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In this work, we describe a computational framework for the genome-wide identification and
characterization of mixed transcriptional/post-transcriptional regulatory circuits in humans.

We concentrated in particular on feed-forward loops (FFL), in which a master transcription
factor regulates a microRNA, and together with it, a set of joint target protein coding genes.
The circuits were assembled with a two step procedure. We first constructed separately the
transcriptional and post-transcriptional components of the human regulatory network by looking
for conserved over-represented motifs in human and mouse promoters, and 3’-UTRs. Then, we
combined the two subnetworks looking for mixed feed-forward regulatory interactions, finding a
total of 638 putative (merged) FFLs. In order to investigate their biological relevance, we filtered
these circuits using three selection criteria: (I) GeneOntology enrichment among the joint targets
of the FFL, (II) independent computational evidence for the regulatory interactions of the FFL,
extracted from external databases, and (III) relevance of the FFL in cancer. Most of the selected
FFLs seem to be involved in various aspects of organism development and differentiation.

We finally discuss a few of the most interesting cases in detail.
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Background

A Dbasic notion of modern systems biology is that biological
functions are performed by groups of genes that act in an
interdependent and synergic way. This is particularly true for
regulatory processes for which it is by now mandatory to
assume a “‘network” point of view.

Among the various important consequences of this
approach, a prominent role is played by the notion of
“network motifs”. The idea is that a complex network
(say a regulatory network) can be divided into simpler, distinct
regulatory patterns called network motifs, typically composed
of three or four interacting components that are able to
perform elementary signal processing functions. Network
motifs can be thought of as the smallest functional modules
of the network and, by suitably combining them, the whole
complexity of the original network can be recovered.
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In this paper we shall be interested in “mixed” network
motifs involving both transcriptional (T) and post-
transcriptional (PT) regulatory interactions, and in particular
we shall especially focus our attention on the mixed
feed-forward loops. Feed-forward loops (FFLs) have been
shown to be one of the most important classes of
transcriptional network motifs.'* The major goal of our work
is to extend them to those also including post-transcriptional
regulatory interactions.

Indeed, in the last few years it has become more and more
evident that post-transcriptional processes play a much more
important role than previously expected in the regulation of
gene expression.

Among the various mechanisms of post-transcriptional
regulation, a prominent role is played by a class of small
RNAs called microRNAs (miRNAs), reviewed in refs. 3 and 4.
miRNAs are a family of ~22 nt small non-coding RNAs,
which negatively regulate gene expression at the post-
transcriptional level in a wide range of organisms. They are
involved in different biological functions, including
developmental timing, pattern formation, embryogenesis,
differentiation, organogenesis, growth control and cell death.
They certainly play a major role in human diseases as well.>®

Mature miRNAs are produced from longer precursors,
which in some cases cluster together in so-called miRNA
“transcriptional units” (TU),” and their expression is
regulated by the same molecular mechanisms that control
protein-coding gene expression. Even though the precise
mechanism of action of the miRNAs is not well understood,
the current paradigm is that in animals, miRNAs are able to
repress the translation of target genes by binding, in general, in
a Watson—Crick complementary manner to 7 nucleotides (nts)
long sequences present at the 3’-untranslated region (3’-UTR)
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of the regulated genes. The binding usually involves
nts 2-8 of the miRNA, the so-called “seed”. Often, the
miRNA binding sites at the 3’-UTR of the target genes are
over-represented.® 14

All these findings, in addition to the large amount of work
related to the discovery of transcription factor binding sites
(for a recent review, see for instance ref. 15), suggest that
both transcriptional and post-transcriptional regulatory
interactions could be predicted in silico by searching
over-represented short sequences of nts present in promoters
or 3’-UTRs, and by filtering the results with suitable
evolutionary or functional constraints.

Stemming from these observations, the aim of our work was
to use computational tools to generate a list of feed-forward
loops in which a master transcription factor (TF) regulated a
miRNA, and together with it, a set of target genes
(see Fig. 1a). We performed a genome wide “‘ab initio” search,
and we found in this way a total of 638 putative (merged)
FFLs. In order to investigate their biological relevance, we
then filtered these circuits using three selection criteria:
(I) GeneOntology enrichment among the joint targets of
the FFL, (II) independent computational evidence for the
regolatory interactions of the FFL, extracted from the
ECRbase, miRBase, PicTar end TargetScan databases, and
(IIT) relevance to cancer of the FFL as deduced from their
intersection with the Oncomir and Cancer gene census
databases.

In a few cases some (or all) of the regulatory interactions
that composed the feed-forward loop were found to be already
known in the literature, with their interplay in a closed
regulatory circuit not noticed, thus representing an important

o) (] —
Target
— [ECRbase, PMID: 17447837 ]
1 Joint miRBase4; PicTar; TargetScan4.2
( Gene Ontology ]

Fig. 1 Feed-forward loops. (a) Representation of a typical mixed feed-
forward loop (FFL) analyzed in this work. In the square box, TF is the
master transcription factor; in the diamond-shaped box miR repre-
sents the microRNA involved in the circuit, while in the round box, the
Joint Target is the joint protein-coding target gene (JT). Inside each
circuit, —e indicates transcriptional activation/repression, whilst
— indicates post-transcriptional repression. (b) Flow-chart of the
annotation strategies for the feed-forward circuits. After building the
catalogue of closed FFLs (see Fig. 2), each side of the circuit was
expanded and analyzed using external support databases and func-
tional annotations. Beside each circuit link the source used for its
annotation is reported; see Materials and Methods for details.

validation of our approach. However, for several loops we
predicted new regulatory interactions, which represent reliable
targets for experimental validation.

Let us finally notice that in this work we only discuss the
simplest non-trivial regulatory circuits (feed-forward loops).
However, our raw data could be easily used to construct more
complex network motifs. For this reason, we make them
accessible to the interested investigators as ESI.{

Results

Here we provide a collection of circuits that explicitly link a
transcription factor (TF) and a microRNA (miRNA), which
both regulate a set of common target genes (Fig. 1a). To this
end we (1) constructed a transcriptional regulatory network,
(2) defined a miRNA-mediated post-transcriptional regulatory
network, (3) merged the two networks, and (4) filtered the
results with various selection criteria (Fig. 2). In the next
section we shall then discuss a few cases in more detail.

Circuits identification
Construction of a human transcriptional regulatory network

The starting point of our analysis was the construction of a
database of promoter regions for both protein-coding and
miRNA genes for human and mouse. Details of this construction
are reported in the Materials and Methods section. Here we
only stress our main choices. For protein-coding genes we
selected the core promoter region near the transcription start
site (TSS), whereas for the miRNA promoters, we chose to
merge together all the miRNAs present in the so called
“transcriptional units” (TUs) proposed in ref. 7, kept only
the conserved TUs (human and mouse) and then selected the
putative core promoter regions (see the ESI, supplementary
files S1 and S2+).

We then identified, separately for humans and mice, sets of
genes (protein-coding plus miRNAs) sharing over-represented
oligonucleotides (oligos), 6-9 nts long, in their associated
promoter regions. Next, we selected the oligos for which the
human and mouse sets contained a statistically significant
fraction of orthologous genes. In doing so, we used a binomial
model for the assessment of over-representation and an
alignment-free evolutionary methodology for the identification
of conserved oligos, as previously used in refs. 16 and 17. This
approach was also extended to the putative promoters of
miRNA genes. All the sequences were repeat-masked, and
we took into account either redundancy due to superposition
of the same genomic areas or protein-coding exons, or
correction for CG content of the sequences themselves. As a
final result, we ended up with a catalogue of cis-regulatory
motifs conserved in the core promoter regions of human and
mouse protein-coding or miRNA genes, each endowed with a
score (the p-value of the evolutionary conservation test,
described in the Materials and Methods). We then applied
corrections for multiple testing and ranking, setting 0.1 as the
false discovery rate (FDR).

