
Analytical
Methods

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
1/

6/
20

25
 3

:5
3:

25
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Mineral oil emuls
aChangchun Institute of Optics, Fine Mech

Sciences, Changchun, Jilin Province, 130033
bUniversity of Chinese Academy of Sciences,

Cite this: Anal. Methods, 2024, 16,
1836

Received 14th October 2023
Accepted 28th February 2024

DOI: 10.1039/d3ay01820b

rsc.li/methods

1836 | Anal. Methods, 2024, 16, 1836
ion species and concentration
prediction using multi-output neural network
based on fluorescence spectra in the solar-blind UV
band

Bowen Gong, ab Shilei Mao,ab Xinkai Lia and Bo Chen*a

The accurate monitoring of oil spills is crucial for effective oil spill recovery, volume determination, and cleanup.

Oil slicks become emulsified under the effects of wind and waves, which increases the consistency of the oil

spills. This phenomenon makes oil spills more challenging to handle and exacerbates environmental

pollution. In this study, the variation of the solar-blind ultraviolet (UV) fluorescence spectra obtained from

simulated oil spills with different oil types and oil–water ratios was investigated. By designing and

constructing a multi-angle excitation and detection system, an apparent fluorescence peak of the oil

emulsions was observed at around 290 nm under 220 nm excitation. By utilizing competitive adaptive

reweighted sampling (CARS) and multi-output neural network algorithms, both the types and concentrations

of the emulsified oils were obtained simultaneously. The classification accuracy for identifying the oil type

exceeds 98%, and the mean absolute percentage error (MAPE) for concentration regression is around 2%.

The results indicate that active solar-blind UV fluorescence could become a supplementary method for on-

site oil spill detection to achieve comprehensive monitoring of oil spills. This study provides potential

applications for UV-induced fluorescence spectrometry in oil spill on-site monitoring during the daytime.
1. Introduction

Oil spills typically occur during the extraction and transportation
processes, and due to ship accidents.1,2 According to statistics,
over 6 million tons of oil enter the marine environment globally
every year. One ton of oil can form an oil lm covering 12 km2 at
sea, which blocks gas exchange and causes massive sh kills.3

Toxic substances in oil dissolve lipids, thereby destroying the
cellular structure of organisms.4 They also affect the nervous
system and organs such as the liver, lungs, and kidneys. The
polycyclic aromatic hydrocarbons (PAHs) in oil can be absorbed
by living organisms and eventually enter the human body, posing
signicant carcinogenic risks to human health. Considering the
importance of protecting the environment and reducing the risk
of oil spill disasters, accurate and timely information about the
location, type, and volume of an oil spill is crucial for efficient oil
spill recovery and the prevention of future oil spill accidents.

The thickness of oil spills on the sea surface is not uniform
due to various factors, such as wind patterns, tidal forces, and
seaoor activities. Additionally, the spills can evaporate,
dissolve, and emulsify, resulting in changes to the physical and
chemical properties of the spilled oil. Depending on the degree
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of emulsication, there are two types of emulsions: “oil-in-
water” and “water-in-oil”.5 Oil-in-water emulsions consist of oil
droplets dispersed in a water phase, while water-in-oil emul-
sions consist of water droplets dispersed in an oil phase.
Emulsication increases the volume, viscosity, and density of
the oil spill, which results in more signicant damage to the
environment and greater challenges in handling and recovery.

At present, sensors that can be used for sea surface oil spill
detection include microwave sensors, optical sensors, laser
sensors, and photoacoustic spectroscopy6–8 sensors, among
others. The ultraviolet (UV)-induced uorescence method has
been widely used in many elds for object identication
monitoring and quantitative assessment, as it has the advan-
tages of high sensitivity, simple operation, and low false alarm
rates.9 Different types of oils contain different types and
contents of aromatic hydrocarbons,10 leading to different uo-
rescence spectral characteristics.11 The uorescence spectra of
oil spills also vary with the degree of emulsication. In the
detection of offshore oil spills using UV-induced uorescence,
long-wave UV excitation (such as 308 nm and 355 nm) is typi-
cally employed due to the high cost and weak intensity of short-
wave UV light sources.12,13 The visible uorescence excited by
long-wave UV light may be drowned out by the background in
sunlight,14,15 making it suitable for nighttime monitoring only.

