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Cast iron drinking water pipe biofilms support
diverse microbial communities containing
antibiotic resistance genes, metal resistance
genes, and class 1 integrons†

Lee K. Kimbell, a Emily Lou LaMartina, b Anthony D. Kappell, ‡a

Jingwan Huo, c Yin Wang, c Ryan J. Newton b and Patrick J. McNamara *a

Antimicrobial resistance is a well-documented public health concern. The role that drinking water

distribution pipes have as sources of antibiotic resistance genes (ARGs) is not well known. Metals are a

known stressor for antibiotic resistance development, implying that aging metal-pipe infrastructure could

be a source of ARGs. The objective of this study was to determine if ARGs, metal resistance genes (MRGs),

and intI1 were pervasive across various pipe biofilm sample types (biomass surfaces, pipe surfaces,

corrosion tubercles, and under corrosion tubercles) and if the resistance genes associated with particular

microbial taxa. Eight sample types in triplicate (n = 24) were taken from inside a >100 year-old, six ft.

section of a full-scale chloraminated cast iron drinking water main. Droplet digital PCR (ddPCR) was

employed as a novel approach to quantify ARGs in pipes from full-scale drinking water distribution systems

(DWDS) because it yielded higher detection frequencies than quantitative PCR (qPCR). Illumina sequencing

was employed to characterize the microbial community based on 16S rRNA genes. ARGs and MRGs were

detected in all 24 pipe samples. Every sample contained targeted genes. Interestingly, the mean absolute

abundances of ARGs and MRGs only varied by approximately one log value across sample types, but the

mean relative abundances (copy numbers normalized to 16S rRNA genes) varied by over two log values.

The ARG and MRGs concentrations were not significantly different between sample types, despite

significant changes in dominant microbial taxa. The most abundant genera observed in the biofilm

communities were Mycobacterium (0.2–70%), and β-lactam resistance genes blaTEM, blaSHV, and the

integrase gene of class 1 integrons (intI1) were positively correlated with Mycobacterium. The detection of

ARGs, MRGs, and class 1 integrons across all sample types within the pipe indicates that pipes themselves

can serve as sources for ARGs in DWDS. Consequently, future work should investigate the role of pipe

materials as well as corrosion inhibitors to determine how engineering decisions can mitigate ARGs in

drinking water that stem from pipe materials.

1. Introduction

Antibiotic resistance is a major public health concern
stemming from the microbial response to the widespread
occurrence of antibiotics and other physiological stressors in
the environment.1,2 Approximately 2.8 million people are
diagnosed with infections caused by antibiotic-resistant
bacteria (ARB), and over 35 000 deaths are attributed to
antibiotic resistance annually in the U.S. alone.3 Antibiotic
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Water impact

Aging drinking water infrastructure, particularly when made of metals, can have significant impacts on microbial water quality, and specifically antibiotic
resistance genes. This research revealed that various types of biofilm samples in a cast iron pipe can serve as sources of antibiotic resistance genes in
drinking water distribution systems. Infrastructure material decisions can be part of antibiotic resistance mitigation strategies.
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resistance genes (ARGs) on mobile genetic elements can be
acquired by pathogens in the human gut,4–6 creating risks for
vulnerable populations that are exposed to ARGs.7 ARGs have
been detected in various water environments including
groundwater,8 surface water,2,9 drinking water treatment
plants,10,11 and tap drinking water12–14 at concentrations up
to 1010 copies per L.11 Consequently, it is becoming
increasingly important to quantify ARGs in exposure routes
that directly convey ARGs to people, including drinking water
distribution systems (DWDS).15–17

ARGs in tap water have been shown to increase from the
drinking water treatment plant effluent to the tap.10 While
residual disinfectants can select for antibiotic resistance,18,19

the actual infrastructure of DWDS, i.e. the pipe materials
used, could also be an important factor that impacts
microbial ecology and consequently ARG profiles.20–24 DWDS
are comprised of a variety of metallic pipe materials (e.g.,
copper, iron, and lead) and additional metals in treated
drinking water can accumulate in biofilms and corrosion
scales.25–28 Metals select for antibiotic resistance through co-
resistance and cross-resistance mechanisms.29,30

Additionally, microorganisms have evolved detoxification
strategies, such as metal resistance genes (MRGs) and efflux
pumps, to mitigate the toxic effects of metals.31,32 Exposing
bacteria to metals in DWDS may promote the survival of
bacteria resistant to metals and antibiotics.30,33 While studies
have documented the occurrence of ARGs in tap drinking
water and in biofilms,34,35 to the best of our knowledge, no
research efforts have quantified ARGs, MRGs, and mobile
genetic elements from different biofilm sample locations
(e.g., surface biofilms, tubercles, under tubercles) in a single
pipe to understand if drinking water pipes can serve as
sources of ARGs.