The last step was the association of the serving motifs with
known transcription factor binding sequences (TFBSs), where
possible, to obtain a list of putative TF-target gene
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Fig. 2 Flow-chart of our pipeline for the identification of the mixed feed-forward regulatory loops. We built two independent but symmetrical
pipelines for the construction of a transcriptional and, separately, a post-transcriptional regulatory network in humans. On the left: we defined a
catalogue of core promoter regions around the transcription start sites (TSS) for protein-coding and miRNA genes in the human genome. We then
applied a genome-wide sequence analysis strategy in order to identify a catalogue of human putative transcriptional regulatory motifs and the
corresponding regulated genes. In so doing, the key ingredients used were statistical properties of short DNA words (oligo analysis) and
conservation to mouse, implemented in an alignment-free manner (conserved over-representation). On the right: a similar strategy was used,
starting from a catalogue of 3’-UTRs in humans, to obtain a catalogue of human post-transcriptional regulated genes, with a focus for
miRNA-mediated interactions. We fixed 0.1 as the false discovery rate (FDR) level for both the two motifs discovery pipelines. At the end, the two
regulatory networks were merged to extract the complete dataset of closed mixed feed-forward loops (FFLs), as defined in Fig. 1a, and the results
were filtered according to three different procedures: by looking for (I) significant functional (Gene Ontology) annotations between the joint targets
of the FFLs, (II) independent computational evidences for the regulatory interactions of the FFLs, and (III) relevance to cancer. See Materials and
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interactions. To this end we used the TRANSFAC'® database
and the list of consensus motifs reported in ref. 13.

Fixing 0.1 as the FDR level, we obtained a catalogue of
2031 oligos that could be associated to known TFBSs for a
total of 115 different TFs. These 2031 oligos targeted a total of
21159 genes (20972 protein-coding and 187 miRNAs), and
almost every gene in the Ensembl!® database was present at
least once in our network. In parallel to that, our motif
discovery procedure further identified 20 216 significant motifs
but for which we were not able to make any strong association
with known TFBSs consensus.

The dataset of associations between motifs and genes
represents our transcriptional regulatory network and was
the starting point for the circuits identification (see the ESI,
supplementary files S3 and S4f). A relevant role in the
following will be played by the subnetwork describing the
transcriptional regulation of miRNAs. This subnetwork
involves 110 TFs (out of 115 of the whole network) targeting
a total of 187 miRNAs (see the ESI, supplementary file S47).

Construction of a human post-transcriptional regulatory network

We used a very similar approach for the construction of the
post-transcriptional regulatory network and used a dataset of

3’-UTRs for all the protein-coding genes in the human and
mouse genomes. We ended up with a catalogue of 3989 short
oligos (in this case 7-mers) over-represented and conserved in
humans and mice after corrections for multiple testing and
ranking, again setting 0.1 as the FDR threshold in our
motifs discovery pipeline. Although the ab initio unbiased
procedure that we used could discover different kinds of
post-transcriptional regulatory motif,!” we kept only those
motifs that could be associated with “seeds” of our known
mature miRNAs (193 in total). 182 out of 3989 motifs turned
out to match with at least one seed present in 140 out of 193
mature miRNAs (in some cases the motif could be associated
to more than one miRNA). These motifs targeted a total of
17266 protein-coding genes, which represented our post-
transcriptional regulatory networks reported in the ESI,
supplementary file S5.F

Construction of the human mixed feed-forward loops catalogue

Once equipped with these two regulatory networks, we could,
in principle, integrate their complementary information in
various different ways. Here, we concentrated on the class of
mixed FFLs discussed for instance in refs. 20-22, because
biologically important and relatively simple to relate to
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experimental evidences and validations. We integrated the two
networks, looking for all possible cases in which a master TF
regulates a miRNA, and together with it, a set of protein-
coding joint targets (JT). Notice that, as mentioned above, for
each TF we associated all the motifs compatible with its
binding site and its variants as they are reported in the
TRANSFAC! and in the ref. 13 collections. In this way, the
intrinsic variability of regulatory binding sites, apparently
neglected by our method, since we used fixed motifs, was
restored in the final results.

We were able to obtain a list of 5030 different “‘single target
circuits”, each of them defined by a single TF as master
regulator, a single mature miRNA and a single protein-coding
joint target. We then grouped together all the single target
circuits sharing the same pair of TF and miRNA and obtained
as final result, 638 “‘merged” circuits, each composed by a
known TF acting as master regulator, a mature miRNA and a
list of protein-coding joint targets (see Fig. la). These
638 circuits involved a total of 2625 joint target genes,
101 transcription factors and 133 miRNAs. The number of

Table 1 The most relevant mixed feed-forward loops (FFLs) obtained with the Gene Ontology filter. Mixed FFLs assembled with the pipeline
outlined in Fig. 2 and characterized by enriched Gene Ontology functional annotations. For each circuit, we report the circuit id (FFL id:
TF|miRNA) and the complete list of joint targets (JTs). We then report some of the most relevant Gene Ontology annotations, with the relative
p-values evaluated by using Fisher’s test. The complete dataset of circuits with their relative annotation is reported in the ESI, supplementary file S8.1
Mature microRNA ids are written according to the standard nomeclature of miRBase,*’ for the TF and JT protein-coding genes, we used the
standard HGNC ids. The F and P labels in the last column denote the “biological process” and “function” classifications, respectively

FFL id JTs

Fisher test p-value Gene Ontology characterization

AP-4/hsa-miR-133b ADORA1 AP1GBP1
AREB6|hsa-miR-126 STRBP HERPUDI CARDI14
TRIM4 NP_995324.1

EGFL7 PIK3R1 WFDC12
CDKN2A KLF10 C170rf70
RORB FBXL2 PPP3CB

PCSK6 LRP5 HABP2 USP6
GUFI CNN3 PTPN4
XR_017284.1 ATPAF1 LCNIL1
NLGN3 LRFN1 AQP4

TCF2

ARHGAP22 DSCR1 EGFR PIK3R2
Q96N05_HUMAN

AREB6/|hsa-miR-375

C-REL|hsa-miR-126

TOX2 PIK3R1 PARP16 ADAMTS9 EGFL7

C-REL|hsa-miR-199a ENO3 DDR1 SP2 CCNL1 PALLD

ELF-1|hsa-miR-342 C220rf15 ADAMTSS CCDC32 IBRDC2

CSorf24 UBE4B CCR2 RPE PHB Q6PK04_HUMAN

ER|hsa-miR-135b
NP_787078.1 PRLR
ANGPT2 Q49AQ9_HUMAN

GBE1 HCN2 CD99L2 TTC21A BSN RNASE11 4.11e-5

7.42¢-5 endocytosis (P)

4.01e-6 cellular developmental process (P)

3.63e-5 regulation of osteoclast
differentiation (P)

6.20e-5 leukocyte differentiation (P)

1.94e-5 anterior/posterior pattern
formation (P)

7.86e-5 regionalization (P)

2.64e-6 regulation of cell migration (P)

2.97e-6 phosphoinositide 3-kinase
regulator activity (F)

4.00e-6 regulation of cell motility (P)

4.74¢-6 regulation of locomotion(P)

9.10e-5 transmembrane receptor protein
tyrosine kinase activity(F)

2.97e-6 protein ubiquitination during

ubiquitin-dependent protein
catabolic process (P)

ZNF69 FAMI129A FMOD IL11 ISCA1 PR285_HUMAN

CITED1 TGM2 MUSK DEFBI123
MFSD3 Cl170rf28
NP_057628.1 LZTS2

HMGIY |hsa-miR-152 EDGI1 Q86V52_ HUMAN DMRTA2

SLC25A32 FGF1 ITGA5 MEOX2 EPASI1

ZNF33A ADAM17 MAPK6 RNF182

ICSBP|hsa-miR-223 ADM GAST PRL GTDC1 FOXO3A

cellular protein complex
assembly(P)