Oxygen in the atmosphere strongly absorbs radiation energy
in the UV band below 200 nm, while ozone signicantly absorbs
This journal is © The Royal Society of Chemistry 2024
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Table 1 Physical parameters of the experimental sample oils

Density
(20 °C, g mL−1) API (°)

Viscosity
(40 °C, mm2 s−1)

95# G 0.74 60.3 0.72
−35# D 0.82 40.9 2.10
−20# D 0.83 38.8 2.80
LC 0.81 42.3 4.30
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the UV radiation ranging from 200–280 nm.16 In the near-Earth
atmosphere, the UV radiation is evenly distributed due to strong
scattering by the atmosphere. The UV radiation below 300 nm
near the ground is weak, forming a region known as the solar-
blind UV band.17 The feasibility of solar-blind uorescence
detection of offshore oil was investigated.

The composition of crude oil is complex and varies greatly
depending on its source. The uorescence composition and
ratios of oil products produced using different boiling points
also vary. For example, the main uorescent substances in
gasoline are toluene and m-xylene with uorescence peaks near
270 nm.11 The uorescent substances in diesel oil consist of
monocyclic aromatic hydrocarbons with longer side chains,
bicyclic aromatic hydrocarbons (such as naphthalene, ace-
naphthene, uorene, and biphenyl), tricyclic aromatic hydro-
carbons (phenanthrenes, anthracene, and their derivatives),
PAHs, and cycloalkane-aromatic mixtures.18 In addition to the
aromatic hydrocarbons in the middle fraction, crude oil
contains more cycloalkyl-aromatic hydrocarbons with high ring
numbers. The short-wave uorescence intensity decreases with
an increase in the number of aromatic rings.19

When uorescent molecules come together, the electronic
coupling between them creates new excited states, and uores-
cence quenching occurs. In a broad sense, uorescence
quenching refers to any effect that reduces the quantum yield of
uorescence.20 The interaction between different PAH
compounds is strong, and there is a nonlinear summation
caused by uorescence quenching, resulting in different
quenching concentrations of each component and wide differ-
ences in the range of inuence.21 Spatial isolation and electronic
isolation prevent quenching and allow the molecule to recover
uorescence. The higher water content in oil-in-water emulsions
leads to an increase in intermolecular distance, which reduces
the probability of collision energy transfer. Specically, the long-
wave uorescence of heavy PAHs dominates when the concen-
tration is high, and the short-wave uorescence spectra only
gradually appears as the concentration decreases. In other
words, the uorescence peak shows a certain degree of blue-shi
in wavelength as the concentration decreases.

Emilia Baszanowsk measured the uorescence of dissolved oil
in seawater by measuring the excitation emission matrix (EEM)
with a uorescence spectrometer.22 Rather than measuring the
uorescence spectra aer sampling using a uorescence spectro-
photometer,23 a simulated eld test of emulsied oil on the sea
surface was employed to measure the uorescence. The uores-
cence of the oil emulsion was measured using a shorter excitation
light source wavelength of 222 nm. The uorescence peak
appeared at 290 nm,which falls within the solar-blindUV range, in
which the background noise is nearly negligible near the ground.
By utilizing competitive adaptive reweighted sampling (CARS) and
a multi-output neural network algorithm, both the type and
concentration of emulsied oil can be obtained simultaneously.
The results show that this algorithm can obtain accurate classi-
cation and concentration prediction results at the same time. This
method can attenuate the background interference caused by
sunlight and provides a new idea and method for the all-day, all-
weather application of UV-induced uorescence spectrometry.
This journal is © The Royal Society of Chemistry 2024
2. Materials and methods
2.1 Samples and experimental principles

2.1.1 Oil sample preparation. Three rened oil products
and one crude oil sample were used in this paper. The rened
oil products were −20# D diesel (−20# D), −35# D diesel (−35#
D), and 95# gasoline (95# G). The above rened oil samples were
purchased from local gas stations. The crude oil was Russian
light crude oil (LC).24

The physical parameters of the experimental sample oils are
shown in Table 1. The oil samples are shown in Fig. 1a. The
seawater was collected from Liaodong Bay in China. API is
a parameter developed by the American Petroleum Institute to
indicate the density of petroleum.

In order to obtain the trend in the variation of the uores-
cence with concentration,25 the uorescence spectra of oil-in-
water emulsions with ten concentrations from 20 ppm to 20
000 ppm were measured, as shown in Table 2. The “ppm” here
represents parts per million of a volume ratio. The prepared oil
emulsion samples are shown in Fig. 1b.