The objective of this research was to determine if ARGs,
MRGs, and class 1 integrons (intI1) were quantifiable across
multiple sample types in a chloraminated cast iron water
main and to determine if microbial taxa were correlated to
resistance gene concentrations. It was hypothesized that
ARGs, MRGs, and intI1 would be detected regardless of
sample type and location. The abundance of bacterial
biomass (measured by 16S rRNA gene copies), ARGs, MRGs,
and the integrase gene of the class 1 integron, intI1, were
quantified in samples collected from different
microenvironments using droplet digital PCR (ddPCR) and
quantitative PCR (qPCR). Microbial communities were
analyzed using PCR-amplified 16S rRNA gene sequences from
each pipe sample (n = 24). This is the first research to
determine if various types of biofilm samples from a single
full-scale DWDS pipe can serve as potential sources for ARGs.

2. Materials and methods
2.1 Pipe collection, sampling, and DNA extraction

A six ft section of cast-iron water main (18″ ID, 105 years in
operation) that transported chloraminated water was
extracted, covered with sterile plastic sheeting, and

immediately transported to the laboratory for sampling and
analysis. The water main was collected as part of planned
maintenance to replace old water mains throughout the
distribution system. Pipe samples were collected from i) a
visible biofilm surface, referred to as “biomass surface” (n =
6), ii) a pipe surface that did not have biofilm visible to the
naked eye, referred to as “pipe surface” (n = 6), iii) from
three-dimensional corrosion tubercles that could be removed,
referred to as “corrosion tubercles” (n = 6), and iv) from the
pipe surface on the location where the tubercle was removed,
referred to as “under corrosion tubercles” (n = 6) (ESI†
Fig. 1). Broadly speaking, all samples were microbial
biofilms, not bulk water samples, and they were
subcategorized into the four categories listed for comparison
and statistical analysis. Pipe surface, biomass surface, and
under tubercle swabs were collected by firmly pressing a
sterile cotton-tipped applicator (Fisher Scientific, Waltham,
MA) on the biofilm surface and swabbing an area of
approximately 2–5 cm2. For each of the microenvironment
types sampled, top (n = 3) and bottom (n = 3) samples of the
cast iron water main were collected. Each swab was
transferred directly to a sterile DNA extraction lysing tube
and the stem was snapped and severed to preserve only the
sample end of the swab.36 Tubercle samples were collected
into plastic tubes using a flame sterilized spatula, and
approximately 0.2 g of corrosion tubercle was sub-sampled
for DNA extraction. Samples were immediately frozen at −20
°C until DNA extraction was performed. DNA was extracted
using the FastDNA Spin Kit (MP Biomedicals, Solon, OH).
The manufacturer's protocol was followed with the exception

Fig. 1 X-ray diffraction (XRD) patterns of biofilm tubercle samples (n =
6) collected from the chloraminated cast-iron water main. The
reference XRD patterns for goethite (JCPDS 29-0713) and
lepidocrocite (JCPDS 08-0098) are also shown for comparison.
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that initial cell lysis was conducted using liquid nitrogen
freeze thaw cycling (3×).37–40 DNA concentrations in resulting
extracts were quantified by microspectrophotometry using a
Nano-Drop (Nano-Drop™ Lite, Thermo Scientific, Waltham,
MA) and stored at −20 °C.

2.2 Quantification of resistance genes

Droplet digital PCR (ddPCR) assays were conducted to quantify
gene copies. A subset of samples was initially analyzed at 5, 10,
50, and 100-fold dilutions to test for inhibition during gene
quantification. Based on these results, a 10-fold dilution was
selected to minimize inhibition for all samples. Reaction
mixtures consisted of a total volume of 22 μL with 11 μL of
QX200 ddPCR EvaGreen Supermix (final concentration 1×) (Bio-
Rad Laboratories Inc., Hercules, CA), 2 μL each of forward and
reverse primers (final concentration 250 nM each), 4 μL of
diluted DNA extract, and 3 μL molecular grade water. The
ddPCR reaction mixture was added to a 96-well plate, sealed
with foil, homogenized by vortexing, and centrifuged briefly to
ensure that all reaction components were at the bottom of the
wells. The 96-well plate was equilibrated at room temperature
for 3 minutes prior to droplet generation. Aliquots of 20 μL for
each reaction were dispensed into a separate well of an eight-
channel droplet generator cartridge (DG8 Cartridge, Bio-Rad)
followed by 70 μL of QX200 Droplet Generation Oil for EvaGreen
into the oil wells for subsequent droplet generation using the
QX100 Droplet Generator. Oil-droplet mixtures were transferred
to a 96-well plate and sealed at 180 °C using the PX1 PCR plate
sealer. The 96-well plate was transferred to the C1000 touch
thermal cycler for PCR thermal cycling with the following
conditions: 5 min at 95 °C for activation of DNA polymerase, 39
cycles of 95 °C for 30 s and 60 °C for 60 s, followed by signal
stabilization at 4 °C for 5 min and 90 °C for 5 min. Thermal
cycling conditions were modified for genes with annealing
temperatures varying from 60 °C (ESI† Table S1). After thermal
cycling, plates were transferred to the QX200 Droplet Reader for
absolute quantification of target genes.