6.48¢-5 angiogenesis (P)

1.40e-6 hormone activity (F) reproductive

process (P) multicellular organism
reproduction (P)

IRF1|hsa-miR-126
IRF-7/hsa-miR-26a

MY Clhsa-miR-17-5p

MYOD|hsa-miR-140

SRY |hsa-miR-26a

EGFR EGFL7 GOLPH3 BDH2 ZADH?2
VAX1 GALNT10 CA3 EIF2S1 NDUFA4
ARP19_HUMAN FBX042 RPIA FBXLI19
ALS2CR2

XR_017723.1 GSK3B DBR1 TTC13 NT5DCI
BICC1 STK33 VSX1 EDD1 SLC24A4
NFATS E2F1

C2lorf25 C9orf117 MYNN MAPK1

ANK?2 TSSK2 EIF2AK1 HMX2 THY1
ALAS2 UROCI

CDKL4 PPARA CYBB PPL CDS2 ZIC3
FANCA GSK3B RPIA Q6ZQV3_HUMAN
ALS2CR2

KIF1C RGOMTD2 CDS1 BAG4 PPP2R3C

2.18e-5

7.49¢-5

8.0le-5 regulation of cell migration (P)

8.0le-5 regulation of cell migration (P)

6.25¢e-5 cellular response to stress (P)

9.40e-0 cellular metabolic process (P)
primary metabolic process (P)

9.56e-5

7.20e-6 hemoglobin metabolic process (P)
organ development (P)

6.61e-5

2.68e-5 protein export from nucleus (P)

5.64e-5 anti-apoptosis (P)
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joint targets in these circuits ranged from 1-38 and 74% of the
circuits targeted up to 10 genes.

The raw data relative to these circuits can be found in the
ESI, supplementary file S6.%

Besides the motifs used to build the above described circuits,
we have several other cis-regulatory upstream motifs in our
transcriptional networks that could not be related to a known
TFBS. These motifs can be considered as new, putative,
regulatory sequences'® and, even if we are not able to associate
a precise TF (or any other kind of regulatory mechanism) to
them, we decided to extend the above construction to these
sequences as well. In these cases it would be too difficult to
reconstruct the variability of the binding site for the corres-
ponding putative unknown TF, so we decided to construct
only the FFL in which the exact same unidentified and fixed
motif was present in the upstream region of both the target
protein-coding gene and the co-regulating miRNA and, as
above, closed the loop only if the target gene was also a target
of the considered miRNA.

In this way, we obtained 4035 different circuits, which
included various motifs with different sizes on the promoter
regions: 170, 6 nts long; 128, 7 nts long; 440, 8 nts long; 3297,
9 nts long. The number of joint targets in these circuits, after
merging on the same cis-regulatory motifs, ranged from
1-5 and 79% of the circuits targeted one single gene.

All the raw data concerning these fixed-motif circuits can be
found in the ESI, supplementary file S7.}

Circuits assessment I: functional analysis

As a first way to select biologically relevant FFLs among our
results, we analyzed each one of the 638 merged circuits
looking for an enrichment in Gene Ontology categories in
the set of their joint targets. To assess this enrichment, we used
the standard exact Fisher test with a p-value threshold
p < 107 Previous experience on similar enrichment tests'®>*
shows that this is a rather robust way to keep into account
multiple testing of GO categories, which, being highly
correlated, cannot be treated with a standard Bonferroni

Table 2 Summary of mixed feed-forward loops external annotations and relative examples. (a) General view: here we report the number of
circuits presented in our database that obtained the same number of external annotations, from 1-3. Detailed view: here we specify the multiple
external resources used for the annotation scheme and their relative contributions. We report the number of circuits with assessed link between: the
transcription factor (TF) and the miRNA [TF — miR]; the TF and a joint target (JT) protein-coding gene [TF — JT]; the mature microRNA
(miR) and a JT [miR — JT]. (b) Selection of a few circuits validated by the above tests. The complete dataset of circuits is reported in the ESI,
supplementary file S8.1 For each circuit, we report the circuit id (FFL id: TFimiRNA) and the complete list of JTs. Mature microRNA ids are
written according to the standard nomenclature of miRBase,*’ for the TF and JT protein-coding genes, we used the standard HGNC ids

(a) General view:

Number of annotated links
3
2
1

Number of circuits
75

207

334

Detailed view:

Link type Number of circuits
TF -> miR: 150
ECRbase: 98
PMID 17447837: 64
TF -> JT: 216
ECRbase: 216
miR -> JT: 607
miRBase: 503
PicTar: 343
TargetScan: 560
(b) FFL id JTs

AMLI1|has-miR-223

LEF1|hsa-miR-138
MAZ hsa-miR-34a
MEF-2|has-miR-133a
SMAD-3|hsa-miR-200b

SOX5/hsa-miR-302d,c,c*,b,b*

YY1|hsa-miR-101

RHOB DNAJB13 NDUFA3 TBC1D17 NP_001007596.1
IGSF21 SPTLC2 WNT2B RIPK3 ELF5 SLC2A11 Cl13orf31
FOXO3A

MYO3A NP_775790.1 RNMTL1 ZNF704 GPR124 NOTUM
KRT83 FGFo6 ITK

CA9 AKTIP SLC6A3

BRUNOL4 PLCL2

MAP3K3 MAGED4 MAGED4B BAZ2A EBAGY ZNF323
SCNSA WBPI

TSPANG6 E2F2 WWC3 SIDT1 NFX1 C20orf7 GSPT1 ACO1
CHD6 GLT25D1 C190rf40 CLEC10A TNS3 PI15 ZNF291
NP_060887.1 ATP6VOD2 HTR3B LATS2 MATIA FAM128B
CDCP2 GNPDA2 SRGAP2 MONIA Cl10orf28 HNRPUL2
PBK NP_001034885.1 ZFP42 C9orf31 LRRIQ2 FAM22A
TMCO2 HLA-DOA C4A C4B Cé6orfl5

QIHCM6_HUMAN NACA3P PRKD3 PFDN6 RABI5 AR-
ID1IA LRRC4 RAB5A FGD6 ARHGAPI Cl170rf39 RBM25
NP_060164.3 STC1 FAM114A1 RNF213 Q96NB§_HUMAN
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correction. Details regarding this analysis are available in
Materials and Methods.

As a final result of this analysis, we end with a list of 32
merged mixed feed-forward loops (corresponding to 380
single-target FFLs). These circuits involve a total of 344 joint
target protein-coding genes, 24 TFs and 25 mature miRNAs.
We report in Table 1 a selected list of such loops with a
subset of the most representative Gene Ontology enriched
annotations; the complete list of results is available in the
ESI, supplementary file S8.t

Circuits assessment II: comparison with existing computational
databases

To further assess the relevance of the circuits that we
identified, we developed an annotation scheme based on the
existence of additional computational evidences for each
circuit link. To this end we used ECRbase** and the data
collected in ref. 25 for the transcriptional links, and the
miRBase,”® PicTar!! and TargetScan® databases for
the post-transcriptional ones. Let us see in more detail how
we used these sources of information:

e The Evolutionary Conserved Regions database
(ECRbase?*) is a collection of evolutionary conserved regions,
promoters and TFBSs in vertebrate genomes, based on
genome-wide alignments created mainly with the Blastz
program. Even if both our pipeline and ECRbase are based
on evolutionary conservation, this ingredient is implemented
in a very different way in the two approaches. ECRbase looks
for conserved blocks identified via whole-genome alignments,
while we implemented evolutionary conservation using an
alignment-free approach. In this way, we were able to validate
216 TF—target gene links and 98 TF-miRNA links.

