metabolites

such as H2O, O2, H
+, etc. (Table 1). Basically, this procedure

predicts the single-step conversion of water into ethanol, thereby

violating the mass conservation law (actually a law). Pool

metabolites thus create irrelevant shortcuts that artificially confer

a small-world property to metabolic networks.22,23

In another study,4 the obvious trap of the pool metabolites

was avoided by suppressing a selection of ‘‘hub compounds’’

from the network. Path finding in such a filtered graph returns

slightly more relevant pathways, but only when they comprise

a small number of steps.22,23

Alternative methods were designed to increase the relevance

of the pathways inferred by path finding, by tracing the

transfers of atomic groups between reactions,18 by weighting

the graphs in order to penalize highly connected compounds,23

or by restricting path finding to valid reactant pairs.24,25 When

path finding is adapted in such ways to better correspond to

biochemical pathways, distances between compounds show a

significant increase, indicating that the metabolic world is not

so small.18

Myth 4: small worlds are tolerant to random

deletions, but vulnerable to targeted attacks

Another common belief is that the small world character

confers two properties to biological networks: robustness to

Fig. 2 Fitting of power law on the degree distributions of various

biological networks. The abscissa represents node degrees (k), the

ordinate the frequency of nodes having that degree (P(k)). Squares:

density function; plain curve: inverted cumulative distribution

function (iCDF); dotted: power law fitted onto the data; dashed:

Poisson distribution fitted onto the data. A: metabolic network from

the KEGG database, where nodes correspond to compounds, and

their degree is the number of reactions in which they participate.

Theoretical distributions fitted onto the density function. Note the

discontinuity between the core of the distribution and its right tail,

appearing as a bump on iCDF. Inset A: reproduction of the figure

published to support for the power law character of metabolic

networks.5 Note that the fact to regroup degrees into classes (‘‘binning’’)

masks the discontinuity between the core of the distribution and its right

tail. B: the same metabolic network with theoretical distributions fitted

onto the iCDF. C, D: distributions of outgoing (C) and incoming (D)

degrees in the regulatory network built from RegulonDB. Outgoing

degrees (C) indicate the number of target genes per transcription factor.

Incoming degrees (D) indicate the number of regulators per regulated

gene. E, F: protein interaction networks from the high-throughput

experiment of Gavin et al. (E)73 and Krogan et al. (F),74 respectively.

Table 1 Example of paths using irrelevant shortcuts in the metabolic
network. The table shows the 10 first paths from D-glucose to ethanol
obtained by path finding algorithm23,71 in the raw metabolic network.
Note that all these paths are biochemically meaningless, because
they use irrelevant shortcuts to link reactions via pool metabolites
(H2O, NADH)

Path
number Path

1 D-Glucose - R04094 - H2O - R02682 - ethanol
2 D-Glucose - R00300 - NADH - R00754 - ethanol
3 D-Glucose - R00534 - H2O - R02359 - ethanol
4 D-Glucose - R02558 - H2O - R02682 - ethanol
5 D-Glucose - R00304 - H2O - R02359 - ethanol
6 D-Glucose - R02558 - H2O - R02359 - ethanol
7 D-Glucose - R05142 - H2O - R02682 - ethanol
8 D-Glucose - R00534 - H2O - R02682 - ethanol
9 D-Glucose - R01444 - H2O - R02682 - ethanol
10 D-Glucose - R04006 - H2O - R02359 - ethanol
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random node deletions (also denoted as ‘‘error tolerance’’) and

sensitivity to hub removal (denoted as ‘‘attack vulnerability’’).26

The small diameter of metabolic networks was proposed to

reflect the capability of cells to convert compounds into each

other within a few reactions, thereby ensuring their robust

response to environment variations.5 Error tolerance was

related to the capability of living cells to survive random

deletions of metabolic enzymes, whereas ‘‘attacks’’ targeted

towards the hub compounds would ‘‘disintegrate [the network]

into isolated clusters that are no longer functional’’. As soon

as we consider the nature of the nodes in the metabolic

network, this rough transposition of computer network-derived

properties onto metabolic networks is devoid of sense. Firstly,

the tolerance to random deletions is far from trivial: the

classical approach used by biochemists to discover enzyme-

coding genes was to perform a random mutagenesis and to

select mutants showing an auxotrophic phenotype. Such

mutants lose their ability to synthesize a given compound,

because the only path leading to this compound has been

disrupted by the deletion of a single enzyme. Although the

missing compound has generally very few links in the metabolic

network, auxotrophy often results in lethality, unless the

missing compound is provided in the culture medium.Metabolic

networks are thus not so robust to random deletions.