Data analysis was performed using the QuantaSoft
Analysis Pro software and expressed as gene copies μL−1 (V
1.0.596, Bio-Rad). Positive controls were included with each
ddPCR assay and were produced by ten-fold serial dilution of
plasmid DNA yielding 104 to 100 copies per reaction. No-
template (i.e., reagent only) controls were included with each
ddPCR assay. All ddPCR negative controls failed to yield
amplification above the limit of quantification for each assay.
Thresholds to discriminate between positive and negative
droplets were manually applied to each sample and only
samples with ≥3 positive droplets were considered as
positive.41 Furthermore, only reactions with greater than
10 000 accepted droplets were used for subsequent analysis.41

The limit of the detection (LOD) and limit of quantification
(LOQ) for each tested gene were determined according to the
MIQE guidelines.42,43 Additional MIQE guidelines were
followed and are shown in ESI† Table S2. DNA extract from
each sample was analyzed in triplicate for each target gene,

and the average value from analyzing each DNA sample three
times was used for each sample for further analysis.

Target gene copies were also quantified in triplicate from
DNA extracts using qPCR with previously published protocols
for the 16S rRNA gene,44 ARGs (blaSHV,

10 blaTEM,
45 sul1,46 MRGs

(czcD, copA),47 and the integrase gene of class 1 integrons
(intI1).48 Additional information on qPCR methodology, specific
primer sets, amplicon sizes, annealing temperatures, R2 values,
efficiencies, and quantification limits are described in the ESI†
Methods and Table S1. β-lactam resistance genes such as blaTEM
and blaSHV are grouped in the most common types of
β-lactamases belonging to Enterobacteriaceae and encode
resistance to β-lactam antibiotics such as penicillins and
cephalosporins.49 Sulfonamide resistance gene (sul1) and the
integrase gene of class 1 integrons (intI1) are frequently detected
in various natural and engineered environments and are
considered a good proxy for ARG abundance and anthropogenic
pollution.50,51 MRGs quantified in biofilm samples from the
cast iron water main included the copper resistance gene copA
and czcD, which is a part of the cation diffusion facilitator
mediating resistance to cadmium, zinc, and cobalt.52,53 These
genes were selected based on their abundance in an initial
qPCR assay conducted with over 20 different MRGs including
genes encoding resistance to metals such as arsenic, copper,
iron, lead, and zinc.

2.3 PCR and Illumina sequencing of 16S rRNA gene
amplicons

Microbial communities from biofilm samples were prepared
for analysis by triplicate PCR-amplifying and pooling V4
hypervariable regions of 16S rRNA genes.54 One extraction
blank and mock community (#HM-782D, BEI Resources) were
included in the sample set. PCR amplicons were sequenced
with Illumina MiSeq 2 × 250 paired-end chemistry at the
Great Lakes Genomic Center (http://greatlakesgenomics.uwm.
edu). Primer and barcode sequences were removed from
reads using cutadapt.55 Reads were processed, including
filtered, merged, error-corrected, and chimera-checked, into
amplicon sequence variants (ASVs) using the R package
DADA2.56 Taxonomy was assigned using DADA2 from the
SILVA v. 132 reference database.57 ASVs that were classified
as mitochondria, chloroplast, or eukaryota were removed.
Additional thresholds were set to identify and remove ASVs
potentially derived from the mock community, extraction/
PCR blank, and non-target samples that were included in the
sequencing run. Additional description of sequencing
methods is included in the ESI† Methods. Raw sequences
have been uploaded to NCBI Sequence Read Archive (SRA)
under BioProject ID PRJNA692495.

2.4 Corrosion tubercle characterization

X-ray diffraction (XRD) analysis was conducted on corrosion
tubercles that were sampled from the cast iron water main (n
= 6) to identify the dominant crystalline phases. XRD was
performed on a Bruker D8 Discover A25 diffractometer using
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copper Kα radiation with step scanning from 2θ of 15–70°.
The scan speed and step size were 3° per min and 0.02°,
respectively. XRD patterns of each corrosion tubercle were
compared to standard patterns from International Centre for
Diffraction Data (ICDD).

The inorganic elemental composition of corrosion
tubercles was determined using inductively coupled plasma
mass spectrometry (ICP-MS).58 Approximately 0.1 g of each
corrosion tubercle was subsampled for elemental analysis.
Each tubercle sample was homogenized using a sterile
mortar and pestle prior to acid digestion with nitric acid
(2%) and hydrochloric acid (1%).59 An Agilent Technologies
7700 Series ICP-MS (Agilent Technologies Inc., Santa Clara,
CA) was used for elemental composition determination.
Standard reference materials for elements including Ag, Al,
As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Na, Ni,
Pb, Sb, Se, Th, Tl, U, V, and Zn were purchased from Agilent
Technologies.