e Ref. 25 is a computational study of miRNA biogenesis.
The regulatory interactions reported in ref. 25 are of particular
interest for our assessment procedure since their pipeline is
very different from ours. With this tool, we were able to
validate 64 TF-miRNA links. It is interesting to notice that
these 64 miRNAs were controlled by only nine transcription
factors (the important role of these “hub” TFs was already
noticed in ref. 25)

Table 3 Top ten transcriptional factors and microRNAs ranked by
out-degree and in-degree respectively. Considering the links between
transcriptional factors (TF) and microRNA (miRNA) promoters
defined in our transcriptional network, [TF — miR link] we list the
top ten TFs and miRNAs according to their out- and in-degree. The
out-degree is defined, for a certain TF, as the number of miRNAs
directly controlled by the TF itself. The in-degree is defined, for a
certain miRNA, as the total number of TF acting on it

TF Out-degree miRNA In-degree
MEISI1 31 hsa-mir-148b 15
ER 30 hsa-mir-203 14
SRY 29 hsa-mir-181d 13
HNF-1 27 hsa-mir-99a 12
SOX-5 27 hsa-mir-125b-2 12
LEFI 23 hsa-mir-423 11
AREB6 22 hsa-mir-129-2 11
NCX 18 hsa-mir-149 11
SRF 18 hsa-mir-214 11
C-REL 17 hsa-mir-296 11

e The miRBase,?® PicTar'' and TargetScan’ databases are
by now an accepted standard in the miRNA literature. They
are based on strategies that are definitely different from our
pipeline and are somehow complementary in their approaches.
In this way, we were able to validate the miRNA-target gene
link for 607 circuits (503 by miRBase, 343 by PicTar and 560
by TargetScan).

The results of these comparisons are summarized in
Table 2a, while Table 3 reports the top ten TFs ranked by
out-degree and the top ten miRNAs scored by in-degree.

In Table 2b we report a selection of a few circuits which
turned out to be validated by the above tests. In the ESI,

Table 4 Cancer-related circuits. Here, we report the circuits that
involve at least two cancer related items. For each circuit we indicated
the circuit id (FFL id) in the first column, the master transcription
factor (TF) in the second column, the microRNA (miRNA) in the
third column and the joint protein-coding target genes (JTs) in the
fourth column. For each circuit, only its cancer related items are listed
in the table, according to the role they serve within the circuit. In the
upper panel we report circuits for which the regulatory motifs in the
promoter regions of the miRNA and of the JTs can be associated to a
known TF. In the bottom panel we report circuits for which the
regulatory motif is uncharacterized. FFL id is the identifier of a certain
merged circuit, composed by the TF and miRNA names (TF|miRNA),
or, in case of unknown TF, by the exact DNA motif and the miRNA
name. Mature miRNA ids are written according to the standard
nomenclature of miRBase,*’ for the TF and JT protein-coding genes,
we used the standard HGNC ids. For each circuit, the complete list of
joint targets is available in the ESI, supplementary file S8+

FFL id TF miRNA JTs

AP-1/hsa-miR-142-3p
ATF-1|hsa-miR-199a*
ATF6|hsa-miR-199a*

hsa-miR-142-3p DDIT3
hsa-miR-199a* MTCPI1
hsa-miR-199a* MTCP1

ER|hsa-miR-375 TPR, USP6
HIF-1|hsa-miR-199a* hsa-miR-199a* MTCPI1
HNF-3|hsa-let-7a hsa-let-7a CCND2
HNF-3|hsa-let-7f hsa-let-7f CCND2
HNF-3|hsa-miR-30a-5p MYHI11, BCL9
HNF-3|hsa-miR-30c MYHI11, BCL9
HSF2|hsa-let-7a hsa-let-7a MYCN
HSF2|hsa-let-7f hsa-let-7f MYCN

hsa-miR-199a* MYCN
hsa-miR-125b BCL2

HSF2|hsa-miR-199a*
IRF|hsa-miR-125b

1Y |hsa-miR-296 RPL22, BCL2
MY Clhsa-miR-17-5p MYC hsa-miR-17-5p
MYC|hsa-miR-19a MYC hsa-miR-19a

MY Clhsa-miR-20a MYC hsa-miR-20a
NF-Y|hsa-miR-223 APC, ATF1

hsa-miR-125b IRF4
hsa-miR-125b IRF4
hsa-miR-125b  SS18
EXTI1,COL1Al
hsa-miR-221 CCND2
BRAF, ATIC
hsa-miR-125b IRF4
hsa-miR-200c  MTCPI1
hsa-miR-199a* MTCPI1
hsa-miR-200a TFRC
hsa-miR-125b BRD4
hsa-miR-125b BRD4
hsa-miR-19a CCND1
hsa-miR-19a CCND1
hsa-miR-200c  MTCPI
hsa-miR-19a CCND1
hsa-miR-125b IRF4
hsa-let-7e SDHC
hsa-let-7a CCND2

OCTAMER |hsa-miR-125b
PAX-4|hsa-miR-125b
SOX-5/hsa-miR-125b
SOX-5/hsa-miR-29a
SRY|hsa-miR-221

SRY |hsa-miR-412
CAGACAATG/hsa-miR-125b
GGACTGCAA hsa-miR-200c
GCCAACTGA |hsa-miR-199a*
GCCCCCClhsa-miR-200a
ACTTCACCC hsa-miR-125b
CGGGAAAAG | hsa-miR-125b
GGCAATTTA hsa-miR-19a
AGAACTAAT|hsa-miR-19a
CAGGTTGCA |hsa-miR-200c
AATTAGTTC|hsa-miR-19a
ATCATTTTA |hsa-miR-125b
AACCAGACA |hsa-let-7e
GGATCTTAA |hsa-let-7a
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supplementary file S8, one can find the complete list of
results.

Circuits assessment III: looking for cancer related FFLs

In these last few years it has become increasingly clear that
miRNAs play a central role in cancer development. About half
of the human miRNAs are located in cancer-related chromo-
somal regions and miRNA expression profiling correlates with
various cancers and it is used to improve cancer diagnosis.
This supports the definition of a subset of miRNAs as
“oncomiRs”.*’

We filtered our results looking for circuits containing at
least one cancer-related miRNA or target gene. To identify
cancer related genes, we used the list of oncomiRs reported in
ref. 27 and 28, while for the protein-coding target genes we
compiled a list of genes showing mutations in cancer based on
the Cancer Gene Census catalogue.

In particular we found 24 circuits in which at least two
cancer-related genes (e.g. an oncomiR and a target or a TF
and an oncomiR) were present (see Table 4). The full list of
cancer-related circuits is available in the ESI, supplementary
files S9 and S10.7

Discussion
Potential function of mixed feed-forward circuits

Depending on the type of transcriptional regulation (excitatory
or inhibitory) exerted by the master TF on the miRNA and on
the targets, the FFLs that we study in this paper may be
classified (following ref. 20) as coherent, if the master TF and
the miRNA act in a coherent way on the target, or incoherent
in the opposite case. A similar classification can be found in
ref. 21 where the two classes of FFL were named as Type II or
Type I, respectively (see Fig. 3, in which we chose to follow
the same notations as ref. 21). Due to the computational
procedure that we adopted to identify the FFLs, based on
sequence analysis only, we were not able to recognize if the
action of the master TF was excitatory or inhibitory, and thus
if the FFL that we obtained was of Type I or Type II.
Accordingly, in Fig. 1 and 4 we avoided identifying the links
that connect the master TF to its targets as excitatory or
inhibitory and used a different notation. Obviously the two
types of circuits may lead to very different behaviours.??!
Type II (coherent) circuits lead to a reinforcement of the
transcriptional regulation at the post-transcriptional level
and might be important to eliminate the already transcribed
mRNAs when the transcription of a target gene is switched off.
Type I can be used to stabilize the steady state production of a
protein by dumping transcriptional fluctuations. In a simple
TF-target interaction, any fluctuation of master TF could
induce a non-linear increase in the amount of its target
products. The presence, among the targets, of a miRNA that
down-regulates the other targets might represent a simple and
effective way to control these fluctuations. Another interesting
possibility (discussed for instance in ref. 22) occurs if a
temporal gap exists between the activation of the target gene
and the miRNA repressor. This could be the case, for instance,
if the binding sequences of the master TF in the two promoters