The concept of ‘‘attacks’’ targeted to the hubs is even more

questionable, because mutations affect genes (and thus the

enzymes they code for), but cannot directly target metabolites.

Pool metabolites appear as ‘‘hubs’’ in the metabolic network

because they can be produced and consumed by several

hundreds of different reactions, which are catalyzed by distinct

enzymes. The suppression of a single hub like H2O from the

metabolic network would thus require deleting or inactivating

several hundred enzyme-coding genes. After a handful of such

mutations, the cell would already suffer from the depletion of

its main enzymatic products (which are generally poorly

connected compounds) and die, so that it is unconceivable

to suppress, by natural or even directed mutations, a pool

metabolite from the network. Thus, the concepts of error

tolerance and vulnerability to attacks simply do not apply to

metabolic networks.

In protein networks, the correspondence between mutations

and node deletions is more straightforward than in metabolic

networks. Jeong and co-workers showed that the hubs of PPIs

correspond to essential proteins.7 By combining an analysis of

network topology and temporal profiles of gene expression,

Han and co-workers distinguish two subtypes among the

highly connected proteins:27 ‘‘party hubs interact with most

of their partners simultaneously, whereas date hubs bind

different partners at different times or locations’’. The distinction

between those subtypes is supported by an independent

analysis of structural interfaces between proteins,28 revealing

that the relation between high degree and essentiality is

stronger for proteins having multiple interaction interfaces

(consistent with the concept of party hubs) than for those with

only one interface (consistent with date hubs). It is not

surprising that deletions of proteins involved in many inter-

actions, either because they form large protein complexes or

are involved in multiple processes, are likely to be deleterious.

The apparent vulnerability of PPI networks to hub removal

obviously results from the particular functions of each of these

proteins and the biological processes in which they participate

rather than to some general small world character they would

confer to the network. In particular, it has to be noted that PPI

networks integrate various types of interactions, going from

stable protein complexes to transient interactions intervening

in signal transduction pathways. Distance-related concepts

such as pathway distance and ‘‘small worldness’’ may be

relevant for signal transduction pathways, but these only

represent a subset of the data. A deeper insight into the

mechanisms underlying the relationship between topology

and essentiality will thus require a case-by-case analysis of

protein functions in the context of the processes in which they

participate.

Myth 5: biological networks grow by preferential

attachment

One way to generate artificial networks that follow a power

law is to apply an algorithm where nodes and arcs are

progressively added, with new nodes being preferentially

attached to highly connected nodes (‘‘rich gets richer’’).2,29

This generative model creates networks where initial differences

are progressively amplified so that the first created nodes are

more likely to become hubs (‘‘older gets rich’’).

Based on this generative model, several authors hypothesized

that the power law structure of biological networks results

from a tendency of new nodes (metabolites, proteins, genes) to

establish interactions with more ancient nodes. Evelyn Fox

Keller questions the general validity of this reasoning, since

other models would as well generate networks with power law

degree distributions, albeit their underlying topologies might

be very different.16 There is thus a trivial logical fallacy under

the reasoning: the fact that preferential attachment generates

power law does not mean that power law implies preferential

attachment (A - B a B - A). The claim that a given

biological network evolves by preferential attachment must

thus be supported by other arguments than simply the shape

of the degree distribution.

If we examine the raw metabolic network, preferential

attachment can certainly not be considered as a general

explanation for the top-ranking metabolites. The identity of

the ‘‘hubs’’ (Table 2) provides a direct explanation for their

high degree: they are either inorganic compounds (e.g. water,

oxygen, CO2, H2O2), or cofactors (ATP, NAD, SAM). Each

of these molecules is involved in a specific type of chemical

modification applied to a large diversity of substrates: H2O is

involved in hydrolysis and (de)hydration, ATP is the main

currency for energy transfer, SAM is the methyl carrier, etc.

Fell and Wagner proposed the preferential attachment model

to metabolic networks from which pool metabolites had been

filtered out: If, early in the evolution of life, metabolic networks

grew by adding new metabolites, then the most highly connected

metabolites should also be the phylogenetically oldest.4,30

Indeed, this scenario seems reasonable for some of the highly

connected compounds involved in intermediary metabolism,

e.g. oxaloacetate, pyruvate, glutamate, as well as some amino

acids pointed by the authors. A strict application of this model

would however lead to impossibilities, since it would imply
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that ATP appeared before adenosine, S-adenosyl-L-homocysteine

before cysteine, etc. The preferential attachment model may

thus partly explain some relationships between central and

peripheral metabolism, but should certainly not be considered

as the reason for the topological properties of the network

(hubs, degree distribution).