2.5 Statistical analysis

Statistical analyses were conducted using RStudio in the
open-sourced statistical program R (V 3.6.1).60,61 One-way
analysis of variance (ANOVA) was conducted using the ‘aov’
function to determine statistical differences between
abundances of target genes across groups of samples. A
significant cutoff of α = 0.05 was used for all analyses. For
sequence analysis, the BIOM file generated via DADA2 was
imported into R using the phyloseq package.62 R packages
‘phyloseq’ and ‘ggplot2’ were utilized for general
visualization of sequence data. Alpha and beta diversity
metrics and plots were generated using the ‘vegan’ and
‘ggplot2’ packages. ANOVA was used to determine
significance among the alpha diversity metrics. Principal
coordinate analysis (PCoA) was performed using the ‘ape’
package to visualize differences between samples using the
Bray–Curtis dissimilarity matrix generated in ‘phyloseq’.
Canonical correspondence analysis (CCA) was conducted in R
using the vegan package to identify correlations between the
bacterial community structure and biofilm sample location.
Spearman's rank sum correlation coefficients were calculated
in R to assess correlations between ARGs, MRGs, abundant
taxa, and biofilm sample location. Indicator taxa were
identified for each sample location using the multi-level
pattern (indicator species) analysis in the package
‘indicspecies’.63 Rarefaction curves were generated using the
‘ggrare’ function from the phyloseq-extended package of
scripts.64

3. Results and discussion
3.1 Physical characterization of corrosion tubercles

XRD analysis indicated that the mineral phases present in
the interior surfaces of the cast iron pipe primarily consisted
of goethite (α-FeOOH) and lepidocrocite (γ-FeOOH) (Fig. 1).
Goethite has been widely found as a main corrosion product

in cast iron pipes65–70 and several previous studies also
reported the observation of lepidocrocite in iron pipes from
full-scale DWDS.71,72 The inorganic elemental composition
of corrosion tubercles was characterized by ICP-MS. Iron
was the dominant element in corrosion tubercles
representing approximately 98.6% of the measured mass.
Other elements detected in quantities ranging from 0.1% to
1.0% in the tubercles included Ca (0.64%), Al (0.38%), Mg
(0.12%), and Mn (0.10%). Elements detected below 0.1%
included Na, K, Co, Cu, Pb, Zn, V, As, Se, Mo, Ag, Cd, Hg,
Ni, and Be. Metals present in corrosion scales and tubercles
in the cast iron water main may have originated from the
pipe material itself, especially Fe, but other trace elements
were likely deposited over time from the bulk drinking
water.

3.2 Quantification of bacterial biomass

16S rRNA genes were detected above quantification limits in
all 24 samples from the cast iron water main (ESI† Fig. S2).
The mean concentration in corrosion tubercles was 4.4 × 107

16S rRNA gene copies per g tubercle. The mean concentration
in biofilms collected under corrosion tubercles was 3.5 × 105

16S rRNA copies per cm2. Previous studies have reported
similar levels of 16S rRNA in biofilms from chloraminated
water mains with averages ranging from 3.2 × 105 to 2.5 × 107

copies per cm2.73–75

3.3 Quantification of resistance genes in pipe samples

3.3.1 Detection frequency by ddPCR and qPCR. The
frequency of gene detects for every gene analyzed across the
24 samples using ddPCR was equal to or higher than that for
qPCR (Table 1; ESI† Fig. S3). The presence of inhibiting
substances such as metals or humic acids in the biofilm
samples are known to impact amplification and primer
annealing in qPCR assays.76,77 Previous studies have also
demonstrated that ddPCR, as compared to qPCR, can have
increased precision and accuracy for quantifying low
concentrations of DNA in variably contaminated
samples.76–78 Our findings in conjunction with previous
studies suggest that ddPCR is favorable for detecting ARGs in
DWDS, particularly because these samples often contain low
concentrations of DNA and contaminants that may interfere
with qPCR. Reporting limit of detection and limit of
quantification will be key for comparing across studies, as
these values can differ significantly among quantification
methods.