7z N 7z
>

Joint
Target

type Il circuits

type | circuits

Fig. 3 Graphical representation of Type I and Type II circuits. TF is
the master transcription factor, miR represents the microRNA
involved in the circuit and Joint Target is the joint target gene. Inside
each circuit, — indicates transcription activation, whilst —| indicates
transcription or post-transcriptional repression. In representing Type |
and Type II circuits, we followed the nomenclature used in ref. 21.

hsa-miR-20a

Fig. 4 Graphical representation of the c-Myc|E2F1|hsa-miR-20a
circuit, with its extension to E2F2. The c-Myc|E2F1|hsa-miR-20a is
the only feed-forward circuit already validated experimentally, as
stated in the literature. Its components are embedded in a more
sophisticated network, in particular, when mining our database we
recognized the interplay with E2F2. E2F2 is down-regulated by
hsa-miR-20a at the post-transcriptional level, and it is a direct
transcriptional target of E2F1 itself. —e indicates transcriptional
activation/repression, whilst —| post-transcriptional repression.
Mature microRNA ids are written according to the standard
nomenclature of miRBase,*’ for the TF and JT protein-coding genes,
we used the standard HGNC ids.

have different affinities, or if there is a delay in the miRNA
maturation process. In this case, the Type I circuit could be
used to express the target protein within a well defined time
window. In this respect, it is interesting to observe that one of
the most studied mixed FFLs is Type I-like: here the role of the
master TF is played by c-Myc, which induces the expression of
miR-17-5p and miR-20a, and also of the joint target, E2F1,
which, in turn, is repressed by the same miRNAs.? Needless
to say, these elementary FFLs, when embedded in more
complex circuits, can lead to more sophisticated behaviours
(see for instance the discussion in refs. 21, 22, and in
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particular, 30). We shall see below an example of this type of
construction.

Analysis of the mixed feed-forward circuits in terms of network
motifs

Elementary regulatory circuits (the so called “‘network motifs”)
were shown to be over-represented in transcriptional
networks."> This very interesting observation led a few
authors to conjecture that functionally important network
motifs should always be over-represented and to use this
criterion as a tool to identify them. This assumption is
somewhat controversial and is currently challenged by some
other authors.>**! Our data represent a perfect setting to test
this over-representation conjecture.

In order to quantify the over-representation we performed a
set of randomization tests. The results are reported in the ESI,
Fig. S1 and details are available in the supporting text.f
Briefly, we carried out three types of randomizations:

o Random reshuffling of miRNNA promoters and seeds. We
rebuilt the entire database of mixed feed-forward circuits
(i.e. the entire pipeline designed in Fig. 2), but using randomly
shuffled versions of the miRNA promoters and random sets of
7-mers as miRNA seeds. The principle of this procedure
was to perform the same analysis of correlation between
transcriptional and post-transcriptional regulatory networks,
but considering the connection between the two regulatory
layers a randomized version of the real known miRNAs, in
terms of their in-degree (the miRNA promoter) and
out-degree (the miRNA seed).

e Edge switching. We applied a randomization strategy on
the real transcriptional and post-transcriptional regulatory
network obtained with our pipeline, similar to the one used
in ref. 32. The edge switching strategy is able to randomize the
real network, preserving the individual degree of each node in
the network.

e Complete node replacement. We applied a second, more
drastic, randomization strategy on the real transcriptional and
post-transcriptional regulatory network obtained with our
pipeline, in this case with no constraint on the randomization
procedure.

The results reported in the ESI, Fig. S1 (panel A)t show that
for the three randomization strategies, the number of circuits
recognized in the real regulatory network is statistically higher
than the one found in the random versions (random reshuffling
of miRNA promoters and seeds: Z = 3.5; edge switching:
Z = 8.3; complete node replacement: Z = 8.9). However, it is
important to notice that the actual number of mixed
feed-forward loops identified in the randomized versions of
the regulatory network is always rather large. Thus, even if the
over-representation is statistically significant, it would be very
inefficient (i.e. it would lead to a large number of false positive
identifications) to use it as the only tool to identify function-
ally relevant mixed FFLs. Interestingly, our results are in good
agreement with a similar analysis reported in ref. 32. This is
particularly significant since our approach and that of ref. 32
for the identification of TF and miRNA regulatory inter-
actions are totally different. In ref. 32, the authors presented
the first genome-scale Caenorhabditis elegans miRNA

regulatory network that contains experimentally mapped
transcriptional TF — miRNA interactions, as well as com-
putationally predicted post-transcriptional miRNA — TF
connections. They then looked at the properties of mixed
feedback loops, comparing their findings with network
randomizations: the average number of loops in randomized
networks was always about half the number of real loops they
identified.

Analysis of the gene ontology enrichment results

In the ESI, supplementary file S8 we report a detailed view of
the GO enrichment results at the level of joint target sets and
of single gene analysis. Besides the intrinsic interest of several
of these annotations, it is interesting to observe that the set of
GO categories enriched in our circuits somehow shows a
general trend.

We observe over-representation of GO terms describing
several aspects of organism development such as differentiation,
proliferation, apoptosis, programmed cell death and cellular
migration. These results are in good agreement with the
predictions about the biological meanings of the FFLs
reported in ref. 20. Specifically, our data provide evidence
for functions of several circuits in the cardiac and skeletal,
neural and hematopoietic cell lineages.

A similar pattern emerges if we look at the single-gene
enrichment analysis. Multi-cellular organisms development,
cell differentiation, cell proliferation and apoptosis directly
annotate, respectively, 108, 56 and 48 target genes included
in the annotated circuits.

Finally it is interesting to notice that several circuits seem to
be involved, according to the GO analysis, in basal
mechanisms of post-translational regulation such as protein
amino acid phosphorylation and in the ubiquitin cycle (with as
much as 57 annotated genes).

All these observations agree with the idea that the mixed
(T-PT) motifs and in particular the feed-forward loops that we
discuss in this paper play a fundamental role in all those
processes (like tissue development and cell differentiation),
which are characterized by a high degree of complexity and
require the simultaneous fine tuning of several different
players. Strikingly, it is worth noting that this result was
obtained here with a completely ab initio bioinformatics
sequence analysis strategy.

Comparison of our results with the database of chip-pet c-Myc
targets

Besides the above tests, in order to evaluate the reliability of
our transcriptional regulatory network we compared our
results with a set of c-Myc targets reported in ref. 33. This
database contains a genome-wide, unbiased characterization
of direct Myc binding targets in a model of human B lymphoid
tumor using chromatin immunoprecipitation coupled with
pair-end ditag sequencing analysis (ChIP-PET), and reports
a total of 2088 targets.

The choice of the c-Myc TF is not random. Besides being a
very interesting TF, it is present in several of our FFLs and as
such, it plays a central role in the transcriptional side of our
regulatory networks. In particular, the first example that we
shall discuss below contains c-Myc as master TF.
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Looking at the intersection between the 2088 targets of
ref. 33, and the 1979 predicted by our analysis, we found 253
targets in common, corresponding to a p-value of 1.1 x 107¢
(Fisher test). This result is even more impressive if compared
with the number of intersections of the Zeller dataset with the
list of c-Myc targets reported in the TRANSFAC database.'®
Out of 235 TRANSFAC targets, only 27 were present in
Zeller’s dataset, corresponding to a p value of 0.21.