The preferential attachment model has also been proposed

for protein interaction networks. Eisenberg and Levanon31

tested the validity of this model by partitioning all the proteins

of the yeast Saccharomyces cerevisiae into 4 age groups,

estimated from the taxonomical range in which they were

found: Saccharomyces only, all fungi, fungi + plants, or fungi

+ plants + bacteria, respectively. Their study clearly shows

that the average degree is higher for older than for newer

proteins. A first concern should be raised about the design of

this test. Even though the mean differences may differ between

age classes, this is not a proof for the preferential attachment

model. Indeed, since power law distributions are intrinsically

characterized by the presence of statistical outliers (the

‘‘hubs’’), the arithmetic mean is a poor estimator of the central

tendency of the degree distribution. In other words, the fact

that the mean degree is higher for proteins of older groups

might result from the very high degree of a few ancient

proteins (‘‘hubs’’) involved in primordial functions having

evolved during early forms of life,32,33 and would thus not

support a general rule of preferential attachment.

Rather than comparing the means, the test should thus rely

on the medians (which are robust to outliers and thus better

suitable for highly skewed distributions), or, even better, on

the whole distribution. Under the preferential attachment

model, nodes would progressively acquire links during evolu-

tion, and the entire distribution would thus be shifted towards

higher degrees for older proteins, as compared with newer

proteins. As a matter of illustration, we analyzed the degree

distributions per age group using a literature-curated (LC) and

a high-throughput (HTP) PPI from a more recent study.19 The

inverse cumulative distributions (Fig. 3) indeed reveal differences

between age groups, but the relationship is not as simple as

expected from a preferential attachment to the most ancient

proteins. In the literature-curated network (Fig. 3B), the

most recent proteins (found in fungi only) present the same

distribution as the most ancient ones (those found in archaea,

bacteria and eukaryotes), whereas a right-hand side shift is

observed for proteins found in eukaryotes only, and in

eukaryotes+ archaea, respectively. The same trend is perceptible

in the high-throughput network (Fig. 3C), even though the

Table 2 Highly connected compounds and their metabolic function. In-degree and out-degree represent the number of reactions that produce or
consume a given compound, respectively (data from KEGG/LIGAND http://www.genome.jp/ligand/)

Rank ID Name In-degree Out-degree Total degree Metabolic function (from ref. 72)

1 C00001 H2O 769 1444 2213 Hydrolysis, hydration
2 C00080 H+ 809 460 1269 Proton pumps (e.g. respiratory chain,

photosynthesis) and other redox reactions
3 C00007 Oxygen 43 817 860 Electron acceptor
4 C00006 NADP+ 318 406 724 Coenzyme: electron acceptor
5 C00005 NADPH 405 316 721 Coenzyme: electron donor in anabolism
6 C00003 NAD+ 160 503 663 Coenzyme: electron acceptor in catabolism
7 C00004 NADH 497 158 655 Coenzyme: electron donor
8 C00002 ATP 17 449 466 Coenzyme: energy donor
9 C00011 CO2 378 49 427 Last product of oxidation, precursor of

photosynthesis
10 C00009 Orthophosphate 315 78 393 Product of ATP, ADP and AMP hydrolysis.
11 C00010 CoA 242 127 369 Coenzyme: universal acyl donnor
12 C00008 ADP 313 20 333 Product of ATP hydrolysis and substrate for

ATP synthesis
13 C00014 NH3 253 43 296 Source of N for all organisms incapable of fixating

N2. Product of aa and nucleotide catabolism,
urea cycle.

14 C00013 Pyrophosphate 256 30 286 Product of ATP hydrolysis
15 C00019 S-Adenosyl-L-methionine

(SAM)
6 239 245 Coenzyme: methyl donor

16 C00021 S-Adenosyl-L-homocysteine 227 9 236 Subproduct of methylation by SAM
17 C00015 UDP 216 6 222 Coenzyme: carrier of hexose groups
18 C00027 H2O2 142 21 163 Redox reactions
19 C00026 2-Oxoglutarate 33 125 158 Participates in the citric acid cycle. Transfer of

amino groups in aa and nucleotide catabolism.
20 C00020 AMP 144 14 158 Product of ATP/ADP hydrolysis and substrate

for ATP/ADP synthesis
21 C00022 Pyruvate 101 50 151 Final product of glycolysis and some aa

metabolism, e.g., Ala, Cys, Ser. Gluconeogenesis.
22 C00024 Acetyl-CoA 35 101 136 Coenzyme: acetyl donor
23 C00025 L-Glutamate 83 46 129 Transfer of amino groups in reactions of aa

and nucleotide metabolism, intermediate in Pro,
Arg, Gln, His, degradation/biosynthesis,
precursor of glutathione, ornithine, GABA,
Ser and Gly biosynthesis (NH3 donor)

24 C00036 Oxaloacetate 29 14 43 Participates in the citric acid cycle and
gluconeogenesis. Precursor of Asp. Produced by
several anaplerotic reactions.
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most ancient proteins show a slight increase in degree

compared to the most recent ones. The fact that proteins

found specifically in eukaryotes and/or archaea have more

connections might result from an over-representation, in these

datasets, of proteins involved in processes involving many

protein interactions (e.g. cell cycle, transcription machinery, etc.).