3.3.2 Abundance of antibiotic resistance genes (ARGs) and
intI1. The ARGs blaSHV, blaTEM, and sul1, and intI1 were
detected in biofilm samples from the chloraminated cast-
iron drinking water main at concentrations up to nearly 6 log
gene copies cm−2, with the highest mean value belonging to
gene blaTEM at approximately 4.8 log gene copies cm−2

(Fig. 2). A previous study reported the mean absolute
abundance of ARGs (blaTEM, sul1, qnrA, vanA) and intI1 in
biofilms from undefined pipe materials to range from <LOQ
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to 4.2 log copies swab−1.34 Mean absolute abundances of
ARGs and intI1 in different biofilm microenvironments varied
by over one log unit, but the mean differences of the sample
types were not significantly different from each other (one-
way ANOVAs, p values > 0.05), indicating that sample type

did not impact absolute gene abundances. Relative gene
abundances (absolute normalized to 16S rRNA gene copies)
demonstrated higher variability (>2-log units) between the
different microenvironments sampled, but the mean relative
abundance values were not significantly different based on

Table 1 Summary of detections of ARGs, MRGs, and intI1 with ddPCR and qPCR

Gene
Mechanism/mode
of action

ddPCR
detections

ddPCR LOQ
(CN μL−1)

ddPCR LOQ
(CN cm−2)

qPCR
detections

qPCR LOQ
(CN μL−1)

qPCR LOQ
(CN cm−2)

16S rRNA NA 24 (100%) 5 5 × 103 24 (100%) 500 5 × 105

blaSHV Beta lactam resistance 24 (100%) 2 2 × 103 20 (83%) 50 5 × 104

blaTEM Beta lactam resistance 24 (100%) 2 2 × 103 24 (100%) 5 5 × 103

copA Copper resistance 11 (45%) 4 4 × 103 3 (12.5%) 5 5 × 103

czcD Cobalt, zinc, cadmium efflux 20 (83%) 3 3 × 103 19 (79%) 5 5 × 103

intI1 Integrase gene of class 1 integrons 10 (42%) 4 4 × 103 8 (33%) 5 5 × 103

sul1 Enzymatic modification 17 (71%) 3 3 × 103 4 (17%) 5 5 × 103

tet(L) Tetracycline efflux 0 (0%) 6 6 × 103 0 (0%) 50 5 × 104

Notes: CN – copy numbers, LOQ – limit of quantification, NA – not applicable.

Fig. 2 Absolute abundance of antibiotic resistance genes, metal resistance genes, and intI1 in different biofilm microenvironments from a cast
iron drinking water main as measured with ddPCR. The biofilm microenvironments include biomass surface (BS), pipe surface (PS), tubercle (TUB),
and under tubercle (UT). Each biofilm sample is also categorized by top or bottom pipe sample location. Sample categories (e.g. bottom UT, top
BS) are plotted when 1–3 of the samples yielded a quantifiable result. Sample categories with no positive detections were left blank. Each symbol
represents the average of 3 ddPCR technical replicates from a single biofilm sample. All biofilm swab samples are plotted as log10 gene copies per
cm2. Corrosion tubercle samples are plotted as log gene copies per g. The quantification limit (QL) is also plotted for each gene as the dash on the
right side of the plot.
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sample type (one-way ANOVA, p > 0.05) (ESI† Fig. S4). The
variability in relative abundance values for ARGs in the
different microenvironments was primarily due to differences
in levels of bacterial 16S rRNA genes between sample
locations rather than changes in ARG abundance. Indeed,
these results indicate that various pipe biofilm samples, and
thus pipe infrastructure, could serve as sources of ARGs into
tap drinking water.

Absolute concentrations of ARGs remained relatively
consistent in the different biofilm sample locations. ARGs
were detected more frequently in surficial biofilm
environments but demonstrated similar absolute abundance
compared to sub-surface environments. One explanation
could be that corrosion deposits and tubercles can provide
relief from disinfectants, advective flow, and shear stress
which allows additional biofilm development to occur.80

Observed relative abundance values for ARGs in the current
study suggest that microbes in sub-surface communities may
harbor ARGs at similar levels compared to surficial microbes.
The presence of ARGs in each of the different biofilm sample
locations suggests that potential selection for antibiotic
resistance exerted by disinfectants, metals and other
dissolved contaminants exists throughout the cast iron
biofilm communities inside the pipe. Additionally, the
detection of ARGs and class 1 integrons in the biofilm
communities suggests that horizontal gene transfer may be
one plausible explanation for the proliferation of ARGs inside
the cast iron biofilm communities due to the close proximity
of microbial species within biofilms.30,79 Average and median
chloramine concentrations inside the distribution system
were 1.0 to 1.3 mg L−1. Residual disinfectants such as
chloramines present in DWDS at subinhibitory levels have
been shown to stimulate horizontal gene transfer of ARGs
through multiple pathways including reactive oxygen species
response systems and the SOS response.18