As a further test, we performed the same comparison for the
transcriptional network obtained choosing as promoter the
(—500/+100) region around the TSS as promoter. In this case
we found 1612 putative c-Myc targets, in which 203 were in
common with the dataset of ref. 33, corresponding to a slightly
higher p-value p = 8.4 x 107>

Dependence of our results on the choice of the promoter’s region

In the construction of the transcriptional regulatory network,
we chose to consider the interval (—900/+100) around the TSS
for the promoter regions. In order to test the dependence of
our results on this choice, we performed the same analysis
choosing as promoter region the interval (—500/+100) around
the TSS. This is somehow an extreme choice and represents a
very stringent test of the robustness of our network. Looking
at the mixed FFL, we found a total of 6682 “single target”
FFLs (to be compared with the 5030 of the (—900/ +100) case),
of which 1769 were in common with the (—900/+100) run.
Remarkably enough, all the circuits that we discussed in the
text (and more generally most of the circuits surviving our
assessment tests) turned out to be present in both releases. The
complete list of circuits obtained in the (—500/+100) run is
reported in the ESI, supplementary file SI11.}

In order to complete this analysis we also performed the
randomization tests and the comparison with the c-Myc
database discussed above for the (—500/+100) FFLs.
We found comparable results with those obtained in the
(—900/ +100) case: the number of circuits of the real regulatory
network turned out to be statistically higher than the ones
found in the random simulations. In particular, for the first
two tests, we found an improvement of the Z values, while for
the third one, we found slightly worse values of Z. All these
results are reported in the second panel of ESI, Fig. S1.1 Also
for the c-Myc analysis, we found results comparable with
those obtained in the (—900/+100) case, with a slight
worsening of the p-value of the intersection. More precisely
the c-Myc targets in the (—500/+100) transcriptional network
turned out to be 1612, of which 203 were in common with the
Zeller c-Myc dataset, corresponding to a p-value of 8 x 107°.

We consider all these findings as an indication of the overall
robustness of our results.

Comparison with related works

Mixed T-PT regulatory circuits have been recently studied in
two interesting papers.?''*? It is worthwhile to compare their
results with our analysis, which is similar in spirit, but slightly
more complete in the final results.

In ref. 21, the authors studied various types of feed-forward
and feedback loops involving miRNAs, their target genes
and transcriptional regulators as a tool to explain the

(anti-)correlations between the expression levels of miRNAs
and of their target genes. This study relied on a predicted
miRNA-mediated network and did not use the transcriptional
regulatory network of miRNAs that was unavailable at that
time. Hence, to the best of our knowledge, no actual explicit
loops were identified (see also ref. 32).

In ref. 22, the authors used pre-compiled TF- and miRNA-
mediated networks, and studied global and local properties of
the two networks separately. Additionally, they provided a
catalogue of network designs in the co-regulated network,
including feed-forward loops. Both the TF- and the miRNA-
mediated networks in ref. 22 were obtained from sequence-
based identification of regulatory features in promoters and
3/-UTRs. This makes the study in ref. 22 more comparable to
ours than that in ref. 21. For this reason, we decided to
perform a more detailed comparison with our results.
Unfortunately, this study did not report explicitly the circuits
(including joint target genes) but only provided a list of 16
pairs of co-regulating TFs and miRNAs involved in feed-
forward loop. We obtained these pairs using as input the
PSSMs (position specific scoring matrices) and microRNAs
listed in the supplementary Table S2 of ref. 22 and then
mapping the PSSMs to the corresponding transcription
factors. We compared this list with our results. It turns out
that none of these predictions are contained in our dataset.
A detailed comparison of the two pipelines shows that there
are a few important reasons behind this disagreement:

e Different annotation for mature miRNA identifiers due to
the older miRBase release used in ref. 22 (8.2 vs. 9.2): e.g. pairs
involve miR-10 in ref. 22, while miRBase 9.2 reports miR-10a
and miR-10b; similarly for miR-142 and miR-142-5p,-3p.

e Different assignment of mature miRNAs to pre-miRNAs:
e.g. in ref. 22 the authors assign miR-7 to mir-7-1, while
miRBase 9.2 assigns miR-7 to mir-7-3.

e Different organization of pre-miRNAs in transcriptional
units: in ref. 22, miRNAs are clustered in precursors according
to physical proximity, while we relied on human/mouse
conserved transcriptional units reported in ref. 7.

e Different definition of miRNA promoters: ref. 22 uses
10 kb upstream of the 5’-most pre-miRNA for each cluster,
while we used 1 kb upstream of the 5’-most pre-miRNA for
each transcriptional unit.

e Different solutions for predicted transcription factor
binding sites: ref. 22 uses PSSMs from TRANSFAC release
8.3, and using pre-compiled lists of interactions available in
the UCSC hgl7 genome assembly, while we mainly mapped
ab initio conserved and over-represented motifs to transcrip-
tion factor binding sites.

e Different solutions for predicted mature miRNA binding
sites: ref. 22 uses TargetScan (release 3.0) and PicTar
(picTarMiRNA4Way track in the UCSC genome browser)
while we mapped conserved and over-represented motifs in
3’-UTRs to mature miRNAs by means of miRBase release 9.2.

As a final comment on this comparison, let us stress that
probably one of the major novelties of the present analysis
with respect to existing works is the particular attention we
paid to the definition of miRNA promoters and in the search
of their putative binding sequences. Accordingly, besides the
final list of FFLs, we consider as one of our most interesting
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results the subset of our transcriptional regulatory network
involving miRNAs as targets. This subnetwork includes a total
of 110 TFs targeting 187 miRNAs and is reported in the ESI,
supplementary file S4.F

Description of a few interesting circuits

As a final part of this section, let us discuss in more detail the
biological relevance of a few of our results. We have chosen to
discuss a few examples for each of the three assessment
pipelines.

We first present a case in which our pipeline is able to
predict circuits already known in the literature and for which
all the links are experimentally validated: this is the case of the
circuits involving c-Myc as master TF, and hsa-miR-17-5p and
hsa-miR-20a as post-transcriptional regulators. In particular,
one of the predicted joint target genes results in being the
E2F1 gene, in this way closing the circuit exactly on the target
gene experimentally assessed and used as a major example in
the discussion of ref. 20.

In the remaining examples some (or all) of the genes
embedded in the circuits were already annotated to related
functions in the literature but their combination in a closed
FFL was not noticed. We consider these cases as further
successful validations of our approach.

e The c-Myc, hsa-miR-20a/miR-17-5p circuit

In this circuit, c-Myc is the master TF and hsa-miR-20a the
post-transcriptional regulator. This circuit contains eleven
joint targets, among which is E2F1. The complete list of joint
targets is reported in Table 1. The FFL involving E2F1 is well
known in the literature. It was discussed for the first time in
ref. 29 and is expected to play a role in the control of cell
proliferation, growth and apoptosis. With our analysis, we
could identify several other genes sharing the same regulatory
pattern of E2F1 and we expect that at least some of them
could be involved in the same biological processes. In this
respect, it is interesting to find among the other targets
NFATS, which is known to play a critical role in heart,
vasculature, muscle and nervous tissue development.
Similarly, it seems interesting to find MAPKI1, which, like
E2F1, is an anti-apoptotic gene. These observations could
suggest a similar functional role also for the remaining joint
targets.