The duplication–divergence model (or families of models)

explains the topology of protein interaction networks based on

genetic mechanisms underlying genome evolution.30,34–37 The

hypothesis is that partial and/or whole genome duplications

must have a direct impact on the evolution of protein inter-

action networks. Under this model, immediately after gene

duplication, both duplicates interact with all the former

neighbours of the parent gene. Later mutations in one of the

redundant copies provoke a loss of some or all of its inter-

actions. The model is supported by several observations:

paralogous proteins are more likely to share partners than

randomly chosen proteins,34 proteins sharing partners are

more likely to be paralogs28 and a proportion of protein

complexes have similarities to other complexes.38 However,

the partners acquired by this mechanism alone would compete

for the same (duplicated) interface.28 Network rewiring is

necessary to introduce novel interactions (rather than merely

duplicate existing ones)37 and is thought to occur mainly by

exon shuffling of genes encoding for multimeric proteins.34

Despite the popularity of the duplication–divergence model,

no consensus exists yet on how the protein network evolves.

Recently, four alternative generative models (preferential

attachment, duplication–divergence, anti-preferential attachment

and crystal growth) were compared in their capability to

reproduce the topology and age-dependence of interaction

patterns observed in the yeast protein interaction network.19

Age-dependence of interaction patterns of the real and simulated

networks was evaluated using a measure of the interaction

density (D) between different age groups and the network-wise

propensity for a new node to connect with older nodes

(average interaction density gradient, DD) (see Box 1 for

definitions). The duplication–divergence model seems to

reproduce the topology of the yeast PPI network but not its

age-dependence interaction pattern. In the yeast PPI network,

most links are made between proteins belonging to close age

groups (DD 4 0). This feature is only observed in the network

generated following the crystal growth model (which is the

only other reproducing the PPI network topology), although

the pattern of interaction density between the different age

groups does not reproduce that of the yeast network.

In summary, it seems that each of the generative models

proposed so far captures a subset of the topological properties

of protein interaction networks, but none of them is able to

account for all topological aspects.

Outlook: beyond myths and dogmas

Given the numerous discrepancies between the theoretical

models and the actual properties of biological networks,

should we conclude that the domain of network biology has

to be reconsidered as a whole? Despite our criticism in the

previous sections, we believe that graph theory offers powerful

methods for handling and analyzing the vast amounts of

biological data resulting both from the accumulation of

detailed studies as well as from high-throughput experiments.

However, in order to gain insight into the way biological

systems are organized and function, networks have to be

considered under a different angle: (1) developing dedicated

models for representing and analyzing biological processes; (2)

focusing on local modules rather than on global distributions;

(3) bridging the gap between static descriptions and dynamic

behaviour of biological systems.

Fig. 3 Degree distributions in the interactome for proteins of different classes of age (data from ref. 19). A: degree per protein in the literature-

curated (abscissa) versus high-throughput (ordinate) networks. Note that the hubs are completely different between these two networks. B, C:

inverse cumulative distributions (iCDF) of degrees of proteins partitioned into different age groups for the literature-curated (B) and high-

throughput (C) network, respectively. The horizontal bar (Freq = 0.5) indicates the median degree of each age class (the abscissa of its intersect

with each iCDF). The horizontal dotted line indicates the third quartile, which separates the 25% most connected from the 75% less connected

nodes.
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Developing dedicated models

Graph-based representations of molecular and chemical

interactions undoubtedly provide synthetic views enabling

computational analyses, which may eventually lead to increase

our biological knowledge. However, knowledge will not emerge

from the simple representation of biological data as dots and

lines. A relevant interpretation requires a case-by-case adaptation

of representations to the biological object under study.

This can for example be done by incorporating biochemical

knowledge into metabolic networks: the relevant pathways

can be inferred by tracing the exchanges of atom groups

between compounds,39 or by decomposing reactions into

reactant pairs.24,40 In PPI networks, the incorporation of

structural analysis has already improved our understanding

of the network evolution.28

Ultimately, understanding the wiring of biochemical networks

will sooner or later require us to integrate the different layers

of biological processes (genetic, protein–protein, metabolic),

and to map them onto the specific cellular compartment and

tissues where they take place.