Beta-lactamase resistance genes, blaSHV and blaTEM, were
detected in all 24 biofilm samples ranging from 4.1 to 5.3 log
gene copies per cm2. A previous study detected blaTEM in
drinking water biofilms at lower absolute abundance (mean =
1.5 log gene copies swab−1) but with similar relative
abundance (mean = −2.3 log ARG copies/16S rRNA copies) as
in this study.34 These results demonstrate that different
microenvironments or niches in pipes can serve as reservoirs
for bacteria harboring resistance genes, indicating that
biofilms on DWDS pipes can serve as sources of ARGs when
biofilms shed viable cells into tap drinking water.79 The
sulfonamide resistance gene (sul1) and the integrase gene of
class 1 integrons (intI1) are frequently detected in various
natural and engineered environments and are considered
potential indicators of horizontal gene transfer of ARGs.50,51

The intI1 gene was detected in 10 biofilm samples at an
average concentration of 4.5 log gene copies per cm2. The
intI1 gene was detected at a higher frequency in biofilm
surface samples (83%) and was not detected in tubercle
samples. The frequency of sul1 detections for biofilm surface,
pipe surface, and under tubercle samples was 83%,

compared to 33% for corrosion tubercles. Additional
variation in ARG abundance was observed between samples
collected from the top and bottom of the water main, but the
differences were not statistically different (one-way ANOVA, p
values >0.05). The distance of biofilm sample collection
inside the water main (12 in., 18 in., and 24 in.) also did not
have a significant effect on ARG concentrations.

3.3.3 Abundance of metal resistance genes (MRGs). MRGs
quantified in biofilm samples from the cast iron water main
included the copper resistance gene copA and czcD. The czcD
gene was detected in 83% of biofilm samples at
concentrations ranging from above LOQ to 4.6 log gene copies
cm−2. The mean czcD absolute abundance in surficial samples
(BS, PS) was not significantly different compared to sub-
surface samples (TUB, UT) according to One-way ANOVA
results (p > 0.05). The czcD gene is part of the cation diffusion
facilitator mediating resistance to cadmium, zinc, and
cobalt52,53 and has previously been documented in source
drinking water treated with the corrosion inhibitor zinc
orthophosphate.58 The copper resistance gene copA was
detected above the LOQ in 45% of samples with ddPCR
assays. The copA gene encodes an ATPase efflux pump that
extrudes copper ions, making it one of the main mechanisms
mediating copper resistance.81 The detection of czcD and copA
may be related to the presence of copper, zinc, cadmium, and
cobalt ions in the drinking water and corrosion deposits.
Previous studies have demonstrated that exposure to sub-
inhibitory levels of Cu(II) and Zn(II) can contribute to
horizontal gene transfer of ARGs.29 This is the first study to
quantify clinically-relevant ARGs and MRGs in multiple types
of biofilm samples from a chloraminated cast iron water main
collected from a full-scale distribution system.

3.4 Microbial community composition of pipe samples

Corrosion tubercles, especially from the bottom of the water
main, exhibited the most unique microbial community
composition compared to the biomass surface, pipe surface,
and under tubercle samples (Fig. 3a). Biofilm microbial
communities exhibited similar Shannon diversity (1.8–4.4) to
previous observations of biofilm communities in cast iron
drinking water mains73 (ESI† Fig. S5). A total of 469 microbial
genera corresponding to 47 different phyla were identified in
the biofilm microbial communities from the cast iron water
main. The most abundant genera observed in the biofilm
communities included Mycobacterium (0.2–70%), Geobacter
(0–57%), Gallionella (0–40%), Phreatobacter (0–25%),
Desulfovibrio (0–21%), Undibacterium (0–18%), Streptococcus
(0–17%), and Sphingomonas (0–17%) (Fig. 3b). Previous
studies have also observed high abundance of Mycobacterium,
Geobacter, Gallionella, Sphingomonas, and Undibacterium in
corrosion deposits and biofilms in DWDS.68,82–84 Other
abundant genera observed in the cast iron biofilm
communities included Hydrogenophaga (0–15%), Rhodoferax
(0–15%), Galbitalea (0–12%), Corynebacterium (0–11%),
Ralstonia (0–8%), and Geothrix (0–6%).
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Mycobacterium represented the most abundant genus in
the current study with 22 unique Mycobacterium ASVs
detected in the biofilm communities. These ASVs comprised
32% of the total sequences in the biofilm samples and were
detected in all 24 biofilm samples. Mean relative abundance
of Mycobacterium spp. was highest in under tubercle samples
(43%) compared to other sample locations (25–32%), but the
differences were not statistically significant (one-way ANOVA,
p > 0.05). Although the mean values were not significantly
different, relative abundance of Mycobacterium exhibited wide
variability across individual samples ranging from 0.2 to

70%. These findings are consistent with previous studies that
have reported Mycobacterium as the dominant genus in
drinking water biofilms from chloraminated cast iron water
mains.73,75,82 Mycobacterium spp. are frequently detected in
DWDS85–87 and have several characteristics that give them a
competitive advantage in chloraminated DWDS including the
ability to form biofilms, resistance to residual disinfectants,88

and the ability to survive in nutrient-deficient
environments.89,90 The prevalence of Mycobacterium in full-
scale DWDS is a potential concern because the genus
contains several opportunistic pathogens.90–93