The preparation of an oil-in-water emulsion of −20# D at
100 ppm is presented as an example:

1.0.02 mL of −20# D was transferred into a 200 mL beaker
using a sampling bottle,26 and set aside for later use. 100 mL of
seawater was measured and added to the previously prepared
sampling bottle.

2. The mixture liquid was shaken for two days to increase the
solubility to simulate the state of oil spills at sea.

3. The sampling bottle containing the mixture of oil and
seawater was placed into an ultrasonic emulsifying machine for
emulsication.27

4. Aer 30 minutes of ultrasonic treatment, a uniformly
distributed oil-in-water emulsion was obtained.

5.60 mL of the middle layer emulsion was transferred into
a 90 mm diameter Petri dish using a pipette for use as the test
sample.

6. The above steps were repeated to prepare oil-in-water
emulsions of different concentrations and types.

2.1.2 Experimental process. The solar radiation reaching
the ground is inuenced by the area and weather conditions, so
the solar radiation spectrum near the ground in Changchun on
a sunny day was rst collected. In addition to sunlight, space light
scattered by the atmosphere and reected light from the nearby
environment were also received. The solar spectrumwas collected
at 13:00 BST with the ber optic receiver head of the portable
spectrometer pointed at the sun. The sky light was measured by
changing the receiving angle to near the zenith angle equal to 0°.
Anal. Methods, 2024, 16, 1836–1845 | 1837
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Fig. 1 Oil samples. (a) Samples of the four pure oils. (b) Samples of four
oil-in-water emulsions.

Table 2 Oil-in-water emulsion concentration ratios

Oil volume
(mL)

Seawater volume
(mL)

Oil content
(ppm)

0.02 1000 20
0.02 200 100
0.02 100 200
0.04 100 400
0.10 100 1000
0.20 100 2000
0.40 100 4000
0.80 100 8000
1.60 100 16 000
2.00 100 20 000

Fig. 2 Spectrum of solar radiation received at ground level.

Fig. 3 Schematic diagram for simulated field monitoring of emulsified
oil fluorescence spectra.
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Subtracting the sky light from the sunlight gives the radiation
spectrum of the sun (Fig. 2). As shown in Fig. 2, the light intensity
in the range of 200–300 nm was almost 0, so the whole 200–
300 nm region can be regarded as the solar-blind area.

Fluorescent substances with uorescence peaks below
300 nm mainly include benzene and its derivatives. Due to the
Stokes shi, the uorescence emission wavelength is slightly
greater than the excitation wavelength.

The absorption bands of benzene, toluene, and xylene are
observed between 200 nm and 220 nm, and the absorption
peaks shi to longer wavelengths as substituents are intro-
duced. Therefore, a light source with a center wavelength of
220 nm was chose as the excitation light.

The experimental schematic diagram is shown in Fig. 3. A
20 W excimer lamp was used as the excitation light source, and
light was collimated with a lens set due to the strong scattering
and weak energy of solar-blind UV light. The collimated light
was vertically irradiated to the emulsied oil sample in a Petri
1838 | Anal. Methods, 2024, 16, 1836–1845
dish. Finally, the ber optic head of the spectrometer captured
the emitted uorescence at a 45° angle to obtain the maximum
uorescence signal while minimizing the inuence of interfer-
ence signals such as reected and scattered light. Interference
signals would be eliminated during the data preprocessing.

The FX2000+ optical ber spectrometer was selected to
collect the uorescence spectrum; its detection range is 197–
419 nm. The spectrometer operates with a slit width of 100 mm,
yielding a spectral resolution of 0.59 nm.

In this study, uorescence spectra were collected for ten
different concentrations of four types of oils. Each sample was
measured twenty times to increase veracity and reliability. The
emulsied oil sample was replaced aer measuring the current
sample, and this process was repeated until all samples had
been measured.
2.2 Data preprocessing

The spectral data preprocessing in this work consisted of three
parts: denoising, smoothing, and feature selection. Denoising
was achieved by subtracting the background noise spectrum
from the measured uorescence spectrum.