Focusing on local modules

Topological analysis of biological networks has been quite

fertile if we consider the number of generative models that it

inspired: preferential attachment, duplication–divergence,

anti-preferential attachment, crystal growth, etc. Despite all

these efforts, none of these models is able to capture all

parameters of the topology, probably because this topology

results from billions of years of interplay between organisms

and their environments, which will never be captured by any

stochastic model. The topology of current networks can

probably better be explained as resulting from the integration

of many distinct functional modules, whose individual topologies

are anchored in functional constraints related to a particular

biological process. Rather than spending our energy inventing

ever more complex statistical models in order to reach the holy

grail of the perfect fit with all the topological parameters, it

would thus be more productive to analyze biological networks

at a closer detail, and to understand the links between

molecules at the level of functional modules, as well as the

relationship between multiple modules on a network-wide

scale. Networks become interpretable as soon as one makes

the effort to zoom into their local structures, and inspect the

molecular structures, interactions and reaction kinetics of the

actor molecules.

Transcription regulatory networks were the first to be

targeted from a module perspective. A systematic study of

the transcription network of E. coli led to the identification of

recurrent motifs41 (see Box 1 for the definition) that were

further found in regulatory networks of other organisms

(yeasts, plants and animals) and in other types of biological

networks.42 The recurrent presence of these motifs in a variety

of biological networks has been proposed to be due not only to

conservation but also to convergent evolution under the effect

of functional selection.42,43 The criterion for considering that a

motif is over-represented or not is itself debatable, and

the significance of some recurrent motifs may have been

over-estimated due to inappropriate null models for network

randomization.44,45 Nevertheless, such studies are of interest

because they bring back the focus from global networks to

local structures that can be related to specific information-

processing units.

From static representation to dynamical modelling

Beyond the detection of recurrent modules, understanding the

relationship between network architecture and function will

imply to push the analysis to dynamical models, incorporating

temporal and spatial dimensions.46 Strangely enough, the

network topology community seems to completely ignore the

insights gained from several decades of mathematical biology,

and barely cite any pre-2000 article.

Actually, the relationship between network motifs and their

dynamical behaviour has been tackled by geneticists since half

a century: the first network motifs to be discovered were the

feedback loops, whose effect was characterized by experimental

and theoretical analyses of small genetic networks. In their

historical article on the Lac operon,47 Jacobs and Monod not

only demonstrated the existence of genetic regulation (repression),

but also pointed out the essential role of the positive feedback

to ensure multistationarity, i.e. the existence of two alternative

cellular states (induced or repressed, respectively). In the early

70’s, Kauffman48,49 and Thomas50 modelled genetic networks

with Boolean approaches. Thomas further defined a logical

formalism based on multi-value variables that allowed him to

systematically analyze the role of feedback loops in regulatory

networks,51,52 and demonstrated that the presence of positive

feedback loops (i.e. a loop containing an even number of

negative interactions) is a necessary condition to generate

multistationarity (differentiation, cell memory), whereas negative

feedback loops (odd number of negative interactions) ensure

sustained oscillations and homeostasis (see ref. 53 for a recent

review). The respective roles of positive and negative feedback

loops are confirmed by innumerable examples of regulatory

circuits involved in controlling metabolism, development,

immune system, etc.

On the way back from theory to wet biology, mathematical

modelling can also be the starting point to pinpoint a set of

molecules and interactions that will be further studied using

classical molecular genetics methods. Synthetic biology applies

the theoretical concepts to design artificial genetic systems that

can be empirically tested in living cells. Small circuits that we

designed following this approach include a positive loop acting

as a genetic toggle between two alternative stable states,54 or a

negative loop generating an oscillating behaviour.55 Artificial

regulatory interactions can also be inserted into existing

biological systems in order to decipher their function and

evolution, by engineering small circuits56 or even rewiring

the entire regulatory network.57

Albeit the action of individual motifs on small genetic

systems has been well described, much remains to be done

before we understand the rules underlying the combination of

multiple such motifs in large networks. A great challenge for

the future will be to bridge the gap between mathematical

modelling of small circuits and integrative analysis of large

networks. Instead of considering network biology as a new

and thus separate field, combination of graph theory with
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other established approaches in mathematical biology, and

their confrontation with prior biological knowledge are critical

elements if we aim to fully understand, model and design

biological systems.58

Abbreviations

ER Erdös–Renyi

PPIs Protein–protein Interactions

LC Literature-curated PPI network

HTP High-throughput PPI network
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