This circuit also allows us to discuss how our data could be
used to obtain more complex regulatory motifs. Combining
different entries of our databases, it is easy to find a circuit
involving, besides c-Myc, hsa-miR-20a and E2F1, also E2F2,
which turns out to be simultaneously targeted by E2F1 and by
hsa-miR-20a (see Fig. 3). This is a rather non-trivial result,
since it is well known that different TFs of the E2F family tend
to act together in a concerted way. We see in this example a
simple network motif in which this cooperative action is
present and is tightly regulated.

e The AREB6, hsa-miR-375 circuit

One of the most interesting entries of Table 1 is the
feed-forward loop that involves the transcriptional repressor
zinc-finger E-box binding homeobox 1 AREBG (also known as
ZEBI1), hsa-miR-375 and a set of 14 joint target genes. Owing
to the following observations, we surmise its function in

embryonic development and the physiology of the pancreas.
ZEB1 is a crucial inducer of the embryonic program
‘epithelial-mesenchymal transition’ (EMT) that facilitates
tissue remodelling during embryonic development. miR-375
is essential for embryonic pancreatic islet development, as well
as for endocrine pancreas function, where it was demonstrated
to regulate the process of exocytosis of insulin during glucose-
stimulated insulin release.** Notably GO analysis globally
annotates the set of target genes to patterning in embryonic
development, which is consistent with the regulatory roles of
ZEB-1 and miR-375. Moreover, the hypothesis of a function
in insulin secretion is strengthened by the following
observations:>® reports of strong evidence that EMT can
provide cells for replacement therapy in diabetes; among the
target genes, HNF1f (also known as TCF2) is responsible for
MODY, ¢ a form of diabetes characterized by defective insulin
secretion of pancreatic f-cells.

e The MEF-2, hsa-miR-133a circuit

This is one of the entries of Table 2. It contains only two
joint targets: BRUNOL4 and PLP2, but the presence of
BRUNOL4 turns out to be highly non-trivial. In fact, the
myocyte enhancing factor-2 (MEF-2), hsa-miR-133a and the
RNA-binding protein BRUNOL4 have been shown to
altogether control cardiomyocyte hypertrophy. In this case,
it is also possible to envisage a feedback effect, because cardiac
repression of BRUONOL4 activity disrupts alternative
splicing of MEF-2 and leads to cardiac hypertrophy.?” Finally,
it is important to stress that the regulatory interaction between
MEF-2 and hsa-mir-133a, which we predicted with our in silico
analysis, was indeed observed experimentally in ref. 38.

e The C-REL, hsa-mir-199a circuit

Another interesting circuit relates C-REL, a member of the
NFKB family, and miR-199a. MiR-199a has been identified as
a miRNA signature in human ovarian cancer. miR-199a
down-modulation in epithelial ovarian cells is reported in
ref. 39 and, interestingly, miR-199a has lately been shown to
affect NFKB activity in ovarian cancer cells.** Among the
joint targets for this circuit, let us mention: DDRI, a receptor
tyrosine kinase, whose expression is restricted to epithelial cells
and significantly high in epithelial ovarian cells, and Sp2,
which is a transcriptional repressor of the tumor suppressor
gene CEACAMI in epithelial cells.*!

e The HSF2, hsa-let-7f circuit

Looking at the cancer-related list, one of the most interesting
entries is the one which relates the transcription factor, HSF2,
and the hsa-let-7f miRNA. The DNA-binding protein heat
shock factor-2 (HSF2) and hsa-let-7f jointly regulate a number
of target genes such as MYCN, ESPL1, PLSCR3, PDCD4,
MTOI1 and FMO2. Several observations point to an involve-
ment of this circuit in cell cycle progression with relevant
implications in cancer. HSF2’s role in cancer is being
elucidated® by the observation that it functions as a
bookmarking factor, not only for heat shock responsive genes,
but also for genes that are involved in the regulation of cell
apoptosis and proliferation (such as Hsp90, Hsp27 and c-Fos).
Among the target genes, the MYCN oncogene is crucial in
neuronal development, and its amplification is currently
the only molecular marker adopted in neuroblastoma clinical
treatments. The MYC family oncogenes are known to
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deregulate cell cycle progression, apoptosis and genomic
instability. In neuroblastoma cell lines, N-Myc can induce
genomic instability by centrosome amplification. Interestingly,
HSF2 and hsa-let-7f regulate the extra spindle poles like-1
(ESPL1) that mediates mitotic sister chromatid segregation.
The programmed cell death-4 (PDCD4) is also linked to
progression through the cell cycle by mediating MAPK kinase
activity and JNK activity. The phospholipid scramblase-3
(PLSCR3) is a mitochondrial integrator of apoptotic signals.
Interestingly, also the mitochondrial translation optimization-1
homolog (MTO1) and the flavin containing monooxygenase-2
(FMO2) promote local effects on mitochondria. Finally,
MYCN has recently been reported as a direct target of
miR-34a. Here we add that let-7f targets MYCN. Notably
let-7f belongs to the let-7 family of oncomiRs and, in
particular, let-7f has been found to be involved in cell aging.**

As a final remark, we would like to stress that interesting
convergence of cooperative biological functions can also be
observed in circuits in which we were not able to identify a
putative master TF, and therefore were not processed with our
assessment pipeline. As an example let us mention the UST
gene (Ensembl id: ENSG00000111962), which is involved in
heparan sulfate-dependent growth factor signaling during
myogenesis and in ion buffering; UST linked to hsa-miR-1
(see the ESI, supplementary file S77), which in turn promotes
skeletal muscle proliferation and differentiation, and is
involved in heart electrical conductions as well.**

Conclusions

The main purpose of this work was to systematically
investigate connections between transcriptional and post-
transcriptional network interactions in the human genome.
To this end, we designed a bioinformatic pipeline, mainly
based on sequence analysis of human and mouse genomes,
which is able to construct, in particular, a catalogue of mixed
feed-forward loops (FFLs) in which a master transcription
factor regulates a miRNA and, together with it, a set of joint
target protein-coding genes. These circuits were then
prioritized based on various selection criteria. We also
analyzed a few of them in detail looking for a possible
biological role. The lists of FFLs selected in this way are the
major results of our work, and our findings demonstrate in
particular a connection between such loops and aspects of
organisms’ development and differentiation. Moreover, one of
the outcomes resulting from our study is the design of a
putative TF regulatory network of human miRNA genes.

As a concluding remark it is important to stress that we
consider the present work only as a first step along this
research line. For both technical and biological reasons, it is
likely that we missed several regulatory circuits in our net-
work. We discussed in detail the technical issues and the
related problems. Let us comment here on one of the main
biological issues, which should certainly be addressed in future
works. One of our main assumptions is that we can associate a
well defined promoter to a well defined gene. However several
recent studies on the widespread presence of alternative splicing
and transcription start sites (TSS) (see for instance ref. 45)
show that this is probably a restrictive choice. Moreover,

alternatively spliced isoforms of the same gene may have
completely different functions and play different roles in the
regulatory network. More generally the notion of “gene” by
itself is experiencing a deep redefinition in the last few years.*®
Notwithstanding this, the good agreement that we found with
some existing experimental data suggests that our approach
may represent a reliable step toward a better understanding of
gene regulatory networks, and in particular, it could give some
useful insight on the complex interplay of their transcriptional
and post-transcriptional layers.

Materials and methods

miRNA transcriptional units

We obtained genomic coordinates of human and mouse
pre-miRNA hairpins from the miRBase*” miRNA sequence
database (release 9.2). Consistently, human and mouse
protein-coding genes and annotations were obtained from
the Ensembl database,'® release 46, corresponding to the
human genome assembly hgl8 and to the mouse genome
assembly mmu8. Mapping of pre-miRNAs to overlapping
protein-coding genes was performed using the mirGen data-
base (http://www.diana.pcbi.upenn.edu/miRGen/v3/), which
provided us with a list of all the pre-miRNA hairpins that
overlapped to annotated genes and gave the precise location of
the pre-miRNA hairpin within the gene. In this study, from
the Ensembl database we selected only protein-coding genes
labelled as “KNOWN?”, for both human and mouse.
Pre-miRNAs were defined as genic if they were located within
annotated exons, introns or flanking untranslated regions.
miRNA hairpins were retained in our study only if they had
an orthologous copy in mice. This selection was performed
using the human-to-mouse orthology table compiled by ref. 7
and provided as their supplementary table S15.