The Savitzky–Golay (S–G) lter was proposed in 1964 and has
been widely used for data smoothing and noise reduction. It is
a ltering method based on local polynomial least-squares
tting. The advantage of the S–G lter is that it removes noise
while preserving the shape and width of the signal. In this
This journal is © The Royal Society of Chemistry 2024
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Fig. 4 Competitive adaptive reweighted sampling (CARS) feature
processing results.
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study, the uorescence signals obtained were weak and had
a low signal-to-noise ratio.28 Therefore, the S–G lter was chosen
as the smoothing and processing algorithm, which is superior
to the moving average smoothing algorithm.

In the present work, a variable selection algorithm based on
iterative statistical information, Competitive Adaptive
Reweighted Sampling (CARS), was used to extract features.
CARS is a feature variable selection method that combines
Monte Carlo sampling with partial least-squares (PLS) model
regression coefficients. Each time, the algorithm retains
a subset of points with relatively high absolute weight values in
the regression coefficients of the PLS model through adaptive
reweighted sampling (ARS) and removes points with relatively
low weight values. Then, a new PLS model is built based on the
new subset, and aer multiple calculations, the wavelengths in
the subset with the smallest root mean square error of cross-
validation (RMSECV) are selected as the characteristic
wavelengths.29

By eliminating redundant information variables in the
spectrum and selecting representative variables that represent
sample properties instead of using the full spectrum to estab-
lish a quantitative model, this algorithm can improve the
accuracy of the analysis results while reducing the time required
for data processing.

The feature extraction results are shown in Fig. 4. The CARS
algorithm selected 41 feature points from 2048 spectral points.
The circles indicate the selected feature points, and the lines
indicate the original spectral data of the four oil samples.

3. Results and discussion
3.1 Trends in uorescence spectrum variation

To simulate the state of emulsied oil on the sea surface as
accurately as possible, the oil-in-water emulsion used in this
article is an emulsied oil suspension that has only undergone
ultrasonic treatment without any emulsiers. As the concen-
tration increases, some droplets oat to the seawater surface
under the buoyancy of seawater and re-diffuse into an oil lm
due to the instability of ultrasonically emulsied oil. The
This journal is © The Royal Society of Chemistry 2024
uorescence of the emulsied oil cannot be obtained when the
excitation light and emitted uorescence cannot penetrate the
oil lm, and the uorescence spectrum at this time is basically
the same as that of the pure oil.30

The initial spectrum of −35# D is shown in Fig. 5a. The
uorescence of emulsied −35# D at 20 ppm was virtually
undetectable by our spectrometer. The short-wave UV uores-
cence intensity shows a gradual increase as the concentration of
the oil-in-water emulsion increases, until it reaches its highest
point at 4000 ppm.

The short-wave UV uorescence intensity does not increase
but instead decreases when the concentration exceeds
8000 ppm. When the concentration increases further, the
emulsion breaks down to form an oil lm on the seawater
surface, and the uorescence spectrum becomes identical to the
uorescence of the oil lm. Fig. 5b shows the normalized
uorescence spectrum of −35# D. The intensity ratio of the
short-wave UV uorescence and long-wave UV rst increases
and then decreases with increasing concentration. The changes
in the peak uorescence of the emulsied oil in gasoline 95# G
are different from those in −35# D diesel.

As shown in Fig. 5c, the uorescence of emulsied 95# D at
20 ppm is virtually undetectable. When the concentration of 95#
G in seawater is only 100 ppm, the uorescence spectrum has
only one peak at 290 nm. As the concentration of the sample
gradually increases, the intensity of the uorescence peak at
290 nm in the uorescence spectrum also increases. Addition-
ally, peaks at around 320 nm and 335 nm emerge, and the
intensities of these two uorescence peaks also increase
(Fig. 5c). When the concentration exceeds 20 000 ppm, the
uorescence intensity at 290 nm decreases, and the uores-
cence intensity at 320 nm and 335 nm increases dramatically,
approaching the shape of the oil lm uorescence spectrum.
Fig. 5d shows the normalized uorescence spectrum of 95# G.

The uorescence spectra and normalized uorescence
spectra of −20# D are shown in Fig. 6a and b, respectively.
Similar to the spectra of −35# D, the uorescence at 290 nm is
gradually enhanced as the concentration increases from 100 to
2000 ppm. When the concentration changes from 4000 to 20
000 ppm, the short-wave UV uorescence intensity decreases,
and the long-wave UV uorescence gradually increases. The
normalized uorescence graph reveals that the ratio of long-
wave to short-wave uorescence peaks tends to decrease as
the concentration increases. The number of uorescence peaks
changes from two to four.