Fig. 3 (A) Principal coordinate analysis (PCoA) using Bray–Curtis dissimilarity of microbial communities in biofilm samples from the chloraminated
cast-iron drinking water main (n = 24). Color of points denote sample type and are as described in table on top right. Point labels refer to sample
number in table. (B) Relative abundance of 11 most abundant taxa combined down to lowest classification. Samples on x-axis ordered along axis 1
of PCoA.
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The abundance patterns for the most abundant taxa
are shown in Fig. 4. Several corrosion-related bacterial

genera including Sphingomonas, Desulfovibrio, Gallionella,
Geobacter, Hydrogenophaga, and Rhodobacter were observed

Fig. 4 Heatmap of normalized (Z score) abundances of most abundant (maximum relative abundance >2% in at least one sample) taxa combined
to lowest classification. Samples along x-axis and taxa along y-axis were clustered into dendrograms using Bray–Curtis dissimilarity. Colors of
points on x-axis denote sample type.
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in the biofilm communities and have been previously
documented in cast-iron pipe biofilms and corrosion
scales.67,68,73,94–96 Bacteria inhabiting distribution systems
primarily perform functions related to carbon source utilization
and nitrification, as well as microbial induced corrosion
processes.97 Corrosion tubercles contained increased
abundance of microorganisms related to microbial induced
corrosion and redox cycling processes in cast iron pipes
including genera such as Gallionella, Geobacter, Geothrix, and
Undibacterium.67,68,73 Previous studies have demonstrated that
the abundance of microorganisms in DWDS may be impacted
by the presence of corrosion tubercles, suspended solids, and
other loose corrosion deposits.98,99 Additionally, the bottom of
water mains can accumulate higher densities of bacteria and
corrosion deposits, which may also support increased
abundance of nitrifying bacteria.100 Similarly, the biofilm
samples from the bottom of the cast iron water main displayed
increased relative abundance of bacterial genera related to iron
and nutrient cycling.

Spearman correlation analysis revealed significant
relationships between the co-occurrence of several corrosion-
related bacteria in the biofilm communities (ESI† Fig. S6).
The genus Ralstonia demonstrated the most significant
relationships with other taxa, and it is considered an
emerging global opportunistic pathogens in municipal water
supplies.101 Positive relationships were observed between the
co-occurrence of corrosion-related bacteria from Geobacter
and Gallionella genera, which also made up a large
proportion of the communities in corrosion tubercles.
Geobacter were most prevalent in corrosion tubercles (11.7%)

but were also identified in lower abundance in pipe surface
(3.1%), biofilm surface (0.4%), and under tubercle
environments (0.4%). The Geobacter genus contains iron-
reducing species, and previous studies have reported that
Geobacter spp. were among the most resistant bacteria to
monochloramine disinfection in lab-scale disinfection
experiments.102 Similarly, Gallionella spp. were more
abundant in corrosion tubercles (16.5%) compared to biofilm
surface (3.6%), pipe surface (1.0%), and under tubercle
environments (1.9%). Gallionella spp. are neutrophilic iron
oxidizing bacteria (IOB) that can promote the precipitation of
iron oxides by converting ferrous iron to ferric iron and have
previously been observed in association with severe iron
corrosion release or “red water” events in distribution
systems.96,103 Bottom tubercle samples demonstrated
increased relative abundance of Gallionella and Geobacter
(22.5% and 23%) compared to top tubercle samples (10.5%
and 0.4%), but these differences were not significant (one-
way ANOVA, p values >0.05).

Indicator species analysis was employed to identify the
most abundant indicator organisms in each sample location
from the water main. Several corrosion-related genera were
significant indicator organisms for corrosion tubercle
samples including Geothrix, Gallionella, Phreatobacter,
Thiomonas, and Rhodovastum (all p values <0.05).
Methylobacterium were identified as significant indicators for
biofilm surface communities, while Bradyrhizobium were
identified as indicators of pipe surface and under tubercle
communities. Phreatobacter and Ralstonia genera were
identified as indicators of communities in samples collected

Fig. 5 Relationships between relative abundance of most abundant taxa and absolute abundance of ARGs, MRGs, and intI1 in biofilm samples
from cast iron water main. Color denotes the result from correlation analysis using Spearman's rank sum correlation with Spearman's rho value
plotted for each comparison. The rho value for statistically significant relationships are also included (p values <0.05). The lowest available
taxonomic classification for each observed ASV is provided.
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from pipe surfaces, biofilm surfaces, and under tubercles.
Several of the identified indicator organisms in our study
have been reported in previous studies analyzing cast iron
biofilm communities.68,83,104

3.5 Relationships between sample location, resistance genes,
and microbial community composition

Microbial communities and abundances of resistance genes
were compared between sample locations to determine
potential host bacteria harboring ARGs, MRGs, and intI1.105

Additionally, the relationships among bacterial community
composition and different sample types were evaluated using
CCA. Biofilm sample type significantly influenced microbial
community composition and explained 32% of the community
variability (CCA, p = 0.009). Biofilm samples were taken from
12, 18, and 24 in. inside of the water main to assess impact of
lateral sampling distance. CCA indicated that sampling distance
into the pipe explained 36% of the variability in bacterial
community composition (p = 0.001). These results indicate that
biofilm sample location was a significant variable influencing
microbial communities.