An important role in our analysis is played by the notion of
“transcriptional units” (TU), which are clusters of miRNA
hairpins located in nearby positions along the DNA, and
supposed to be transcribed together in a single poly-miRNA
precursor.” Both cDNA and EST expression data’*® support
the idea that miRNAs belonging to the same TU are
co-transcribed. For this reason, we shall treat them as a unique
(miRNA) gene and associate the same promoter (the one
corresponding to the transcriptional start site (TSS) of the
transcriptional unit) to all the miRNAs belonging to the TU.

Taking together isolated miRNAs and TUs, we were able to
identify a total of 130 miRNA precursors for the human
genome and the corresponding 130 orthologues for the mouse
genome. 68 out of 130 were non-genic and 62 were located
within a KNOWN gene. A direct inspection showed that 53 of
these genic pre-miRNAs shared the same orientation with the
host gene, while the remaining nine had the opposite orienta-
tion. These 130 precursors corresponded to a total of 193
mature miRNAs. These mature miRNAs and their “‘seeds”
represented the list of input motifs for the target search
algorithms and the bases of our discussions.

The list of TUs, their most 5’-upstream members, their
genomic coordinates, their locations relative to protein-coding
genes and additional orthology annotations can be found in
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the ESI, supplementary file S1,¥ for humans and mice. We
then provide the corresponding mature miRNAs used in this
study in supplementary file S2,1 for humans and mice.

Definition of promoter regions

For the analysis of promoter regions, we prepared two distinct
datasets, one for protein-coding genes and one for miRNA
genes. All the sequences and annotations used were extracted
from the Ensembl database, version 46.

Protein-coding genes. We selected the complete list of
protein-coding genes, for both humans and mice, retaining
only those labeled as “KNOWN”. For each gene, we then
selected only the longest transcript, again among those labeled
as “KINOWN”. For each of these genes, as putative promoter
sequence we chose the region starting from nt — 900 upstream
of the TSS and ending at nt + 100 downstream of the TSS
(being the TSS at position + 1) of the selected transcript. We
then repeat-masked these sequences (the masking parameters
were left at the default values provided by Ensembl) and all the
sub-sequences corresponding to known coding exons. As a
final result, we obtained two lists of promoter regions
including 21316 promoters for human and 21814 for mouse
protein-coding genes, respectively.

miRNA genes. Following the idea discussed above that
miRNAs belonging to the same TU are co-transcribed, and
thus should be co-regulated, we chose to associate to all the
pre-miRNAs belonging to a given TU the promoter of the
most 5’-upstream member of the TU (which is conventionally
assumed as the TSS of the TU). This rule becomes trivial for
single/isolated miRNAs. For each TU and isolated miRNA
we selected the promoter regions applying the following rules:

e If the pre-miRNA was non-genic, we selected the region
ranging from nt — 900 upstream to nt + 100 downstream of
the 5'-start of the pre-miRNA.

o If the pre-miRNA was genic, with the same orientation of
the host gene, we used the promoter region selected for the
host gene.

o [f the pre-miRNA was genic, but with opposite orientation
with respect to the host gene, we again selected the region
ranging from nt — 900 upstream to nt + 100 downstream of
the 5’-start of the pre-miRNA.

In all these cases, we then repeat-masked and exon-masked
the sequences as we did for the protein-coding genes discussed
above. Repeat-masking was performed with the default values
provided by Ensembl.

Merging together protein-coding and miRNA promoters,
we ended up with a collection of 21446 human and 21944
mouse regulatory sequences.

Definition of 3'-UTR regions

For the analysis of post-transcriptional regulation, we down-
loaded the complete 3’-UTR sequences for all protein-coding
genes from the Ensembl database, version 46. Similarly to the
promoters, we retained only those genes Ilabeled as
“KNOWN?”. Then we selected only the longest transcript,
again among those labeled as “KNOWN”. Since in the
Ensembl database not all the genes have defined 3’-UTR

regions, we ended up with only 17486 human and 15921
mouse genes. We then repeat-masked these sequences
using the default values provided by Ensembl as masking
parameters.

It is worth noticing that, differently from the promoter case,
the 3’-UTR sequences have different sizes. The average length
of human or mouse 3’-UTR regions was ~ 1157 nts or ~982 nts,
respectively.

Oligos analysis

All the details relevant to the oligos analysis are described in
the supporting text of the ESI.¥ The promoter and 3’-UTR
sequences used as input, and the software described in the text
are available upon request from the authors.

TF-miR pairs and their joint target genes

By crossing the lists of putative TF and miRNA targets
obtained above we constructed all possible feed-forward
circuits composed by a transcription factor, which regulates
a miRNA with which it co-regulates a set of target genes. In
some cases in which a mature miRNA is transcribed from
more than one genomic locus, all possible promoters were
taken into account.

Assessment of miRNA targets using existing databases

In silico predicted targets were obtained from the following
three resources: TargetScan, PicTar and miRBase. These three
algorithms predict and assign target genes to miRNAs
essentially based on sequence multi-species conservation.
TargetScan targets were obtained from miRGen Release 3
(http://www.diana.pcbi.upenn.edu/miRGen/v3/) where human
miRNA family targets predicted by TargetScanS were down-
loaded from the TargetScan Release 4.2 download site
(http://www.targetscan.org/) and miRNA family names were
expanded to include all family members. We downloaded
PicTar targets from the UCSC hgl7 database where they were
presented as the picTarMiRNA4Way track. miRBase
predicted targets were downloaded from http://microRNA.
sanger.ac.uk/targets/v4/. Since different resources use different
genomic annotation sets, we maintained Ensembl as main
namespace and mapped both Gene Symbol IDs and RefSeq
IDs to Ensembl Gene IDs.

Comparison with ECRbase

From ECRbase (http://ecrbase.dcode.org/) we downloaded the
complete dataset of transcription factor binding sites (TFBSs)
predictions in the CoreECR regions (al least 355 nts long with
77% indentity) from the tfbs_correEcrs.hgl8mm§.v94.txt file.

We mapped the predicted TFBSs stored in those databases
onto our promoter regions according to genomic coordinates,
for protein-coding and miRNA genes. To avoid mismatches
due to different masking and/or misannotations, we assigned
the binding of ECRbase TF to our gene only if the complete
sequence contained in the ECRbase was present in our
promoter sequence.
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Gene Ontology analysis

We downloaded the Gene Ontology (GO) annotation DAGs
from the GO website (http://www.geneontology.org) and gene
product annotations from the Ensembl database, version 46.
We always considered a gene annotated to a GO term if it was
directly annotated to it or to any of its descendants in the GO
graph. We implemented an exact Fisher’s test to assess
whether a certain set of genes could be enriched in a certain
GO category as done in our previous studies.'®?* The Fisher’s
test gave us the probability p of obtaining an equal or greater
number of genes annotated to the term in a set made of the
same number of genes, but randomly selected. To account for
multiple testing, in this work, only p-values <10™* were
reported.

Identification of cancer related genes

OncomiRs were obtained from ref. 27 and 28. We obtained the
complete working list of mutated genes causally implicated in
cancer from the Cancer Gene Census catalogue (http://www.
sanger.ac.uk/genetics/CGP/Census/). The list was annotated
with information concerning chromosomal location, tumour
types in which mutations were found, classes of mutation that
contributed to oncogenesis and other genetic properties. We
considered as cancer-related a circuit if it included at least one
oncomiR or one gene listed in the Cancer Gene Census
catalogue. The full lists of these circuits, provided with
detailed properties on cancer-related genes, are available in
the ESI, supplementary files S9 and S10.7

Supporting information

All the supplementary files and raw data are available upon
request from the authors.
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