The uorescence of LC is shown in Fig. 6c. The uorescence
peak is located near 340 nm at low concentrations, and the
uorescence gradually increases as the concentration increases.
Additionally, the uorescence peak at 340 nm gradually disap-
pears as the concentration increases, and the uorescence peak
maximum shis towards visible wavelengths. Switching to
a spectrometer with a wider measuring range (FX 2000), the
uorescence peak was observed near 520 nm. In this case, the
uorescence is blue-green to the naked eye. Fig. 6d shows the
normalized uorescence spectra of LC.

The oil-in-water emulsions with low concentrations
(according to the experimental results, concentrations less than
Anal. Methods, 2024, 16, 1836–1845 | 1839
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Fig. 5 Fluorescence spectra of −35# D and 95# G for different emulsion concentrations. (a) Initial fluorescence spectra of −35# D. (b)
Normalized fluorescence spectra of −35# D. (c) Initial fluorescence spectra of 95# G. (d) Normalized fluorescence spectra of 95# G.
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or equal to 2000 ppm) have a uorescence peak at 290 nm in the
solar-blind UV band, and the uorescence intensity peaks of
emulsions with concentrations of 1000–2000 ppm exceed the
uorescence intensity of the oil lm at this wavelength. The
experimental results demonstrate that solar-blind UV uores-
cence can provide new ideas and application prospects for
outdoor, all-day, and all-weather uorescence monitoring.25,31

The comparison of selected long-wave uorescence peaks
and day-blind UV uorescence peaks can clearly show the
nonlinear trend in the uorescence changes. As shown in Fig. 7,
the ratios of the long-wave to short-wave uorescence of the four
emulsied oil samples gradually increase with increasing
concentration. When the oil lm on the water surface was
formed, the thickness of the oil lm increased to the point that
the excitation light could not penetrate it, the uorescence peak
ratio tended to stabilize.

There are four main aspects of spectral changes in general:
1. Change in the uorescence intensity;
2. Change in the number of uorescence peaks;
3. Change in the ratio of characteristic peaks;
4. A slight shi in the uorescence peak position.

3.2 Simultaneous prediction of oil spill types and
concentrations

3.2.1 Multi-output neural network models. Regression
refers to predictive modeling problems that involve predicting
1840 | Anal. Methods, 2024, 16, 1836–1845
numerical values for a given input, while classication involves
predicting the probability or label of class categories for a given
input. Deep learning neural networks are commonly utilized to
address both regression and classication tasks.32 In certain
predictive modeling scenarios, it is necessary to develop models
for both regression and classication.33

The generally simple approach is to develop regression and
categorical prediction models on the same data and use them
sequentially. The problem with this approach is that different
models can make different predictions. The other, more effi-
cient approach is to develop a single neural network model that
can predict both numbers and category labels from the same
inputs at the same time, which is known as a multi-output
model. The benet of this type of model is that only one
model needs to be developed and maintained instead of two,
and training and updating the model for both output types at
the same time may provide greater consistency in the predic-
tions between the two output types.

Back propagation (BP), probabilistic neural network (PNN),
radial basis function (RBF), and generalized regression neural
network (GRNN) were selected for comparative analysis to
evaluate the effectiveness of multi-output models. The structure
of the multi-output GRNN is shown in Fig. 8. The number of
nodes in the input layer is equal to the number of features in the
input data. The pattern layer computes the Euclidean distance
between the input vector and each sample, with the number of
This journal is © The Royal Society of Chemistry 2024
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Fig. 6 Fluorescence spectra of−20#D and LCwith different emulsion concentrations. (a) Initial fluorescence spectra of−20#D. (b) Normalized
fluorescence spectra of −20# D. (c) Initial fluorescence spectra of LC. (d) Normalized fluorescence spectra of LC.

Fig. 7 Long-wave to short-wave fluorescence ratios of the four
samples.
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nodes being equal to the number of samples in the training
data.34 The summation layer performs the weight calculation
and weighted average of the weights and the input of the
pattern layer.35 The output layer transforms the output values of
the summation layer and outputs them, where Y1 is the classi-
cation result and Y2 is the concentration prediction result.
This journal is © The Royal Society of Chemistry 2024
Four oils were measured with ten concentration samples for
each oil, and 20 sets of data were collected for each concen-
tration. The data was preprocessed to obtain a two-dimensional
matrix of 41 × 800. 41 Represents the data features and 800 is
the amount of data. 50% of the uorescence data was used as
the training set, and the rest was the testing set.