Spearman correlation analysis was conducted to determine
relationships between bacterial community composition and
abundance of resistance genes. Significant correlations were
observed between several microbial genera and the abundance
of resistance genes in the biofilm samples (Fig. 5). The
occurrence of czcD was significantly correlated with genera
including Desulfovibrio, Ferritrophicum, Herbaspirillum, and
Rhodoferax (all p values <0.05). Positive relationships were also
observed between czcD and corrosion-related genera such as
Geothrix, Gallionella, Sphingomonas, and Undibacterium.

The copper resistance gene copA was positively associated
with the occurrence of several genera including Galbitalea,
Gallionella, Geobacter, Geothrix, and Ferritrophicum. A significant
negative relationship was observed between copA and
Phreatobacter. β-Lactam resistance genes blaTEM and blaSHV were
positively correlated with taxa including Burkholderia, Galbitalea,
and Mycobacterium. A significant negative relationship was
observed between blaTEM and the genus Hydrogenophaga (p <

0.05). The integrase gene of class 1 integrons (intI1) was
positively correlated with genera including Desulfovibrio,
Galbitalea, Hydrogenophaga, and Mycobacterium. The
sulfonamide resistance gene sul1 demonstrated a significant
positive relationship with the Geobacter genus.106 The presence
of statistically significant correlations between microbial taxa
and resistance genes in the biofilm samples implies that at least
some of the shifts observed in gene abundance could have
resulted from shifts in abundances or types of host bacteria.34

4. Conclusions

This research established that drinking water main biofilms
in a chloraminated cast iron water main can serve as sources
of resistance genes, regardless of sample type or location
within the pipe. This is the first research to use ddPCR and
qPCR to quantify ARGs, MRGs, and class 1 integrons in

drinking water biofilms from a full-scale distribution system.
Future research should be conducted to determine the
distribution and concentrations of resistance genes in
different pipe materials and in different locations of the
same distribution system. Additional research is needed to
quantify resistance genes and microbial communities in
other pipe materials including copper, lead, and plastic that
are commonly used in full-scale DWDS to understand how
engineering management decisions can impact sources of
antibiotic resistance.24 Further, full-scale and laboratory scale
studies should be conducted to determine the impacts of
corrosion inhibitors and corrosion products on the
prevalence of antibiotic resistance in DWDS. Previous studies
have suggested that drinking water biofilms may facilitate
horizontal transfer of the ARGs from one host to another due
to the presence of nutrients and high bacterial density and
diversity.8 In the current study, genera containing
opportunistic pathogens detected in the biofilm samples
included Mycobacterium, Ralstonia, Staphylococcus, and
Sphingomonas. Further research targeting these specific
bacterial genera would be necessary to determine the
presence of any potential opportunistic pathogens. Human
exposure routes relevant for potable water include
consumption of tap drinking water, dermal contact, and
inhalation of aerosolized drinking water during showering or
bathing.16 Studies documenting the occurrence and
distribution of ARGs and MRGs in DWDS are critical for
human health risk assessments evaluating the potential for
the transfer and development of antibiotic resistance in
engineered systems and in the environment.105,107 Given the
potential for bacterial growth in DWDS, it is essential to
continue to seek water treatment and management options
that minimize levels of antibiotic resistance. Specific
conclusions from key findings are as follows:

• ARGs (blaTEM, blaSHV, sul1), MRGs (copA, czcD), and/or
class 1 integrons (intI1) were detected in every biofilm sample
type studied within a chloraminated cast iron drinking water
main, indicating that pipes could serve as sources for ARGs.

• ddPCR assays resulted in more positive detections and
lower detection limits for target genes compared to qPCR
assays. Future studies should consider ddPCR for
environmental samples containing inhibiting substances
such as metals, humic acids, and other contaminants.

• Microbial communities varied between different biofilm
sample locations and were dominated by corrosion-related
genera including Mycobacterium, Geobacter, Gallionella, and
Sphingomonas.

• Significant relationships were observed for the co-
occurrence of ARGs, MRGs, intI1 and several microbial taxa.

• Further research is warranted to determine the impacts
of different pipe materials on the abundance of ARGs, MRGs,
and intI1 in biofilms inhabiting full-scale DWDS.
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