In the multi-output GRNN, the input layer has 41 nodes, the
distribution density of the radial basis function is 0.01, and the
pattern layer has 400 nodes.

3.2.2 Predicting results. The commonly used predictive
evaluation indices include mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), mean abso-
lute percentage error (MAPE),36 and symmetric mean absolute
percentage error (SMAPE). When the predicted value completely
matches the true value, the above-mentioned evaluation indices
are equal to 0, indicating a perfect model. The greater the error,
the greater the corresponding value of the index.37

Suppose the predicted value is:

ŷ ¼
n by1 ; by2 ;/; byno (1)

The true value is:

y = {y1, y2, /, yn} (2)
Anal. Methods, 2024, 16, 1836–1845 | 1841
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Fig. 8 Multi-output generalized regression neural network (GRNN)
structure diagram.
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Mean square error (MSE):

MSE ¼ 1

n

Xn

i¼1

�byi � yi

�2

(3)

Root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

�byi � yi

�2

s
(4)

Mean absolute error (MAE):

MAE ¼ 1

n

Xn

i¼1

��� byi � yi

��� (5)
Fig. 9 Prediction of muti-output GRNN: (a) prediction of oil types, with
concentrations, with each color representing a distinct concentration o

1842 | Anal. Methods, 2024, 16, 1836–1845
Mean absolute percentage error (MAPE):

MAPE ¼ 100%

n

Xn

i¼1

����� byi � yi

yi

����� (6)

A MAPE equal to 0 indicates a perfect model, and a MAPE
greater than 100% indicates a poor model. MAPE was chosen as
a regression precision index because it is independent of the
magnitude of the true values. MAE is associated with concen-
tration values and given as an indicator for comparison in the
results. The training and testing time of the model was also
chosen as an evaluation criterion for model performance. The
indicator for classication results is accuracy.

Based on the experimental measurements of the spectral
data, BP, RBF, PNN, and GRNN combined classication and
regression models were established. To obtain more accurate
indices, each model was tested ve times. The mean value was
calculated as the result, and the standard deviation was calcu-
lated to evaluate the stability.

The visual prediction effect is shown below (Fig. 9). Since the
concentration data are not uniformly varying, the direct repre-
sentation has some overlap in the low-concentration area. For
better representation, the coordinates use numbers instead of
species and real concentration.

Fig. 10 shows the regression prediction results for
concentration. In order to more clearly represent the tting
effect at low concentrations, the logarithm of the concentra-
tion values is taken as the horizontal coordinates. The
“Target” in the horizontal coordinate represents the loga-
rithmic value of the true concentration. Fig. 10a shows the
tting results for the training set, Fig. 10b shows the tting
results for the validation set, Fig. 10c shows the tting results
for the test set, and Fig. 10d shows the tting results for all
data. The R coefficients of the regression predictions are all
greater than 0.98, indicating that the regression predictions
achieve a good level of effectiveness.

The classication results are shown in Table 3. The results
demonstrate that multi-output BP and multi-output RBF
each color representing a distinct category of oil; (b) prediction of oil
f oil.

This journal is © The Royal Society of Chemistry 2024
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Fig. 10 GRNN regression prediction results: (a) regression results for training set; (b) regression results for validation set; (c) regression results for
test set; (d) regression results for all data.
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achieve an accuracy of 92% in species prediction, but the
performance in regression is general. Both multi-output PNN
and GRNN provide more satisfactory results in the oil species
Table 3 Processing results of the multi-output neural networks

Model Test 1 Test 2 Test 3

Accuracy BP 91.00% 91.00% 95.46%
RBF 93.50% 91.75% 92.00%
PNN 98.25% 96.50% 98.75%
GRNN 98.50% 98.75% 99.00%

MAE BP 127.41 170.82 162.87
RBF 345.83 249.51 192.40
PNN 73.62 168.81 77.05
GRNN 33.85 24.32 58.01

MAPE BP 17.67% 17.19% 15.27%
RBF 42.27% 40.27% 29.16%
PNN 5.45% 9.32% 4.71%
GRNN 2.16% 1.87% 1.89%

Time (s) BP 0.866 0.902 1.25
RBF 3.143 3.322 3.501
PNN 0.326 0.240 0.269
GRNN 0.038 0.029 0.029

This journal is © The Royal Society of Chemistry 2024
classication problem. Among them, multi-output GRNN
performs best in both the classication and regression prob-
lems. Two independent models were constructed to evaluate the
Test 4 Test 5 Mean value Standard deviation

93.25% 91.01% 92.34% 1.79%
92.25% 94.25% 92.75% 0.96%
97.50% 97.50% 97.70% 0.76%
97.75% 98.50% 98.50% 0.42%

139.30 174.13 154.91 18.36
175.79 171.46 226.99 65.62
84.66 92.63 99.35 35.34
39.25 39.84 39.05 11.00
20.42% 18.81% 17.87% 1.71%
25.03% 25.49% 32.44% 7.37%
6.69% 5.92% 6.42% 1.58%
2.24% 1.92% 2.02% 0.15%
0.878 1.086 0.996 0.150
3.062 2.728 3.151 0.260
0.221 0.265 0.264 0.036
0.033 0.027 0.031 0.004

Anal. Methods, 2024, 16, 1836–1845 | 1843
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Table 4 Processing results of normal neural networks

Model Test 1 Test 2 Test 3 Test 4 Test 5 Mean value Standard deviation

Accuracy BP 95.25% 98.50% 95.75% 93.50% 92.25% 95.05% 2.13%
RBF 95.75% 96.00% 93.50% 95.75% 94.75% 95.15% 0.93%
PNN 98.75% 99.00% 97.00% 98.50% 98.70% 98.39% 0.71%
GRNN 98.25% 98.75% 98.00% 98.25% 98.50% 98.35% 0.26%

MAE BP 158.03 147.55 212.61 170.94 188.23 175.47 23.01
RBF 244.94 362.58 223.36 260.51 241.53 266.58 49.43
PNN 94.70 93.42 93.06 93.24 93.99 93.68 0.60
GRNN 71.37 69.82 35.05 43.64 42.99 52.57 15.00

MAPE BP 15.88% 16.87% 18.49% 21.68% 22.59% 19.10% 2.63%
RBF 38.18% 55.46% 37.29% 37.87% 38.53% 39.96% 7.22%
PNN 4.13% 8.09% 5.59% 5.37% 5.22% 5.68% 1.31%
GRNN 3.90% 2.86% 3.02% 2.62% 2.96% 3.07% 0.44%

Time (s) BP 1.494 2.422 2.112 1.560 1.674 1.852 0.357
RBF 4.412 4.393 4.822 4.605 4.127 4.472 0.232
PNN 0.357 0.343 0.324 0.325 0.652 0.400 0.127
GRNN 0.055 0.051 0.049 0.058 0.050 0.053 0.003
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classication and regression performance for a comprehensive
comparison, as indicated in Table 4. While the classication
performance using the two independent models demonstrated
similar results to the multi-output model, the tting effect fell
short compared to the multi-output neural network model.
Furthermore, it is worth noting that these separate models
required a longer training time.
4. Conclusions

An advanced multi-angle excitation and detection setup was
designed and constructed for solar-blind UV uorescence
spectra analysis of oil-in-water emulsions. Using the setup, the
uorescence spectra of oil-in-water emulsions were measured
by simulating the on-site detection method and the uores-
cence characteristics were analyzed. The experimental results
revealed that the uorescence of the oil-in-water emulsion
exhibits a blue-shi in wavelength and an increase in short-
wave uorescence intensity as the oil concentration decreases.
A prediction method based on a multi-output neural network
was employed to predict the emulsied oil type and concen-
tration simultaneously. The prediction results show a high
accuracy of 98.75% for oil type identication and a MAPE of
2.02% for concentration prediction. The concentration predic-
tion yields better results within 100–16000 ppm. This method
can serve as an auxiliary means for on-site uorescence moni-
toring during the daytime, enabling comprehensive surveil-
lance of oil spills.

The rened oil emulsions presented obvious solar-blind UV
uorescence under 220 nm excitation. In the case of crude oil,
the inhibition of the solar-blind UV uorescence is enhanced
due to an increase in the number of aromatic hydrocarbon
rings. Thus, both long-wave UV-A (320–400 nm) and medium-
wave UV-B (280–320 nm) uorescence are required for better
identication. In subsequent work, a high-intensity laser light
source and more oil samples will be used for further validation
outdoors.
1844 | Anal. Methods, 2024, 16, 1836–1845
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